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FOREWORD

HOW QUANTITATIVE INVESTMENT ANALYSIS
CAN IMPROVE PORTFOLIO DECISION MAKING

I am a Quant. By my own self-admission, I use quantitative investment techniques in the
management of investment portfolios. However, when I tell people that I am a Quant, they
often respond: ‘‘But Mark, aren’t you a lawyer?’’ Well, yes, but . . .

The fact is that Quants come from all walks of life. Whether we are called Quants,
Quant Jocks, Gear Heads, Computer Monkeys, or any of the other monikers that are attached
to investors who like to scribble equations on a piece of paper, we all share a common
denominator—the use of quantitative analysis to make better investment decisions. You don’t
have to be a rocket scientist with a Ph.D. in an esoteric mathematical field to be a Quant
(although there are, I suspect, several former rocket scientists who have found working in the
financial markets to be both fun and profitable). Anyone can become a Quant—even a lawyer.

But let’s take a step back. Why should any investor want to use quantitative tools in the
management of investment portfolios? There are three reasons why Quants are so popular.

First, the financial markets are very complicated places. There are many interwoven
variables that can affect the price of securities in an investment portfolio. For example, the
stock price of a public company can be affected by macroeconomic factors such as the level
of interest rates, current account deficits, government spending, and economic cycles. These
factors may affect the cost of capital at which a corporation finances its new projects, or
influence the spending patterns of the company’s customers, or provide economic impetus
through government spending programs.

In addition to macro variables, the value of a company’s stock can be affected by factors
that are peculiar to the company itself. Factors such as cash flow, working capital, book-
to-market value, earnings growth rates, dividend policy, and debt-to-equity ratios affect the
individual value of each public company. These are considered to be the fundamental factors
that have an impact on the specific company as opposed to the broader stock market.

Then we come to the financial market variables that affect a company’s valuation. Its
‘‘beta’’ or measure of systematic risk will impact the expected return for the company and, in
turn, its stock price. The famous Capital Asset Pricing Model that measures a stock’s beta is
really just a linear regression equation of the type described in Chapter 8.

Last, there are behavioral variables that can affect security values. Such behavior as
herding, overconfidence, overreaction to earnings announcements, and momentum trading
can all impact the price of a company’s stock. These behavioral variables can have a lasting
impact on a stock price (remember the technology bubble of 1998–2001 when tech stocks
were going to take over the world?) as well as generate a significant amount of ‘‘noise’’ around
a security’s true value.

xiii
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Considering all of these variables together at one time to determine the true value of
a security can be an overwhelming task without some framework in which to analyze their
impact. It is simply not possible for the human mind alone (at least, not mine) to be able
to weigh the impact of individual company specific factors such as price-to-earnings ratios,
macroeconomic variables such as government spending programs, investor behavioral patterns
such as momentum trading, and other potentially influential variables in a rigorous fashion
within the human brain.

This is where Quantitative Investment Analysis can help. Factor modeling techniques such
as those described in Chapter 11 can be used to supplement the intuition of the human mind
to produce a quantitative framework that digests the large number of plausible variables that
can impact the price of a security. Further, given the many variables that can affect a security’s
value, it is not possible to consider each variable in isolation. The economic factors that cause
a security’s price to go up or down are interwoven in a complex web such that the variables
must be considered together to determine their collective impact on the price of a security.

This is where the value of Chapters 8 and 9 are most useful. These two chapters provide
the basic knowledge for building regression equations to study the impact of economic factors
on security prices. The regression techniques provided in Chapters 8 and 9 can be used to filter
out which variables have a significant impact on the price of a security, and which variables
just provide ‘‘noise.’’

In addition, Chapter 9 introduces the reader to ‘‘dummy variables.’’ Despite their name,
you don’t have to be a dummy like me to use them. Dummy variables are a neat way to study
different states of the world and their impact on security prices. They are often referred to as
‘‘binary’’ variables because they divide the world into two states for observation, for example,
financial markets up versus financial markets down; Republicans in control of the White
House versus Democrats in control of the White House; Chicago Cubs win (almost never)
versus Chicago Cubs lose; and so on. This last variable—the record of the Chicago Cubs—I
can attest has no impact on security valuations, although, as a long-standing and suffering
Cub fan, it does have an impact on my morale.

As another example, consider a recent research paper where I studied the behavior of
private equity managers in the way they price their private equity portfolios depending on
whether the public stock markets were doing well versus when the public stock markets were
doing poorly. To conduct this analysis, I ran a regression equation using dummy variables to
divide the world into two states: up public stock markets versus down public stock markets.
By using dummy variables in this manner, I was able to observe different behavioral patterns
of private equity managers in how they marked up or down their private equity portfolios
depending on the performance of the public stock markets.

The second reason Quantitative Investment Analysis will add value to the reader is that it
provides the basic tools to consider a breadth of economic factors and securities. It is not only
the fact that there are many interwoven economic variables that impact the value of a security,
the sheer number of securities in the market place can be daunting. Therefore, most investors
only look at a subset of the investable securities in the market.

Consider the U.S. stock market. Generally, this market is divided into three categories
based on company size: large-cap, mid-cap, and small-cap stocks. This division is less so because
there might be ‘‘size’’ effects in valuation, but rather, because of the pragmatic limitation
that asset managers simply cannot analyze stocks beyond a certain number. So traditional
fundamental investors select different parts of the U.S. stock market in which to conduct their
security analysis. However, the division of the stock market into size categories effectively
establishes barriers for investment managers. There is no reason, for example, why a portfolio
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manager with insight into how earnings surprises affect stock prices cannot invest across the
whole range of stock market capitalization.

This is where Chapters 6 and 7 can be useful. The quantitative skills of sampling,
estimation, and hypothesis testing can be used to analyze large baskets of data. This allows
portfolio managers to invest across a broad universe of stocks, breaking down traditional
barriers such as cap-size restrictions. When viewed in this light, quantitative analysis does not
displace the fundamental stock picking skills of traditional asset managers. Rather, quantitative
analysis extends the portfolio manager’s insight with respect to company, macro, and market
variables to a broader array of investment opportunities.

This also has implications for the statistical tools and probability concepts provided in
Chapters 3 and 4. The larger the data set to be analyzed the greater the reliability of the
parameter estimation derived from that data set. Breadth of economic analysis will improve not
only the statistical reliability of the quantitative analysis, but will also increase the predictability
of the relationships between economic factors and stock price movement. The statistical tools
provided in this book allow the portfolio manager to realize the full potential of his or her skill
across a larger universe of securities than may have previously been achieved.

Another example might help. Every year the California Public Employees’ Retirement
System (CalPERS), my former employer, publishes a list of the most poorly governed
companies in the United States. This list has now been published for 16 years and has been
very successful. Early on in the process, the selection was conducted on a subset of the U.S.
stock market. However, this process has evolved to consider every U.S. stock held in CalPERS’s
portfolio regardless of stock market capitalization range. This requires the analysis of up to
1,800 stocks every year based on both economic factors and governance variables. The sheer
number of securities in this data sample could not be analyzed without the application of
quantitative screening tools to expand the governance universe for CalPERS.

Last, Quantitative Investment Analysis can provide a certain amount of discipline to the
investment process. We are all human, and as humans, we are subject to making mistakes. If I
were to recount all of the investment mistakes that I have made over my career, this Foreword
would exceed the length of the chapters in this book. Just as a brief example, one of my ‘‘better
calls’’ was Starbucks Coffee. Early on when Starbucks was just getting started, I visited one
of their shops to see what the buzz was all about. At that time a Latte Grande was selling for
about $1.50. I recall that I thought this was an outrageous price and I can remember distinctly
saying: ‘‘Oh, this is a dumb idea, this will never catch on!’’ Ah yes . . .

So back to quantitative techniques—how can they help? In this instance, they could have
helped me remove my human biases and to think more analytically about Starbucks’ prospects.
If I had taken the time to conduct an empirical review using the quantitative tools provided
in this text, I would have seen the fundamental value underlying that buck-fifty Latte.

The fact is that we are all subject to behavioral biases such as overconfidence, momentum,
and overreaction. Not only can these be analyzed as discussed above, they can be revealed
and discounted when we make our investment decisions. Perhaps the single biggest behavioral
hurdle to overcome for investors is the inability to sell a security when its value declines. All
too often we become almost emotionally attached to the securities in our portfolio such that
we find it hard to sell a security that begins to decline in price.

Yet, this is precisely, where Quantitative Investment Analysis can help because it is
dispassionate. Quantitative tools and modeling techniques can take the emotion and cognitive
biases out of the portfolio decision-making process. As portfolio managers, our goal is to
be objective, critical, and demanding. Unfortunately, sometimes our embedded habits and
opinions can get in the way. However, quantitative models are unemotional and they can root
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out our cognitive biases in a way that we simply cannot do ourselves by looking in the mirror
(in fact, when I look in the mirror I see someone who is six feet and four inches tall and
incredibly good looking but then my wife Mary reminds me that I am only six feet and one
inch tall and she had better offers).

All in all, the investor will appreciate the methods, models, and techniques provided in
this text. This book serves as an excellent introduction to those investors who are just beginning
to use quantitative tools in their portfolio management process as well as an excellent reference
guide for those already converted. Quantitative investing is not difficult to grasp—even a
lawyer can do it.

Mark J. P. Anson
CEO, Hermes Pensions Management
CEO, British Telecomm Pension Scheme
mark@hermes.co.uk
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INTRODUCTION

CFA Institute is pleased to provide you with this Investment Series covering major areas in
the field of investments. These texts are thoroughly grounded in the highly regarded CFA
Program Candidate Body of Knowledge (CBOK) that draws upon hundreds of practicing
investment professionals and serves as the anchor for the three levels of the CFA Examinations.
In the year this series is being launched, more than 120,000 aspiring investment professionals
will each devote over 250 hours of study to master this material as well as other elements of
the Candidate Body of Knowledge in order to obtain the coveted CFA charter. We provide
these materials for the same reason we have been chartering investment professionals for over
40 years: to improve the competency and ethical character of those serving the capital markets.

PARENTAGE

One of the valuable attributes of this series derives from its parentage. In the 1940s, a handful
of societies had risen to form communities that revolved around common interests and work
in what we now think of as the investment industry.

Understand that the idea of purchasing common stock as an investment—as opposed to
casino speculation—was only a couple of decades old at most. We were only 10 years past the
creation of the U.S. Securities and Exchange Commission and laws that attempted to level the
playing field after robber baron and stock market panic episodes.

In January 1945, in what is today CFA Institute Financial Analysts Journal , a funda-
mentally driven professor and practitioner from Columbia University and Graham-Newman
Corporation wrote an article making the case that people who research and manage portfolios
should have some sort of credential to demonstrate competence and ethical behavior. This
person was none other than Benjamin Graham, the father of security analysis and future
mentor to a well-known modern investor, Warren Buffett.

The idea of creating a credential took a mere 16 years to drive to execution but by 1963,
284 brave souls, all over the age of 45, took an exam and launched the CFA credential. What
many do not fully understand was that this effort had at its root a desire to create a profession
where its practitioners were professionals who provided investing services to individuals in
need. In so doing, a fairer and more productive capital market would result.

A profession—whether it be medicine, law, or other—has certain hallmark characteristics.
These characteristics are part of what attracts serious individuals to devote the energy of their
life’s work to the investment endeavor. First, and tightly connected to this Series, there must
be a body of knowledge. Second, there needs to be some entry requirements such as those
required to achieve the CFA credential. Third, there must be a commitment to continuing
education. Fourth, a profession must serve a purpose beyond one’s direct selfish interest. In
this case, by properly conducting one’s affairs and putting client interests first, the investment

xix



xx Introduction

professional can work as a fair-minded cog in the wheel of the incredibly productive global
capital markets. This encourages the citizenry to part with their hard-earned savings to be
redeployed in fair and productive pursuit.

As C. Stewart Sheppard, founding executive director of the Institute of Chartered Financial
Analysts said, ‘‘Society demands more from a profession and its members than it does from a
professional craftsman in trade, arts, or business. In return for status, prestige, and autonomy, a
profession extends a public warranty that it has established and maintains conditions of entry,
standards of fair practice, disciplinary procedures, and continuing education for its particular
constituency. Much is expected from members of a profession, but over time, more is given.’’

‘‘The Standards for Educational and Psychological Testing,’’ put forth by the American
Psychological Association, the American Educational Research Association, and the National
Council on Measurement in Education, state that the validity of professional credentialing
examinations should be demonstrated primarily by verifying that the content of the examina-
tion accurately represents professional practice. In addition, a practice analysis study, which
confirms the knowledge and skills required for the competent professional, should be the basis
for establishing content validity.

For more than 40 years, hundreds upon hundreds of practitioners and academics have
served on CFA Institute curriculum committees sifting through and winnowing all the many
investment concepts and ideas to create a body of knowledge and the CFA curriculum. One of
the hallmarks of curriculum development at CFA Institute is its extensive use of practitioners
in all phases of the process.

CFA Institute has followed a formal practice analysis process since 1995. The effort
involves special practice analysis forums held, most recently, at 20 locations around the world.
Results of the forums were put forth to 70,000 CFA charterholders for verification and
confirmation of the body of knowledge so derived.

What this means for the reader is that the concepts contained in these texts were driven
by practicing professionals in the field who understand the responsibilities and knowledge that
practitioners in the industry need to be successful. We are pleased to put this extensive effort
to work for the benefit of the readers of the Investment Series.

BENEFITS

This series will prove useful both to the new student of capital markets, who is seriously
contemplating entry into the extremely competitive field of investment management, and to
the more seasoned professional who is looking for a user-friendly way to keep one’s knowledge
current. All chapters include extensive references for those who would like to dig deeper into
a given concept. The workbooks provide a summary of each chapter’s key points to help
organize your thoughts, as well as sample questions and answers to test yourself on your
progress.

For the new student, the essential concepts that any investment professional needs to
master are presented in a time-tested fashion. This material, in addition to university study
and reading the financial press, will help you better understand the investment field. I believe
that the general public seriously underestimates the disciplined processes needed for the best
investment firms and individuals to prosper. These texts lay the basic groundwork for many
of the processes that successful firms use. Without this base level of understanding and an
appreciation for how the capital markets work to properly price securities, you may not find
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competitive success. Furthermore, the concepts herein give a genuine sense of the kind of work
that is to be found day to day managing portfolios, doing research, or related endeavors.

The investment profession, despite its relatively lucrative compensation, is not for
everyone. It takes a special kind of individual to fundamentally understand and absorb the
teachings from this body of work and then convert that into application in the practitioner
world. In fact, most individuals who enter the field do not survive in the longer run. The
aspiring professional should think long and hard about whether this is the field for him or
herself. There is no better way to make such a critical decision than to be prepared by reading
and evaluating the gospel of the profession.

The more experienced professional understands that the nature of the capital markets
requires a commitment to continuous learning. Markets evolve as quickly as smart minds can
find new ways to create an exposure, to attract capital, or to manage risk. A number of the
concepts in these pages were not present a decade or two ago when many of us were starting
out in the business. Hedge funds, derivatives, alternative investment concepts, and behavioral
finance are examples of new applications and concepts that have altered the capital markets in
recent years. As markets invent and reinvent themselves, a best-in-class foundation investment
series is of great value.

Those of us who have been at this business for a while know that we must continuously
hone our skills and knowledge if we are to compete with the young talent that constantly
emerges. In fact, as we talk to major employers about their training needs, we are often
told that one of the biggest challenges they face is how to help the experienced professional,
laboring under heavy time pressure, keep up with the state of the art and the more recently
educated associates. This series can be part of that answer.

CONVENTIONAL WISDOM

It doesn’t take long for the astute investment professional to realize two common characteristics
of markets. First, prices are set by conventional wisdom, or a function of the many variables
in the market. Truth in markets is, at its essence, what the market believes it is and how it
assesses pricing credits or debits on those beliefs. Second, as conventional wisdom is a product
of the evolution of general theory and learning, by definition conventional wisdom is often
wrong or at the least subject to material change.

When I first entered this industry in the mid-1970s, conventional wisdom held that
the concepts examined in these texts were a bit too academic to be heavily employed in the
competitive marketplace. Many of those considered to be the best investment firms at the
time were led by men who had an eclectic style, an intuitive sense of markets, and a great
track record. In the rough-and-tumble world of the practitioner, some of these concepts were
considered to be of no use. Could conventional wisdom have been more wrong? If so, I’m not
sure when.

During the years of my tenure in the profession, the practitioner investment management
firms that evolved successfully were full of determined, intelligent, intellectually curious
investment professionals who endeavored to apply these concepts in a serious and disciplined
manner. Today, the best firms are run by those who carefully form investment hypotheses
and test them rigorously in the marketplace, whether it be in a quant strategy, in comparative
shopping for stocks within an industry, or in many hedge fund strategies. Their goal is to
create investment processes that can be replicated with some statistical reliability. I believe
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those who embraced the so-called academic side of the learning equation have been much
more successful as real-world investment managers.

THE TEXTS

Approximately 35 percent of the Candidate Body of Knowledge is represented in the initial
four texts of the series. Additional texts on corporate finance and international financial
statement analysis are in development, and more topics may be forthcoming.

One of the most prominent texts over the years in the investment management industry
has been Maginn and Tuttle’s Managing Investment Portfolios: A Dynamic Process. The third
edition updates key concepts from the 1990 second edition. Some of the more experienced
members of our community, like myself, own the prior two editions and will add this
to our library. Not only does this tome take the concepts from the other readings and
put them in a portfolio context, it also updates the concepts of alternative investments,
performance presentation standards, portfolio execution and, very importantly, managing
individual investor portfolios. To direct attention, long focused on institutional portfolios,
toward the individual will make this edition an important improvement over the past.

Quantitative Investment Analysis focuses on some key tools that are needed for today’s
professional investor. In addition to classic time value of money, discounted cash flow
applications, and probability material, there are two aspects that can be of value over
traditional thinking.

First are the chapters dealing with correlation and regression that ultimately figure into
the formation of hypotheses for purposes of testing. This gets to a critical skill that many
professionals are challenged by: the ability to sift out the wheat from the chaff. For most
investment researchers and managers, their analysis is not solely the result of newly created
data and tests that they perform. Rather, they synthesize and analyze primary research done
by others. Without a rigorous manner by which to understand quality research, not only can
you not understand good research, you really have no basis by which to evaluate less rigorous
research. What is often put forth in the applied world as good quantitative research lacks rigor
and validity.

Second, the last chapter on portfolio concepts moves the reader beyond the traditional
capital asset pricing model (CAPM) type of tools and into the more practical world of
multifactor models and to arbitrage pricing theory. Many have felt that there has been a
CAPM bias to the work put forth in the past, and this chapter helps move beyond that point.

Equity Asset Valuation is a particularly cogent and important read for anyone involved
in estimating the value of securities and understanding security pricing. A well-informed
professional would know that the common forms of equity valuation—dividend discount
modeling, free cash flow modeling, price/earnings models, and residual income models (often
known by trade names)—can all be reconciled to one another under certain assumptions.
With a deep understanding of the underlying assumptions, the professional investor can better
understand what other investors assume when calculating their valuation estimates. In my
prior life as the head of an equity investment team, this knowledge would give us an edge over
other investors.

Fixed Income Analysis has been at the frontier of new concepts in recent years, greatly
expanding horizons over the past. This text is probably the one with the most new material for
the seasoned professional who is not a fixed-income specialist. The application of option and
derivative technology to the once staid province of fixed income has helped contribute to an
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explosion of thought in this area. And not only does that challenge the professional to stay up
to speed with credit derivatives, swaptions, collateralized mortgage securities, mortgage backs,
and others, but it also puts a strain on the world’s central banks to provide oversight and the
risk of a correlated event. Armed with a thorough grasp of the new exposures, the professional
investor is much better able to anticipate and understand the challenges our central bankers
and markets face.

I hope you find this new series helpful in your efforts to grow your investment knowledge,
whether you are a relatively new entrant or a grizzled veteran ethically bound to keep up
to date in the ever-changing market environment. CFA Institute, as a long-term committed
participant of the investment profession and a not-for-profit association, is pleased to give you
this opportunity.

Jeff Diermeier, CFA
President and Chief Executive Officer
CFA Institute
September 2006
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CHAPTER 1
THE TIME VALUE

OF MONEY

1. INTRODUCTION

As individuals, we often face decisions that involve saving money for a future use, or borrowing
money for current consumption. We then need to determine the amount we need to invest, if
we are saving, or the cost of borrowing, if we are shopping for a loan. As investment analysts,
much of our work also involves evaluating transactions with present and future cash flows.
When we place a value on any security, for example, we are attempting to determine the
worth of a stream of future cash flows. To carry out all the above tasks accurately, we must
understand the mathematics of time value of money problems. Money has time value in that
individuals value a given amount of money more highly the earlier it is received. Therefore,
a smaller amount of money now may be equivalent in value to a larger amount received at
a future date. The time value of money as a topic in investment mathematics deals with
equivalence relationships between cash flows with different dates. Mastery of time value of
money concepts and techniques is essential for investment analysts.

The chapter is organized as follows: Section 2 introduces some terminology used through-
out the chapter and supplies some economic intuition for the variables we will discuss.
Section 3 tackles the problem of determining the worth at a future point in time of an amount
invested today. Section 4 addresses the future worth of a series of cash flows. These two
sections provide the tools for calculating the equivalent value at a future date of a single cash
flow or series of cash flows. Sections 5 and 6 discuss the equivalent value today of a single
future cash flow and a series of future cash flows, respectively. In Section 7, we explore how to
determine other quantities of interest in time value of money problems.

2. INTEREST RATES: INTERPRETATION

In this chapter, we will continually refer to interest rates. In some cases, we assume a particular
value for the interest rate; in other cases, the interest rate will be the unknown quantity we
seek to determine. Before turning to the mechanics of time value of money problems, we must
illustrate the underlying economic concepts. In this section, we briefly explain the meaning
and interpretation of interest rates.

Time value of money concerns equivalence relationships between cash flows occurring
on different dates. The idea of equivalence relationships is relatively simple. Consider the
following exchange: You pay $10,000 today and in return receive $9,500 today. Would you

1
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accept this arrangement? Not likely. But what if you received the $9,500 today and paid
the $10,000 one year from now? Can these amounts be considered equivalent? Possibly,
because a payment of $10,000 a year from now would probably be worth less to you than a
payment of $10,000 today. It would be fair, therefore, to discount the $10,000 received in
one year; that is, to cut its value based on how much time passes before the money is paid.
An interest rate, denoted r, is a rate of return that reflects the relationship between differently
dated cash flows. If $9,500 today and $10,000 in one year are equivalent in value, then
$10,000 − $9,500 = $500 is the required compensation for receiving $10,000 in one year
rather than now. The interest rate—the required compensation stated as a rate of return—is
$500/$9,500 = 0.0526 or 5.26 percent.

Interest rates can be thought of in three ways. First, they can be considered required rates
of return—that is, the minimum rate of return an investor must receive in order to accept the
investment. Second, interest rates can be considered discount rates. In the example above, 5.26
percent is that rate at which we discounted the $10,000 future amount to find its value today.
Thus, we use the terms ‘‘interest rate’’ and ‘‘discount rate’’ almost interchangeably. Third,
interest rates can be considered opportunity costs. An opportunity cost is the value that
investors forgo by choosing a particular course of action. In the example, if the party who sup-
plied $9,500 had instead decided to spend it today, he would have forgone earning 5.26 percent
on the money. So we can view 5.26 percent as the opportunity cost of current consumption.

Economics tells us that interest rates are set in the marketplace by the forces of supply
and demand, where investors are suppliers of funds and borrowers are demanders of funds.
Taking the perspective of investors in analyzing market-determined interest rates, we can view
an interest rate r as being composed of a real risk-free interest rate plus a set of four premiums
that are required returns or compensation for bearing distinct types of risk:

r = Real risk-free interest rate + Inflation premium + Default risk premium

+ Liquidity premium + Maturity premium

• The real risk-free interest rate is the single-period interest rate for a completely risk-free
security if no inflation were expected. In economic theory, the real risk-free rate reflects the
time preferences of individuals for current versus future real consumption.

• The inflation premium compensates investors for expected inflation and reflects the average
inflation rate expected over the maturity of the debt. Inflation reduces the purchasing power
of a unit of currency—the amount of goods and services one can buy with it. The sum of the
real risk-free interest rate and the inflation premium is the nominal risk-free interest rate.1

Many countries have governmental short-term debt whose interest rate can be considered
to represent the nominal risk-free interest rate in that country. The interest rate on a 90-day
U.S. Treasury bill (T-bill), for example, represents the nominal risk-free interest rate over
that time horizon.2 U.S. T-bills can be bought and sold in large quantities with minimal
transaction costs and are backed by the full faith and credit of the U.S. government.

1Technically, 1 plus the nominal rate equals the product of 1 plus the real rate and 1 plus the inflation
rate. As a quick approximation, however, the nominal rate is equal to the real rate plus an inflation
premium. In this discussion we focus on approximate additive relationships to highlight the underlying
concepts.
2Other developed countries issue securities similar to U.S. Treasury bills. The French government issues
BTFs or negotiable fixed-rate discount Treasury bills (Bons du Trésor à taux fixe et à intérêts précomptés)
with maturities of 3, 6, and 12 months. The Japanese government issues a short-term Treasury bill with
maturities of 6 and 12 months. The German government issues at discount both Treasury financing
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• The default risk premium compensates investors for the possibility that the borrower will
fail to make a promised payment at the contracted time and in the contracted amount.

• The liquidity premium compensates investors for the risk of loss relative to an investment’s
fair value if the investment needs to be converted to cash quickly. U.S. T-bills, for example,
do not bear a liquidity premium because large amounts can be bought and sold without
affecting their market price. Many bonds of small issuers, by contrast, trade infrequently
after they are issued; the interest rate on such bonds includes a liquidity premium reflecting
the relatively high costs (including the impact on price) of selling a position.

• The maturity premium compensates investors for the increased sensitivity of the market
value of debt to a change in market interest rates as maturity is extended, in general (holding
all else equal). The difference between the interest rate on longer-maturity, liquid Treasury
debt and that on short-term Treasury debt reflects a positive maturity premium for the
longer-term debt (and possibly different inflation premiums as well).

Using this insight into the economic meaning of interest rates, we now turn to a discussion of
solving time value of money problems, starting with the future value of a single cash flow.

3. THE FUTURE VALUE OF A
SINGLE CASH FLOW

In this section, we introduce time value associated with a single cash flow or lump-sum
investment. We describe the relationship between an initial investment or present value (PV),
which earns a rate of return (the interest rate per period) denoted as r, and its future value
(FV), which will be received N years or periods from today.

The following example illustrates this concept. Suppose you invest $100 (PV = $100) in
an interest-bearing bank account paying 5 percent annually. At the end of the first year, you
will have the $100 plus the interest earned, 0.05× $100 = $5, for a total of $105. To formalize
this one-period example, we define the following terms:

PV = present value of the investment

FVN = future value of the investment N periods from today

r = rate of interest per period

For N = 1, the expression for the future value of amount PV is

FV1 = PV(1 + r) (1-1)

For this example, we calculate the future value one year from today as FV1 = $100(1.05) =
$105.

Now suppose you decide to invest the initial $100 for two years with interest earned and
credited to your account annually (annual compounding). At the end of the first year (the

paper (Finanzierungsschätze des Bundes or, for short, Schätze) and Treasury discount paper (Bubills) with
maturities up to 24 months. In the United Kingdom, the British government issues gilt-edged Treasury
bills with maturities ranging from 1 to 364 days. The Canadian government bond market is closely
related to the U.S. market; Canadian Treasury bills have maturities of 3, 6, and 12 months.
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beginning of the second year), your account will have $105, which you will leave in the bank
for another year. Thus, with a beginning amount of $105 (PV = $105), the amount at the
end of the second year will be $105(1.05) = $110.25. Note that the $5.25 interest earned
during the second year is 5 percent of the amount invested at the beginning of Year 2.

Another way to understand this example is to note that the amount invested at the
beginning of Year 2 is composed of the original $100 that you invested plus the $5 interest
earned during the first year. During the second year, the original principal again earns interest,
as does the interest that was earned during Year 1. You can see how the original investment
grows:

Original investment $100.00
Interest for the first year ($100 × 0.05) 5.00
Interest for the second year based on original investment ($100 × 0.05) 5.00
Interest for the second year based on interest earned in the first year

(0.05× $5.00 interest on interest) 0.25

Total $110.25

The $5 interest that you earned each period on the $100 original investment is known as
simple interest (the interest rate times the principal). Principal is the amount of funds
originally invested. During the two-year period, you earn $10 of simple interest. The extra
$0.25 that you have at the end of Year 2 is the interest you earned on the Year 1 interest of $5
that you reinvested.

The interest earned on interest provides the first glimpse of the phenomenon known
as compounding. Although the interest earned on the initial investment is important, for a
given interest rate it is fixed in size from period to period. The compounded interest earned
on reinvested interest is a far more powerful force because, for a given interest rate, it grows
in size each period. The importance of compounding increases with the magnitude of the
interest rate. For example, $100 invested today would be worth about $13,150 after 100 years
if compounded annually at 5 percent, but worth more than $20 million if compounded
annually over the same time period at a rate of 13 percent.

To verify the $20 million figure, we need a general formula to handle compounding for
any number of periods. The following general formula relates the present value of an initial
investment to its future value after N periods:

FVN = PV(1 + r)N (1-2)

where r is the stated interest rate per period and N is the number of compounding periods.
In the bank example, FV2 = $100(1 + 0.05)2 = $110.25. In the 13 percent investment
example, FV100 = $100(1.13)100 = $20,316,287.42.

The most important point to remember about using the future value equation is that the
stated interest rate, r, and the number of compounding periods, N , must be compatible. Both
variables must be defined in the same time units. For example, if N is stated in months, then
r should be the one-month interest rate, unannualized.

A time line helps us to keep track of the compatibility of time units and the interest rate
per time period. In the time line, we use the time index t to represent a point in time a stated
number of periods from today. Thus the present value is the amount available for investment
today, indexed as t = 0. We can now refer to a time N periods from today as t = N . The
time line in Figure 1-1 shows this relationship.
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0 1 2 3 ... N − 1 N

PV FVN = PV(1 + r)N

FIGURE 1-1 The Relationship Between an Initial Investment, PV, and Its Future Value, FV

In Figure 1-1, we have positioned the initial investment, PV, at t = 0. Using Equation
1-2, we move the present value, PV, forward to t = N by the factor (1 + r)N . This factor is
called a future value factor. We denote the future value on the time line as FV and position
it at t = N . Suppose the future value is to be received exactly 10 periods from today’s date
(N = 10). The present value, PV, and the future value, FV, are separated in time through the
factor (1 + r).10

The fact that the present value and the future value are separated in time has important
consequences:

• We can add amounts of money only if they are indexed at the same point in time.
• For a given interest rate, the future value increases with the number of periods.
• For a given number of periods, the future value increases with the interest rate.

To better understand these concepts, consider three examples that illustrate how to apply the
future value formula.

EXAMPLE 1-1 The Future Value of a Lump Sum with
Interim Cash Reinvested at the Same Rate

You are the lucky winner of your state’s lottery of $5 million after taxes. You invest your
winnings in a five-year certificate of deposit (CD) at a local financial institution. The
CD promises to pay 7 percent per year compounded annually. This institution also lets
you reinvest the interest at that rate for the duration of the CD. How much will you
have at the end of five years if your money remains invested at 7 percent for five years
with no withdrawals?

Solution: To solve this problem, compute the future value of the $5 million investment
using the following values in Equation 1-2:

PV = $5,000,000

r = 7% = 0.07

N = 5

FVN = PV(1 + r)N

= $5,000,000(1.07)5
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= $5, 000, 000(1.402552)

= $7, 012, 758.65

At the end of five years, you will have $7,012,758.65 if your money remains invested at
7 percent with no withdrawals.

In this and most examples in this chapter, note that the factors are reported at six decimal places
but the calculations may actually reflect greater precision. For example, the reported 1.402552
has been rounded up from 1.40255173 (the calculation is actually carried out with more than
eight decimal places of precision by the calculator or spreadsheet). Our final result reflects the
higher number of decimal places carried by the calculator or spreadsheet.3

EXAMPLE 1-2 The Future Value of a Lump Sum
with No Interim Cash

An institution offers you the following terms for a contract: For an investment of
¥2,500,000, the institution promises to pay you a lump sum six years from now at an
8 percent annual interest rate. What future amount can you expect?

Solution: Use the following data in Equation 1-2 to find the future value:

PV = ¥2,500,000

r = 8% = 0.08

N = 6

FVN = PV(1 + r)N

= ¥2,500,000(1.08)6

= ¥2,500,000(1.586874)

= ¥3,967,186

You can expect to receive ¥3,967,186 six years from now.

Our third example is a more complicated future value problem that illustrates the
importance of keeping track of actual calendar time.

3We could also solve time value of money problems using tables of interest rate factors. Solutions using
tabled values of interest rate factors are generally less accurate than solutions obtained using calculators
or spreadsheets, so practitioners prefer calculators or spreadsheets.
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EXAMPLE 1-3 The Future Value of a Future Lump Sum

A pension fund manager estimates that his corporate sponsor will make a $10 million
contribution five years from now. The rate of return on plan assets has been estimated
at 9 percent per year. The pension fund manager wants to calculate the future value
of this contribution 15 years from now, which is the date at which the funds will be
distributed to retirees. What is that future value?

Solution: By positioning the initial investment, PV, at t = 5, we can calculate the future
value of the contribution using the following data in Equation 1-2:

PV = $10,000,000

r = 9% = 0.09

N = 10

FVN = PV(1 + r)N

= $10,000,000(1.09)10

= $10,000,000(2.367364)

= $23,673,636.75

This problem looks much like the previous two, but it differs in one important
respect: its timing. From the standpoint of today (t = 0), the future amount of
$23,673,636.75 is 15 years into the future. Although the future value is 10 years from
its present value, the present value of $10 million will not be received for another five
years.

0 1 2 3 4 5 15...

$10,000,000 $23,673,636.75

FIGURE 1-2 The Future Value of a Lump Sum, Initial Investment; Not at t = 0

As Figure 1-2 shows, we have followed the convention of indexing today as t = 0
and indexing subsequent times by adding 1 for each period. The additional contribution
of $10 million is to be received in five years, so it is indexed as t = 5 and appears as
such in the figure. The future value of the investment in 10 years is then indexed at
t = 15; that is, 10 years following the receipt of the $10 million contribution at t = 5.
Time lines like this one can be extremely useful when dealing with more-complicated
problems, especially those involving more than one cash flow.
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In a later section of this chapter, we will discuss how to calculate the value today of the
$10 million to be received five years from now. For the moment, we can use Equation 1-2.
Suppose the pension fund manager in Example 1-3 above were to receive $6,499,313.86 today
from the corporate sponsor. How much will that sum be worth at the end of five years? How
much will it be worth at the end of 15 years?

PV = $6, 499, 313.86

r = 9% = 0.09

N = 5

FVN = PV(1 + r)N

= $6,499,313.86(1.09)5

= $6,499,313.86(1.538624)

= $10, 000, 000 at the five-year mark

and
PV = $6,499,313.86

r = 9% = 0.09

N = 15

FVN = PV(1 + r)N

= $6,499,313.86(1.09)15

= $6,499,313.86(3.642482)

= $23,673,636.74 at the 15-year mark

These results show that today’s present value of about $6.5 million becomes $10 million after
five years and $23.67 million after 15 years.

3.1. The Frequency of Compounding

In this section, we examine investments paying interest more than once a year. For instance,
many banks offer a monthly interest rate that compounds 12 times a year. In such an
arrangement, they pay interest on interest every month. Rather than quote the periodic
monthly interest rate, financial institutions often quote an annual interest rate that we refer to
as the stated annual interest rate or quoted interest rate. We denote the stated annual interest
rate by rs. For instance, your bank might state that a particular CD pays 8 percent compounded
monthly. The stated annual interest rate equals the monthly interest rate multiplied by 12.
In this example, the monthly interest rate is 0.08/12 = 0.0067 or 0.67 percent.4 This rate is
strictly a quoting convention because (1 + 0.0067)12 = 1.083, not 1.08; the term (1 + rs) is
not meant to be a future value factor when compounding is more frequent than annual.

4To avoid rounding errors when using a financial calculator, divide 8 by 12 and then press the %i key,
rather than simply entering 0.67 for %i, so we have (1 + 0.08/12)12 = 1.083000.
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With more than one compounding period per year, the future value formula can be
expressed as

FVN = PV
(

1 + rs

m

)mN
(1-3)

where rs is the stated annual interest rate, m is the number of compounding periods per year,
and N now stands for the number of years. Note the compatibility here between the interest
rate used, rs/m, and the number of compounding periods, mN. The periodic rate, rs/m, is
the stated annual interest rate divided by the number of compounding periods per year. The
number of compounding periods, mN, is the number of compounding periods in one year
multiplied by the number of years. The periodic rate, rs/m, and the number of compounding
periods, mN, must be compatible.

EXAMPLE 1-4 The Future Value of a Lump Sum with
Quarterly Compounding

Continuing with the CD example, suppose your bank offers you a CD with a two-year
maturity, a stated annual interest rate of 8 percent compounded quarterly, and a feature
allowing reinvestment of the interest at the same interest rate. You decide to invest
$10,000. What will the CD be worth at maturity?

Solution: Compute the future value with Equation 1-3 as follows:

PV = $10, 000

rs = 8% = 0.08

m = 4

rs/m = 0.08/4 = 0.02

N = 2

mN = 4(2) = 8 interest periods

FVN = PV
(

1 + rs

m

)mN

= $10,000(1.02)8

= $10,000(1.171659)

= $11,716.59

At maturity, the CD will be worth $11,716.59.

The future value formula in Equation 1-3 does not differ from the one in Equation 1-2.
Simply keep in mind that the interest rate to use is the rate per period and the exponent is the
number of interest, or compounding, periods.
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EXAMPLE 1-5 The Future Value of a Lump Sum
with Monthly Compounding

An Australian bank offers to pay you 6 percent compounded monthly. You decide to
invest A$1 million for one year. What is the future value of your investment if interest
payments are reinvested at 6 percent?

Solution: Use Equation 1-3 to find the future value of the one-year investment as follows:

PV = A$1,000,000

rs = 6% = 0.06

m = 12

rs/m = 0.06/12 = 0.0050

N = 1

mN = 12(1) = 12 interest periods

FVN = PV
(

1 + rs

m

)mN

= A$1,000,000(1.005)12

= A$1,000,000(1.061678)

= A$1,061,677.81

If you had been paid 6 percent with annual compounding, the future amount would
be only A$1,000,000(1.06) = A$1,060,000 instead of A$1,061,677.81 with monthly
compounding.

3.2. Continuous Compounding

The preceding discussion on compounding periods illustrates discrete compounding, which
credits interest after a discrete amount of time has elapsed. If the number of compounding
periods per year becomes infinite, then interest is said to compound continuously. If we want
to use the future value formula with continuous compounding, we need to find the limiting
value of the future value factor for m → ∞ (infinitely many compounding periods per year)
in Equation 1-3. The expression for the future value of a sum in N years with continuous
compounding is

FVN = PVers N (1-4)

The term ersN is the transcendental number e ≈ 2.7182818 raised to the power rsN . Most
financial calculators have the function e x .
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EXAMPLE 1-6 The Future Value of a Lump Sum with
Continuous Compounding

Suppose a $10,000 investment will earn 8 percent compounded continuously for two
years. We can compute the future value with Equation 1-4 as follows:

PV = $10,000

rs = 8% = 0.08

N = 2

FVN = PVersN

= $10,000e0.08(2)

= $10,000(1.173511)

= $11,735.11

With the same interest rate but using continuous compounding, the $10,000 investment
will grow to $11,735.11 in two years, compared with $11,716.59 using quarterly
compounding as shown in Example 1-4.

Table 1-1 shows how a stated annual interest rate of 8 percent generates different
ending dollar amounts with annual, semiannual, quarterly, monthly, daily, and continuous
compounding for an initial investment of $1 (carried out to six decimal places).

As Table 1-1 shows, all six cases have the same stated annual interest rate of 8 percent;
they have different ending dollar amounts, however, because of differences in the frequency
of compounding. With annual compounding, the ending amount is $1.08. More frequent
compounding results in larger ending amounts. The ending dollar amount with continuous
compounding is the maximum amount that can be earned with a stated annual rate of
8 percent.

Table 1-1 also shows that a $1 investment earning 8.16 percent compounded annually
grows to the same future value at the end of one year as a $1 investment earning 8 percent
compounded semiannually. This result leads us to a distinction between the stated annual

TABLE 1-1 The Effect of Compounding Frequency on Future Value

Frequency rs/m mN Future Value of $1

Annual 8%/1 = 8% 1 × 1 = 1 $1.00(1.08) = $1.08
Semiannual 8%/2 = 4% 2 × 1 = 2 $1.00(1.04)2 = $1.081600
Quarterly 8%/4 = 2% 4 × 1 = 4 $1.00(1.02)4 = $1.082432
Monthly 8%/12 = 0.6667% 12 × 1 = 12 $1.00(1.006667)12 = $1.083000
Daily 8%/365 = 0.0219% 365 × 1 = 365 $1.00(1.000219)365 = $1.083278
Continuous $1.00e0.08(1) = $1.083287
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interest rate and the effective annual rate (EAR).5 For an 8 percent stated annual interest rate
with semiannual compounding, the EAR is 8.16 percent.

3.3. Stated and Effective Rates

The stated annual interest rate does not give a future value directly, so we need a formula for
the EAR. With an annual interest rate of 8 percent compounded semiannually, we receive a
periodic rate of 4 percent. During the course of a year, an investment of $1 would grow to
$1(1.04)2 = $1.0816, as illustrated in Table 1-1. The interest earned on the $1 investment
is $0.0816 and represents an effective annual rate of interest of 8.16 percent. The effective
annual rate is calculated as follows:

EAR = (1 + Periodic interest rate)m − 1 (1-5)

The periodic interest rate is the stated annual interest rate divided by m, where m is the number
of compounding periods in one year. Using the example in Table 1-1, we can solve for EAR
as follows: (1.04)2 − 1 = 8.16 percent.

The concept of EAR extends to continuous compounding. Suppose we have a rate of
8 percent compounded continuously. We can find the EAR in the same way as above by
finding the appropriate future value factor. In this case, a $1 investment would grow to
$1e0.08(1.0) = $1.0833. The interest earned for one year represents an effective annual rate of
8.33 percent and is larger than the 8.16 percent EAR with semiannual compounding because
interest is compounded more frequently. With continuous compounding, we can solve for the
effective annual rate as follows:

EAR = ers − 1 (1-6)

We can reverse the formulas for EAR with discrete and continuous compounding to find a
periodic rate that corresponds to a particular effective annual rate. Suppose we want to find
the appropriate periodic rate for a given effective annual rate of 8.16 percent with semiannual
compounding. We can use Equation 1-5 to find the periodic rate:

0.0816 = (1 + Periodic rate)2 − 1

1.0816 = (1 + Periodic rate)2

(1.0816)1/2 − 1 = Periodic rate

1.04 − 1 = Periodic rate

4% = Periodic rate

5Among the terms used for the effective annual return on interest-bearing bank deposits are annual
percentage yield (APY) in the United States and equivalent annual rate (EAR) in the United Kingdom.
By contrast, the annual percentage rate (APR) measures the cost of borrowing expressed as a yearly
rate. In the United States, the APR is calculated as a periodic rate times the number of payment periods
per year and, as a result, some writers use APR as a general synonym for the stated annual interest rate.
Nevertheless, APR is a term with legal connotations; its calculation follows regulatory standards that
vary internationally. Therefore, ‘‘stated annual interest rate’’ is the preferred general term for an annual
interest rate that does not account for compounding within the year.
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To calculate the continuously compounded rate (the stated annual interest rate with continuous
compounding) corresponding to an effective annual rate of 8.33 percent, we find the interest
rate that satisfies Equation 1-6:

0.0833 = ers − 1

1.0833 = ers

To solve this equation, we take the natural logarithm of both sides. (Recall that the natural
log of ers is lners = rs.) Therefore, ln 1.0833 = rs, resulting in rs = 8 percent. We see that a
stated annual rate of 8 percent with continuous compounding is equivalent to an EAR of 8.33
percent.

4. THE FUTURE VALUE OF A SERIES
OF CASH FLOWS

In this section, we consider series of cash flows, both even and uneven. We begin with a list of
terms commonly used when valuing cash flows that are distributed over many time periods.

• An annuity is a finite set of level sequential cash flows.
• An ordinary annuity has a first cash flow that occurs one period from now (indexed at

t = 1).
• An annuity due has a first cash flow that occurs immediately (indexed at t = 0).
• A perpetuity is a perpetual annuity, or a set of level never-ending sequential cash flows,

with the first cash flow occurring one period from now.

4.1. Equal Cash Flows—Ordinary Annuity

Consider an ordinary annuity paying 5 percent annually. Suppose we have five separate
deposits of $1,000 occurring at equally spaced intervals of one year, with the first payment
occurring at t = 1. Our goal is to find the future value of this ordinary annuity after the last
deposit at t = 5. The increment in the time counter is one year, so the last payment occurs
five years from now. As the time line in Figure 1-3 shows, we find the future value of each
$1,000 deposit as of t = 5 with Equation 1-2, FVN = PV(1 + r)N . The arrows in Figure 1-3
extend from the payment date to t = 5. For instance, the first $1,000 deposit made at t = 1
will compound over four periods. Using Equation 1-2, we find that the future value of the
first deposit at t = 5 is $1,000(1.05)4 = $1,215.51. We calculate the future value of all other
payments in a similar fashion. (Note that we are finding the future value at t = 5, so the last
payment does not earn any interest.) With all values now at t = 5, we can add the future
values to arrive at the future value of the annuity. This amount is $5,525.63.

We can arrive at a general annuity formula if we define the annuity amount as A, the
number of time periods as N , and the interest rate per period as r. We can then define the
future value as

FVN = A[(1 + r)N−1 + (1 + r)N−2 + (1 + r)N−3 + · · · + (1 + r)1 + (1 + r)0]

which simplifies to

FVN = A
[

(1 + r)N − 1

r

]
(1-7)
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0 1 2 3 4 5

$1,000(1.05)1   =  $1,050.000000
$1,000(1.05)2   =  $1,102.500000
$1,000(1.05)3   =  $1,157.625000
$1,000(1.05)4   =  $1,215.506250

$1,000(1.05)0   =  $1,000.000000

$1,000
$1,000

$1,000
$1,000

Sum at t = 5 $5,525.63

FIGURE 1-3 The Future Value of a Five-Year Ordinary Annuity

The term in brackets is the future value annuity factor. This factor gives the future value
of an ordinary annuity of $1 per period. Multiplying the future value annuity factor by the
annuity amount gives the future value of an ordinary annuity. For the ordinary annuity in
Figure 1-3, we find the future value annuity factor from Equation 1-7 as

[
(1.05)5 − 1

0.05

]
= 5.525631

With an annuity amount A = $1, 000, the future value of the annuity is $1,000(5.525631) =
$5,525.63, an amount that agrees with our earlier work.

The next example illustrates how to find the future value of an ordinary annuity using the
formula in Equation 1-7.

EXAMPLE 1-7 The Future Value of an Annuity

Suppose your company’s defined contribution retirement plan allows you to invest up
to ¤20,000 per year. You plan to invest ¤20,000 per year in a stock index fund for the
next 30 years. Historically, this fund has earned 9 percent per year on average. Assuming
that you actually earn 9 percent a year, how much money will you have available for
retirement after making the last payment?

Solution: Use Equation 1-7 to find the future amount:

A = ¤20,000

r = 9% = 0.09

N = 30

FV annuity factor = (1 + r)N − 1

r
= (1.09)30 − 1

0.09
= 136.307539

FVN = ¤20,000(136.307539)

= ¤2,726,150.77

Assuming the fund continues to earn an average of 9 percent per year, you will have
¤2,726,150.77 available at retirement.
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TABLE 1-2 A Series of Unequal Cash Flows and Their
Future Values at 5 Percent

Time Cash Flow Future Value at Year 5

t = 1 $1,000 $1,000(1.05)4 = $1,215.51
t = 2 $2,000 $2,000(1.05)3 = $2,315.25
t = 3 $4,000 $4,000(1.05)2 = $4,410.00
t = 4 $5,000 $5,000(1.05)1 = $5,250.00
t = 5 $6,000 $6,000(1.05)0 = $6,000.00

Sum = $19,190.76

4.2. Unequal Cash Flows

In many cases, cash flow streams are unequal, precluding the simple use of the future value
annuity factor. For instance, an individual investor might have a savings plan that involves
unequal cash payments depending on the month of the year or lower savings during a
planned vacation. One can always find the future value of a series of unequal cash flows by
compounding the cash flows one at a time. Suppose you have the five cash flows described in
Table 1-2, indexed relative to the present (t = 0).

All of the payments shown in Table 1-2 are different. Therefore, the most direct approach
to finding the future value at t = 5 is to compute the future value of each payment as of
t = 5 and then sum the individual future values. The total future value at Year 5 equals
$19,190.76, as shown in the third column. Later in this chapter, you will learn shortcuts to
take when the cash flows are close to even; these shortcuts will allow you to combine annuity
and single-period calculations.

5. THE PRESENT VALUE OF A
SINGLE CASH FLOW

5.1. Finding the Present Value of a Single Cash Flow

Just as the future value factor links today’s present value with tomorrow’s future value, the
present value factor allows us to discount future value to present value. For example, with a
5 percent interest rate generating a future payoff of $105 in one year, what current amount
invested at 5 percent for one year will grow to $105? The answer is $100; therefore, $100 is
the present value of $105 to be received in one year at a discount rate of 5 percent.

Given a future cash flow that is to be received in N periods and an interest rate per period
of r, we can use the formula for future value to solve directly for the present value as follows:

FVN = PV(1 + r)N

PV = FVN

[
1

(1 + r)N

]
(1-8)

PV = FVN (1 + r)−N

We see from Equation 1-8 that the present value factor, (1 + r)−N , is the reciprocal of the
future value factor, (1 + r)N .
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EXAMPLE 1-8 The Present Value of a Lump Sum

An insurance company has issued a Guaranteed Investment Contract (GIC) that
promises to pay $100,000 in six years with an 8 percent return rate. What amount of
money must the insurer invest today at 8 percent for six years to make the promised
payment?

Solution: We can use Equation 1-8 to find the present value using the following data:

FVN = $100,000

r = 8% = 0.08

N = 6

PV = FVN (1 + r)−N

= $100, 000

[
1

(1.08)6

]

= $100, 000(0.6301696)

= $63, 016.96

We can say that $63,016.96 today, with an interest rate of 8 percent, is equivalent to
$100,000 to be received in six years. Discounting the $100,000 makes a future $100,000
equivalent to $63,016.96 when allowance is made for the time value of money. As the
time line in Figure 1-4 shows, the $100,000 has been discounted six full periods.

PV = $63,016.96

$100,000 = FV

0 1 2 3 4 5 6

FIGURE 1-4 The Present Value of a Lump Sum to Be Received at Time t = 6

EXAMPLE 1-9 The Projected Present Value of a More
Distant Future Lump Sum

Suppose you own a liquid financial asset that will pay you $100,000 in 10 years from
today. Your daughter plans to attend college four years from today, and you want to
know what the asset’s present value will be at that time. Given an 8 percent discount
rate, what will the asset be worth four years from today?
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Solution: The value of the asset is the present value of the asset’s promised payment. At
t = 4, the cash payment will be received six years later. With this information, you can
solve for the value four years from today using Equation 1-8:

FVN = $100,000

r = 8% = 0.08

N = 6

PV = FVN (1 + r)−N

= $100,000

[
1

(1.08)6

]

= $100,000(0.6301696)

= $63,016.96

0 ... 4 ... 10

$46,319.35 $63,016.96

$100,000

FIGURE 1-5 The Relationship between Present Value and Future Value

The time line in Figure 1-5 shows the future payment of $100,000 that is to be
received at t = 10. The time line also shows the values at t = 4 and at t = 0. Relative
to the payment at t = 10, the amount at t = 4 is a projected present value, while the
amount at t = 0 is the present value (as of today).

Present value problems require an evaluation of the present value factor, (1 + r)−N .
Present values relate to the discount rate and the number of periods in the following ways:

• For a given discount rate, the farther in the future the amount to be received, the smaller
that amount’s present value.

• Holding time constant, the larger the discount rate, the smaller the present value of a future
amount.

5.2. The Frequency of Compounding

Recall that interest may be paid semiannually, quarterly, monthly, or even daily. To handle
interest payments made more than once a year, we can modify the present value formula
(Equation 1-8) as follows: Recall that rs is the quoted interest rate and equals the periodic
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interest rate multiplied by the number of compounding periods in each year. In general, with
more than one compounding period in a year, we can express the formula for present value as

PV = FVN

(
1 + rs

m

)−mN
(1-9)

where

m = number of compounding periods per year
rs = quoted annual interest rate

N = number of years

The formula in Equation 1-9 is quite similar to that in Equation 1-8. As we have already noted,
present value and future value factors are reciprocals. Changing the frequency of compounding
does not alter this result. The only difference is the use of the periodic interest rate and the
corresponding number of compounding periods.

The following example illustrates Equation 1-9.

EXAMPLE 1-10 The Present Value of a Lump Sum with
Monthly Compounding

The manager of a Canadian pension fund knows that the fund must make a lump-sum
payment of C$5 million 10 years from now. She wants to invest an amount today in a
GIC so that it will grow to the required amount. The current interest rate on GICs is
6 percent a year, compounded monthly. How much should she invest today in the GIC?

Solution: Use Equation 1-9 to find the required present value:

FVN = C$5,000,000

rs = 6% = 0.06

m = 12

rs/m = 0.06/12 = 0.005

N = 10

mN = 12(10) = 120

PV = FVN

(
1 + rs

m

)−mN

= C$5,000,000(1.005)−120

= C$5,000,000(0.549633)

= C$2,748,163.67

In applying Equation 1-9, we use the periodic rate (in this case, the monthly rate) and
the appropriate number of periods with monthly compounding (in this case, 10 years
of monthly compounding, or 120 periods).
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6. THE PRESENT VALUE OF A SERIES
OF CASH FLOWS

Many applications in investment management involve assets that offer a series of cash flows
over time. The cash flows may be highly uneven, relatively even, or equal. They may occur
over relatively short periods of time, longer periods of time, or even stretch on indefinitely. In
this section, we discuss how to find the present value of a series of cash flows.

6.1. The Present Value of a Series of Equal Cash Flows

We begin with an ordinary annuity. Recall that an ordinary annuity has equal annuity
payments, with the first payment starting one period into the future. In total, the annuity
makes N payments, with the first payment at t = 1 and the last at t = N . We can express
the present value of an ordinary annuity as the sum of the present values of each individual
annuity payment, as follows:

PV = A
(1 + r)

+ A
(1 + r)2

+ A
(1 + r)3

+ · · · + A
(1 + r)N−1

+ A
(1 + r)N

(1-10)

where

A = the annuity amount
r = the interest rate per period corresponding to the frequency of annuity payments

(for example, annual, quarterly, or monthly)
N = the number of annuity payments

Because the annuity payment (A) is a constant in this equation, it can be factored out as a
common term. Thus the sum of the interest factors has a shortcut expression:

PV = A




1 − 1

(1 + r)N

r


 (1-11)

In much the same way that we computed the future value of an ordinary annuity, we find the
present value by multiplying the annuity amount by a present value annuity factor (the term
in brackets in Equation 1-11).

EXAMPLE 1-11 The Present Value of an Ordinary Annuity

Suppose you are considering purchasing a financial asset that promises to pay ¤1,000
per year for five years, with the first payment one year from now. The required rate of
return is 12 percent per year. How much should you pay for this asset?

Solution: To find the value of the financial asset, use the formula for the present value
of an ordinary annuity given in Equation 1-11 with the following data:
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A = ¤1,000

r = 12% = 0.12

N = 5

PV = A




1 − 1

(1 + r)N

r




= ¤1,000




1 − 1

(1.12)5

0.12




= ¤1,000(3.604776)

= ¤3,604.78

The series of cash flows of ¤1,000 per year for five years is currently worth ¤3,604.78
when discounted at 12 percent.

Keeping track of the actual calendar time brings us to a specific type of annuity with level
payments: the annuity due. An annuity due has its first payment occurring today (t = 0). In
total, the annuity due will make N payments. Figure 1-6 presents the time line for an annuity
due that makes four payments of $100.

As Figure 1-6 shows, we can view the four-period annuity due as the sum of two parts:
a $100 lump sum today and an ordinary annuity of $100 per period for three periods. At a
12 percent discount rate, the four $100 cash flows in this annuity due example will be worth
$340.18.6

Expressing the value of the future series of cash flows in today’s dollars gives us a
convenient way of comparing annuities. The next example illustrates this approach.

$100
0 1 2

$100 $100 $100
3

FIGURE 1-6 An Annuity Due of $100 per Period

6There is an alternative way to calculate the present value of an annuity due. Compared to an ordinary
annuity, the payments in an annuity due are each discounted one less period. Therefore, we can modify
Equation 1-11 to handle annuities due by multiplying the right-hand side of the equation by (1 + r):

PV(Annuity due) = A{[1 − (1 + r)−N ]/r}(1 + r).
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EXAMPLE 1-12 The Present Value of an Immediate Cash
Flow Plus an Ordinary Annuity

You are retiring today and must choose to take your retirement benefits either as a lump
sum or as an annuity. Your company’s benefits officer presents you with two alternatives:
an immediate lump sum of $2 million or an annuity with 20 payments of $200,000 a
year with the first payment starting today. The interest rate at your bank is 7 percent
per year compounded annually. Which option has the greater present value? (Ignore
any tax differences between the two options.)

Solution: To compare the two options, find the present value of each at time t = 0
and choose the one with the larger value. The first option’s present value is $2 million,
already expressed in today’s dollars. The second option is an annuity due. Because the
first payment occurs at t = 0, you can separate the annuity benefits into two pieces: an
immediate $200,000 to be paid today (t = 0) and an ordinary annuity of $200,000
per year for 19 years. To value this option, you need to find the present value of the
ordinary annuity using Equation 1-11 and then add $200,000 to it.

A = $200,000

N = 19

r = 7% = 0.07

PV = A




1 − 1

(1 + r)N

r




= $200,000




1 − 1

(1.07)19

0.07




= $200,000(10.335595)

= $2,067,119.05

The 19 payments of $200,000 have a present value of $2,067,119.05. Adding the initial
payment of $200,000 to $2,067,119.05, we find that the total value of the annuity
option is $2,267,119.05. The present value of the annuity is greater than the lump sum
alternative of $2 million.

We now look at another example reiterating the equivalence of present and future
values.
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EXAMPLE 1-13 The Projected Present Value
of an Ordinary Annuity

A German pension fund manager anticipates that benefits of ¤1 million per year must
be paid to retirees. Retirements will not occur until 10 years from now at time t = 10.
Once benefits begin to be paid, they will extend until t = 39 for a total of 30 payments.
What is the present value of the pension liability if the appropriate annual discount rate
for plan liabilities is 5 percent compounded annually?

Solution: This problem involves an annuity with the first payment at t = 10. From the
perspective of t = 9, we have an ordinary annuity with 30 payments. We can compute
the present value of this annuity with Equation 1-11 and then look at it on a time line.

A = ¤1,000,000

r = 5% = 0.05

N = 30

PV = A




1 − 1

(1 + r)N

r




= ¤1,000,000




1 − 1

(1.05)30

0.05




= ¤1,000,000(15.372451)

= ¤15,372,451.03

 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 11 12 . . . . . . . . . . . . . . . . . . . . . 39

1    . . . . . . . . . . . . . . . . . .  . . . 
¤ ¤ ¤

1 1 1¤

FIGURE 1-7 The Present Value of an Ordinary Annuity with First Payment at Time t = 10
(in millions)

On the time line, we have shown the pension payments of ¤1 million extending
from t = 10 to t = 39. The bracket and arrow indicate the process of finding the
present value of the annuity, discounted back to t = 9. The present value of the pension
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benefits as of t = 9 is ¤15,372,451.03. The problem is to find the present value today
(at t = 0).

Now we can rely on the equivalence of present value and future value. As Figure 1-7
shows, we can view the amount at t = 9 as a future value from the vantage point of
t = 0. We compute the present value of the amount at t = 9 as follows:

FVN = ¤15,372,451.03(the present value at t = 9)

N = 9

r = 5% = 0.05

PV = FVN (1 + r)−N

= ¤15,372,451.03(1.05)−9

= ¤15,372,451.03(0.644609)

= ¤9,909,219.00

The present value of the pension liability is ¤9,909,219.00.

Example 1-13 illustrates three procedures emphasized in this chapter:

• finding the present or future value of any cash flow series;
• recognizing the equivalence of present value and appropriately discounted future value; and
• keeping track of the actual calendar time in a problem involving the time value of money.

6.2. The Present Value of an Infinite Series of Equal Cash
Flows—Perpetuity

Consider the case of an ordinary annuity that extends indefinitely. Such an ordinary annuity
is called a perpetuity (a perpetual annuity). To derive a formula for the present value of a
perpetuity, we can modify Equation 1-10 to account for an infinite series of cash flows:

PV = A
∞∑

t=1

[
1

(1 + r)t

]
(1-12)

As long as interest rates are positive, the sum of present value factors converges and

PV = A
r

(1-13)

To see this, look back at Equation 1-11, the expression for the present value of an ordinary
annuity. As N (the number of periods in the annuity) goes to infinity, the term 1/(1 + r)N

goes to 0 and Equation 1-11 simplifies to Equation 1-13. This equation will reappear when
we value dividends from stocks because stocks have no predefined life span. (A stock paying
constant dividends is similar to a perpetuity.) With the first payment a year from now, a



24 Quantitative Investment Analysis

perpetuity of $10 per year with a 20 percent required rate of return has a present value of
$10/0.2 = $50.

Equation 1-13 is valid only for a perpetuity with level payments. In our development
above, the first payment occurred at t = 1; therefore, we compute the present value as of
t = 0.

Other assets also come close to satisfying the assumptions of a perpetuity. Certain
government bonds and preferred stocks are typical examples of financial assets that make level
payments for an indefinite period of time.

EXAMPLE 1-14 The Present Value of a Perpetuity

The British government once issued a type of security called a consol bond, which
promised to pay a level cash flow indefinitely. If a consol bond paid £100 per year
in perpetuity, what would it be worth today if the required rate of return were
5 percent?

Solution: To answer this question, we can use Equation 1-13 with the following data:

A = £100

r = 5% = 0.05

PV = A/r

= £100/0.05

= £2,000

The bond would be worth £2,000.

6.3. Present Values Indexed at Times Other Than t = 0

In practice with investments, analysts frequently need to find present values indexed at times
other than t = 0. Subscripting the present value and evaluating a perpetuity beginning with
$100 payments in Year 2, we find PV1 = $100/0.05 = $2,000 at a 5 percent discount rate.
Further, we can calculate today’s PV as PV0 = $2,000/1.05 = $1,904.76.

Consider a similar situation in which cash flows of $6 per year begin at the end of the 4th
year and continue at the end of each year thereafter, with the last cash flow at the end of the
10th year. From the perspective of the end of the third year, we are facing a typical seven-year
ordinary annuity. We can find the present value of the annuity from the perspective of the
end of the third year and then discount that present value back to the present. At an interest
rate of 5 percent, the cash flows of $6 per year starting at the end of the fourth year will be
worth $34.72 at the end of the third year (t = 3) and $29.99 today (t = 0).

The next example illustrates the important concept that an annuity or perpetuity beginning
sometime in the future can be expressed in present value terms one period prior to the first
payment. That present value can then be discounted back to today’s present value.
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EXAMPLE 1-15 The Present Value
of a Projected Perpetuity

Consider a level perpetuity of £100 per year with its first payment beginning at t = 5.
What is its present value today (at t = 0), given a 5 percent discount rate?

Solution: First, we find the present value of the perpetuity at t = 4 and then discount
that amount back to t = 0. (Recall that a perpetuity or an ordinary annuity has its first
payment one period away, explaining the t = 4 index for our present value calculation.)

i. Find the present value of the perpetuity at t = 4:

A = £100

r = 5% = 0.05

PV = A/r

= £100/0.05

= £2,000

ii. Find the present value of the future amount at t = 4. From the perspective of
t = 0, the present value of £2,000 can be considered a future value. Now we need
to find the present value of a lump sum:

FVN = £2,000(the present value at t = 4)

r = 5% = 0.05

N = 4

PV = FVN (1 + r)−N

= £2,000(1.05)−4

= £2,000(0.822702)

= £1,645.40

Today’s present value of the perpetuity is £1,645.40.

As discussed earlier, an annuity is a series of payments of a fixed amount for a specified
number of periods. Suppose we own a perpetuity. At the same time, we issue a perpetuity
obligating us to make payments; these payments are the same size as those of the perpetuity we
own. However, the first payment of the perpetuity we issue is at t = 5; payments then continue
on forever. The payments on this second perpetuity exactly offset the payments received from
the perpetuity we own at t = 5 and all subsequent dates. We are left with level nonzero net
cash flows at t = 1, 2, 3, and 4. This outcome exactly fits the definition of an annuity with
four payments. Thus we can construct an annuity as the difference between two perpetuities
with equal, level payments but differing starting dates. The next example illustrates this result.
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EXAMPLE 1-16 The Present Value of an Ordinary Annuity
as the Present Value of a Current Minus Projected Perpetuity

Given a 5 percent discount rate, find the present value of a four-year ordinary annuity
of £100 per year starting in Year 1 as the difference between the following two level
perpetuities:

Perpetuity 1 £100 per year starting in Year 1 (first payment at t = 1)

Perpetuity 2 £100 per year starting in Year 5 (first payment at t = 5)

Solution: If we subtract Perpetuity 2 from Perpetuity 1, we are left with an ordinary
annuity of £100 per period for four years (payments at t = 1, 2, 3, 4). Subtracting the
present value of Perpetuity 2 from that of Perpetuity 1, we arrive at the present value of
the four-year ordinary annuity:

i. PV0(Perpetuity 1) = £100/0.05 = £2,000
ii. PV4(Perpetuity 2) = £100/0.05 = £2,000
iii. PV0(Perpetuity 2) = £2,000/(1.05)4 = £1,645.40
iv. PV0(Annuity) = PV0(Perpetuity 1) − PV0(Perpetuity 2)

= £2,000 − £1,645.40
= £354.60

The four-year ordinary annuity’s present value is equal to £2,000 − £1,645.40 =
£354.60.

6.4. The Present Value of a Series of Unequal Cash Flows

When we have unequal cash flows, we must first find the present value of each individual
cash flow and then sum the respective present values. For a series with many cash flows, we
usually use a spreadsheet. Table 1-3 lists a series of cash flows with the time periods in the
first column, cash flows in the second column, and each cash flow’s present value in the third
column. The last row of Table 1-3 shows the sum of the five present values.

We could calculate the future value of these cash flows by computing them one at a
time using the single-payment future value formula. We already know the present value of

TABLE 1-3 A Series of Unequal Cash Flows and Their Present
Values at 5 Percent

Time Period Cash Flow Present Value at Year 0

1 $1,000 $1,000(1.05)−1 = $952.38
2 $2,000 $2,000(1.05)−2 = $1,814.06
3 $4,000 $4,000(1.05)−3 = $3,455.35
4 $5,000 $5,000(1.05)−4 = $4,113.51
5 $6,000 $6,000(1.05)−5 = $4,701.16

Sum = $15,036.46
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this series, however, so we can easily apply time-value equivalence. The future value of the
series of cash flows from Table 1-2, $19,190.76, is equal to the single $15,036.46 amount
compounded forward to t = 5:

PV = $15,036.46

N = 5

r = 5% = 0.05

FVN = PV(1 + r)N

= $15,036.46(1.05)5

= $15,036.46(1.276282)

= $19,190.76

7. SOLVING FOR RATES, NUMBER OF PERIODS,
OR SIZE OF ANNUITY PAYMENTS

In the previous examples, certain pieces of information have been made available. For instance,
all problems have given the rate of interest, r, the number of time periods, N , the annuity
amount, A, and either the present value, PV, or future value, FV. In real-world applications,
however, although the present and future values may be given, you may have to solve for
either the interest rate, the number of periods, or the annuity amount. In the subsections that
follow, we show these types of problems.

7.1. Solving for Interest Rates and Growth Rates

Suppose a bank deposit of ¤100 is known to generate a payoff of ¤111 in one year. With
this information, we can infer the interest rate that separates the present value of ¤100 from
the future value of ¤111 by using Equation 1-2, FVN = PV(1 + r)N , with N = 1. With PV,
FV, and N known, we can solve for r directly:

1 + r = FV/PV

1 + r = ¤111/¤100 = 1.11

r = 0.11, or 11%

The interest rate that equates ¤100 at t = 0 to ¤111 at t = 1 is 11 percent. Thus we can state
that ¤100 grows to ¤111 with a growth rate of 11 percent.

As this example shows, an interest rate can also be considered a growth rate. The particular
application will usually dictate whether we use the term ‘‘interest rate’’ or ‘‘growth rate.’’
Solving Equation 1-2 for r and replacing the interest rate r with the growth rate g produces
the following expression for determining growth rates:

g = (FVN /PV)1/N − 1 (1-14)

Following are two examples that use the concept of a growth rate.
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EXAMPLE 1-17 Calculating a Growth Rate (1)

For 1998, Limited Brands, Inc., recorded net sales of $8,436 million. For 2002, Limited
Brands recorded net sales of $8,445 million, only slightly higher than in 1998. Over the
four-year period from the end of 1998 to the end of 2002, what was the rate of growth
of Limited Brands’ net sales?

Solution: To solve this problem, we can use Equation 1-14, g = (FVN /PV)1/N − 1. We
denote net sales in 1998 as PV and net sales in 2002 as FV4. We can then solve for the
growth rate as follows:

g = 4
√

$8,445/$8,436 − 1

= 4
√

1.001067 − 1

= 1.000267 − 1

= 0.000267

The calculated growth rate of approximately 0.03 percent a year, barely more than
zero, confirms the initial impression that Limited Brands’ net sales were essentially flat
during the 1998–2002 period.

EXAMPLE 1-18 Calculating a Growth Rate (2)

In Example 1-17, we found that Limited Brands’ compound growth rate of net sales was
close to zero for 1998 to 2002. As a retailer, Limited Brands’ sales depend both on the
number of stores (or selling square feet or meters) and sales per store (or sales per average
selling square foot or meter). In fact, Limited Brands decreased its number of stores
during the 1998–2002 period. In 1998, Limited Brands operated 5,382 stores, whereas
in 2002 it operated 4,036 stores. In this case, we can speak of a positive compound rate
of decrease or a negative compound growth rate. What was the growth rate in number
of stores operated?

Solution: Using Equation 1-14, we find

g = 4
√

4,036/5,382 − 1

= 4
√

0.749907 − 1

= 0.930576 − 1

= −0.069424
The rate of growth in stores operated was approximately −6.9 percent during the
1998–2002 period. Note that we can also refer to −6.9 percent as the compound
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annual growth rate because it is the single number that compounds the number of stores
in 1998 forward to the number of stores in 2002. Table 1-4 lists the number of stores
operated by Limited Brands from 1998 to 2002.

TABLE 1-4 Number of Limited Brands Stores, 1998–2002

Year Number of Stores (1 + g)t t

1998 5,382 0
1999 5,023 5,023/5,382 = 0.933296 1
2000 5,129 5,129/5,023 = 1.021103 2
2001 4,614 4,614/5,129 = 0.899591 3
2002 4,036 4,036/4,614 = 0.874729 4

Source: www.limited.com.

Table 1-4 also shows 1 plus the one-year growth rate in number of stores. We can
compute the 1 plus four-year cumulative growth in number of stores from 1998 to 2002
as the product of quantities (1 + one-year growth rate). We arrive at the same result as
when we divide the ending number of stores, 4,036, by the beginning number of stores,
5,382:

4,036

5,382
=

(
5,023

5,382

) (
5,129

5,023

)(
4,614

5,129

) (
4,036

4,614

)

= (1 + g1)(1 + g2)(1 + g3)(1 + g4)

0.749907 = (0.933296)(1.021103)(0.899591)(0.874729)

The right-hand side of the equation is the product of 1 plus the one-year growth rate in
number of stores operated for each year. Recall that, using Equation 1-14, we took the
fourth root of 4,036/5,382 = 0.749907. In effect, we were solving for the single value
of g which, when compounded over four periods, gives the correct product of 1 plus the
one-year growth rates.7

In conclusion, we do not need to compute intermediate growth rates as in Table 1-4
to solve for a compound growth rate g. Sometimes, however, the intermediate growth
rates are interesting or informative. For example, during one year (2000), Limited
Brands increased its number of stores. We can also analyze the variability in growth
rates when we conduct an analysis as in Table 1-4. How did Limited Brands maintain
approximately the same revenues during the period although it operated increasingly
fewer stores? Elsewhere in Limited Brands’ disclosures, the company noted that its sales
per average selling square foot increased during the period.

7The compound growth rate that we calculate here is an example of a geometric mean, specifically the
geometric mean of the growth rates. We define the geometric mean in the chapter on statistical concepts.
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The compound growth rate is an excellent summary measure of growth over multiple
time periods. In our Limited Brands example, the compound growth rate of −6.9 percent is
the single growth rate that, when added to 1, compounded over four years, and multiplied by
the 1998 number of stores operated, yields the 2002 number of stores operated.

7.2. Solving for the Number of Periods

In this section, we demonstrate how to solve for the number of periods given present value,
future value, and interest or growth rates.

EXAMPLE 1-19 The Number of Annual Compounding
Periods Needed for an Investment to Reach a Specific Value

You are interested in determining how long it will take an investment of ¤10,000,000
to double in value. The current interest rate is 7 percent compounded annually. How
many years will it take ¤10,000,000 to double to ¤20,000,000?

Solution: Use Equation 1-2, FVN = PV(1 + r)N , to solve for the number of periods,
N , as follows:

(1 + r)N = FVN /PV = 2

N ln(1 + r) = ln(2)

N = ln(2)/ln(1 + r)

= ln(2)/ln(1.07) = 10.24

With an interest rate of 7 percent, it will take approximately 10 years for the initial
¤10,000,000 investment to grow to ¤20,000,000. Solving for N in the expression
(1.07)N = 2.0 requires taking the natural logarithm of both sides and using the rule
that ln(xN ) = N ln(x). Generally, we find that N = [ln(FV/PV)]/ln(1 + r). Here,
N = ln(¤20,000,000/¤10,000,000)/ln(1.07) = ln(2)/ln(1.07) = 10.24.8

7.3. Solving for the Size of Annuity Payments

In this section, we discuss how to solve for annuity payments. Mortgages, auto loans, and
retirement savings plans are classic examples of applications of annuity formulas.

8To quickly approximate the number of periods, practitioners sometimes use an ad hoc rule called the
Rule of 72: Divide 72 by the stated interest rate to get the approximate number of years it would take
to double an investment at the interest rate. Here, the approximation gives 72/7 = 10.3 years. The
Rule of 72 is loosely based on the observation that it takes 12 years to double an amount at a 6 percent
interest rate, giving 6 × 12 = 72. At a 3 percent rate, one would guess it would take twice as many years,
3 × 24 = 72.
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EXAMPLE 1-20 The Annuity Payments Needed to Reach a
Future Value with Monthly Compounding

You are planning to purchase a $120,000 house by making a down payment of
$20,000 and borrowing the remainder with a 30-year fixed-rate mortgage with monthly
payments. The first payment is due at t = 1. Current mortgage interest rates are
quoted at 8 percent with monthly compounding. What will your monthly mortgage
payments be?

Solution: The bank will determine the mortgage payments such that at the stated
periodic interest rate, the present value of the payments will be equal to the amount
borrowed (in this case, $100,000). With this fact in mind, we can use Equation 1-11,

PV = A




1 − 1

(1 + r)N

r


, to solve for the annuity amount, A, as the present value

divided by the present value annuity factor:

PV = $100,000

rs = 8% = 0.08

m = 12

rs/m = 0.08/12 = 0.006667

N = 30

mN = 12 × 30 = 360

Present value annuity factor =
1 − 1

[1 + (rs/m)]mN

rs/m
=

1 − 1

(1.006667)360

0.006667

= 136.283494

A = PV/Present value annuity factor

= $100,000/136.283494

= $733.76

The amount borrowed, $100,000, is equivalent to 360 monthly payments of $733.76
with a stated interest rate of 8 percent. The mortgage problem is a relatively straightfor-
ward application of finding a level annuity payment.

Next, we turn to a retirement-planning problem. This problem illustrates the complexity
of the situation in which an individual wants to retire with a specified retirement income.
Over the course of a life cycle, the individual may be able to save only a small amount during
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the early years but then may have the financial resources to save more during later years.
Savings plans often involve uneven cash flows, a topic we will examine in the last part of this
chapter. When dealing with uneven cash flows, we take maximum advantage of the principle
that dollar amounts indexed at the same point in time are additive—the cash flow additivity
principle.

EXAMPLE 1-21 The Projected Annuity Amount Needed to
Fund a Future Annuity Inflow

Jill Grant is 22 years old (at t = 0) and is planning for her retirement at age 63 (at
t = 41). She plans to save $2,000 per year for the next 15 years (t = 1 to t = 15).
She wants to have retirement income of $100,000 per year for 20 years, with the
first retirement payment starting at t = 41. How much must Grant save each year
from t = 16 to t = 40 in order to achieve her retirement goal? Assume she plans to
invest in a diversified stock-and-bond mutual fund that will earn 8 percent per year on
average.

Solution: To help solve this problem, we set up the information on a time line. As
Figure 1-8 shows, Grant will save $2,000 (an outflow) each year for Years 1 to 15.
Starting in Year 41, Grant will start to draw retirement income of $100,000 per year
for 20 years. In the time line, the annual savings is recorded in parentheses ($2) to show
that it is an outflow. The problem is to find the savings, recorded as X , from Year 16 to
Year 40.

0 1 2 15 16 17 40 41 42 60
... (X) $100 $100 ... $100($2) ($2) ($2) (X) (X)

...

...
... ...

FIGURE 1-8 Solving for Missing Annuity Payments (in thousands)

Solving this problem involves satisfying the following relationship: the present value
of savings (outflows) equals the present value of retirement income (inflows). We could
bring all the dollar amounts to t = 40 or to t = 15 and solve for X .

Let us evaluate all dollar amounts at t = 15 (we encourage the reader to repeat the
problem by bringing all cash flows to t = 40). As of t = 15, the first payment of X will
be one period away (at t = 16). Thus we can value the stream of X s using the formula
for the present value of an ordinary annuity.

This problem involves three series of level cash flows. The basic idea is that the
present value of the retirement income must equal the present value of Grant’s savings.
Our strategy requires the following steps:

1. Find the future value of the savings of $2,000 per year and index it at t = 15.
This value tells us how much Grant will have saved.
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2. Find the present value of the retirement income at t = 15. This value tells us how
much Grant needs to meet her retirement goals (as of t = 15). Two substeps are
necessary. First, calculate the present value of the annuity of $100,000 per year
at t = 40. Use the formula for the present value of an annuity. (Note that the
present value is indexed at t = 40 because the first payment is at t = 41.) Next,
discount the present value back to t = 15 (a total of 25 periods).

3. Now compute the difference between the amount Grant has saved (Step 1) and
the amount she needs to meet her retirement goals (Step 2). Her savings from
t = 16 to t = 40 must have a present value equal to the difference between the
future value of her savings and the present value of her retirement income.

Our goal is to determine the amount Grant should save in each of the 25 years from
t = 16 to t = 40. We start by bringing the $2,000 savings to t = 15, as follows:

A = $2,000

r = 8% = 0.08

N = 15

FV = A
[

(1 + r)N − 1

r

]

= $2,000

[
(1.08)15 − 1

0.08

]

= $2,000(27.152114)

= $54,304.23

At t = 15, Grant’s initial savings will have grown to $54,304.23.
Now we need to know the value of Grant’s retirement income at t = 15. As stated

earlier, computing the retirement present value requires two substeps. First, find the
present value at t = 40 with the formula in Equation 1-11; second, discount this present
value back to t = 15. Now we can find the retirement income present value at t = 40:

A = $100,000

r = 8% = 0.08

N = 20

PV = A




1 − 1

(1 + r)N

r




= $100,000




1 − 1

(1.08)20

0.08
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= $100,000(9.818147)

= $981,814.74

The present value amount is as of t = 40, so we must now discount it back as a lump
sum to t = 15:

FVN = $981,814.74

N = 25

r = 8% = 0.08

PV = FVN (1 + r)−N

= $981,814.74(1.08)−25

= $981,814.74(0.146018)

= $143,362.53

Now recall that Grant will have saved $54,304.23 by t = 15. Therefore, in present
value terms, the annuity from t = 16 to t = 40 must equal the difference between
the amount already saved ($54,304.23) and the amount required for retirement
($143,362.53). This amount is equal to $143,362.53 − $54,304.23 = $89,058.30.
Therefore, we must now find the annuity payment, A, from t = 16 to t = 40 that has a
present value of $89,058.30. We find the annuity payment as follows:

PV = $89,058.30

r = 8% = 0.08

N = 25

Present value annuity factor =




1 − 1

(1 + r)N

r




=




1 − 1

(1.08)25

0.08




= 10.674776

A = PV/Present value annuity factor

= $89,058.30/10.674776

= $8,342.87
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Grant will need to increase her savings to $8,342.87 per year from t = 16 to t = 40 to
meet her retirement goal of having a fund equal to $981,814.74 after making her last
payment at t = 40.

7.4. Review of Present and Future Value Equivalence

As we have demonstrated, finding present and future values involves moving amounts of
money to different points on a time line. These operations are possible because present
value and future value are equivalent measures separated in time. Table 1-5 illustrates this
equivalence; it lists the timing of five cash flows, their present values at t = 0, and their future
values at t = 5.

To interpret Table 1-5, start with the third column, which shows the present values. Note
that each $1,000 cash payment is discounted back the appropriate number of periods to find
the present value at t = 0. The present value of $4,329.48 is exactly equivalent to the series of
cash flows. This information illustrates an important point: A lump sum can actually generate
an annuity. If we place a lump sum in an account that earns the stated interest rate for all
periods, we can generate an annuity that is equivalent to the lump sum. Amortized loans, such
as mortgages and car loans, are examples of this principle.

To see how a lump sum can fund an annuity, assume that we place $4,329.48 in the
bank today at 5 percent interest. We can calculate the size of the annuity payments by using
Equation 1-11. Solving for A, we find

A = PV

1 − [1/(1 + r)N ]

r

= $4,329.48

1 − [1/(1.05)5]

0.05
= $1,000

Table 1-6 shows how the initial investment of $4,329.48 can actually generate five $1,000
withdrawals over the next five years.

To interpret Table 1-6, start with an initial present value of $4,329.48 at t = 0. From
t = 0 to t = 1, the initial investment earns 5 percent interest, generating a future value

TABLE 1-5 The Equivalence of Present and Future Values

Time Cash Flow Present Value at t = 0 Future Value at t = 5

1 $1,000 $1,000(1.05)−1 = $952.38 $1,000(1.05)4 = $1,215.51
2 $1,000 $1,000(1.05)−2 = $907.03 $1,000(1.05)3 = $1,157.63
3 $1,000 $1,000(1.05)−3 = $863.84 $1,000(1.05)2 = $1,102.50
4 $1,000 $1,000(1.05)−4 = $822.70 $1,000(1.05)1 = $1,050.00
5 $1,000 $1,000(1.05)−5 = $783.53 $1,000(1.05)0 = $1,000.00

Sum: $4,329.48 Sum: $5,525.64
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TABLE 1-6 How an Initial Present Value Funds an Annuity

Amount Available Amount
Time at the Beginning of Ending Amount Available After
Period the Time Period Before Withdrawal Withdrawal Withdrawal

1 $4,329.48 $4,329.48(1.05) = $4,545.95 $1,000 $3,545.95
2 $3,545.95 $3,545.95(1.05) = $3,723.25 $1,000 $2,723.25
3 $2,723.25 $2,723.25(1.05) = $2,859.41 $1,000 $1,859.41
4 $1,859.41 $1,859.41(1.05) = $1,952.38 $1,000 $952.38
5 $952.38 $952.38(1.05) = $1,000 $1,000 $0

of $4,329.48(1.05) = $4,545.95. We then withdraw $1,000 from our account, leaving
$4,545.95 − $1,000 = $3,545.95 (the figure reported in the last column for time period 1).
In the next period, we earn one year’s worth of interest and then make a $1,000 withdrawal.
After the fourth withdrawal, we have $952.38, which earns 5 percent. This amount then grows
to $1,000 during the year, just enough for us to make the last withdrawal. Thus the initial
present value, when invested at 5 percent for five years, generates the $1,000 five-year ordinary
annuity. The present value of the initial investment is exactly equivalent to the annuity.

Now we can look at how future value relates to annuities. In Table 1-5, we reported that
the future value of the annuity was $5,525.64. We arrived at this figure by compounding the
first $1,000 payment forward four periods, the second $1,000 forward three periods, and so
on. We then added the five future amounts at t = 5. The annuity is equivalent to $5,525.64
at t = 5 and $4,329.48 at t = 0. These two dollar measures are thus equivalent. We can verify
the equivalence by finding the present value of $5,525.64, which is $5,525.64 × (1.05)−5 =
$4,329.48. We found this result above when we showed that a lump sum can generate an
annuity.

To summarize what we have learned so far: A lump sum can be seen as equivalent to an
annuity, and an annuity can be seen as equivalent to its future value. Thus present values,
future values, and a series of cash flows can all be considered equivalent as long as they are
indexed at the same point in time.

7.5. The Cash Flow Additivity Principle

The cash flow additivity principle—the idea that amounts of money indexed at the same
point in time are additive—is one of the most important concepts in time value of money
mathematics. We have already mentioned and used this principle; this section provides a
reference example for it.

Consider the two series of cash flows shown on the time line in Figure 1-9. The
series are denoted A and B. If we assume that the annual interest rate is 2 percent, we
can find the future value of each series of cash flows as follows. Series A’s future value
is $100(1.02) + $100 = $202. Series B’s future value is $200(1.02) + $200 = $404. The
future value of (A + B) is $202 + $404 = $606 by the method we have used up to this point.
The alternative way to find the future value is to add the cash flows of each series, A and B (call
it A + B), and then find the future value of the combined cash flow, as shown in Figure 1-9.
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t = 0 t = 1 t = 2

A

$100 $100

t = 0 t = 1 t = 2

B
$200 $200

t = 0 t = 1 t = 2

A + B
$300 $300

FIGURE 1-9 The Additivity of Two Series of Cash Flows

The third time line in Figure 1-9 shows the combined series of cash flows. Series A
has a cash flow of $100 at t = 1, and Series B has a cash flow of $200 at t = 1. The
combined series thus has a cash flow of $300 at t = 1. We can similarly calculate the cash
flow of the combined series at t = 2. The future value of the combined series (A + B) is
$300(1.02) + $300 = $606—the same result we found when we added the future values of
each series.

The additivity and equivalence principles also appear in another common situation.
Suppose cash flows are $4 at the end of the first year and $24 (actually separate payments of
$4 and $20) at the end of the second year. Rather than finding present values of the first year’s
$4 and the second year’s $24, we can treat this situation as a $4 annuity for two years and a
second-year $20 lump sum. If the discount rate were 6 percent, the $4 annuity would have a
present value of $7.33 and the $20 lump sum a present value of $17.80, for a total of $25.13.





CHAPTER 2
DISCOUNTED CASH

FLOW APPLICATIONS

1. INTRODUCTION

As investment analysts, much of our work includes evaluating transactions involving present
and future cash flows. In the chapter on the time value of money (TVM), we presented
the mathematics needed to solve those problems and illustrated the techniques for the major
problem types. In this chapter we turn to applications. Analysts must master the numerous
applications of TVM or discounted cash flow analysis in equity, fixed income, and derivatives
analysis as they study each of those topics individually. In this chapter, we present a selection
of important TVM applications: net present value and internal rate of return as tools for
evaluating cash flow streams, portfolio return measurement, and the calculation of money
market yields. Important in themselves, these applications also introduce concepts that reappear
in many other investment contexts.

The chapter is organized as follows. Section 2 introduces two key TVM concepts, net
present value and internal rate of return. Building on these concepts, Section 3 discusses a key
topic in investment management, portfolio return measurement. Investment managers often
face the task of investing funds for the short term; to understand the choices available, they
need to understand the calculation of money market yields. The chapter thus concludes with
a discussion of that topic in Section 4.

2. NET PRESENT VALUE AND
INTERNAL RATE OF RETURN

In applying discounted cash flow analysis in all fields of finance, we repeatedly encounter two
concepts, net present value and internal rate of return. In the following sections we present
these keystone concepts.

We could explore the concepts of net present value and internal rate of return in many
contexts, because their scope of application covers all areas of finance. Capital budgeting,
however, can serve as a representative starting point. Capital budgeting is important not only
in corporate finance but also in security analysis, because both equity and fixed income analysts
must be able to assess how well managers are investing the assets of their companies. There
are three chief areas of financial decision-making in most businesses. Capital budgeting is the
allocation of funds to relatively long-range projects or investments. From the perspective of
capital budgeting, a company is a portfolio of projects and investments. Capital structure is

39



40 Quantitative Investment Analysis

the choice of long-term financing for the investments the company wants to make. Working
capital management is the management of the company’s short-term assets (such as inventory)
and short-term liabilities (such as money owed to suppliers).

2.1. Net Present Value and the Net Present Value Rule

Net present value (NPV) describes a way to characterize the value of an investment, and
the net present value rule is a method for choosing among alternative investments. The net
present value of an investment is the present value of its cash inflows minus the present value
of its cash outflows. The word ‘‘net’’ in net present value refers to subtracting the present value
of the investment’s outflows (costs) from the present value of its inflows (benefits) to arrive at
the net benefit.

The steps in computing NPV and applying the NPV rule are as follows:

1. Identify all cash flows associated with the investment—all inflows and outflows.1

2. Determine the appropriate discount rate or opportunity cost, r, for the investment
project.2

3. Using that discount rate, find the present value of each cash flow. (Inflows have a
positive sign and increase NPV; outflows have a negative sign and decrease NPV.)

4. Sum all present values. The sum of the present values of all cash flows (inflows and
outflows) is the investment’s net present value.

5. Apply the NPV rule: If the investment’s NPV is positive, an investor should undertake
it; if the NPV is negative, the investor should not undertake it. If an investor has two
candidates for investment but can only invest in one (i.e., mutually exclusive projects),
the investor should choose the candidate with the higher positive NPV.

What is the meaning of the NPV rule? In calculating the NPV of an investment proposal,
we use an estimate of the opportunity cost of capital as the discount rate. The opportunity cost
of capital is the alternative return that investors forgo in undertaking the investment. When
NPV is positive, the investment adds value because it more than covers the opportunity cost
of the capital needed to undertake it. So a company undertaking a positive NPV investment
increases shareholders’ wealth. An individual investor making a positive NPV investment
increases personal wealth, but a negative NPV investment decreases wealth.

When working problems using the NPV rule, it will be helpful to refer to the following
formula:

NPV =
N∑

t=0

CFt

(1 + r)t
(2-1)

1In developing cash flow estimates, we observe two principles. First, we include only the incremental
cash flows resulting from undertaking the project; we do not include sunk costs (costs that have been
committed prior to the project). Second, we account for tax effects by using after-tax cash flows. For a
full discussion of these and other issues in capital budgeting, see Brealey and Myers (2003).
2The weighted-average cost of capital (WACC) is often used to discount cash flows. This value is a
weighted average of the after-tax required rates of return on the company’s common stock, preferred
stock, and long-term debt, where the weights are the fraction of each source of financing in the company’s
target capital structure. For a full discussion of the issues surrounding the cost of capital, see Brealey and
Myers (2003).
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where

CFt = the expected net cash flow at time t
N = the investment’s projected life
r = the discount rate or opportunity cost of capital

As always, we state the inputs on a compatible time basis: If cash flows are annual, N is
the project’s life in years and r is an annual rate. For instance, suppose you are reviewing a
proposal that requires an initial outlay of $2 million (CF0 = −$2 million). You expect that
the proposed investment will generate net positive cash flows of CF1 = $0.50 million at the
end of Year 1, CF2 = $0.75 million at the end of Year 2, and CF3 = $1.35 million at the end
of Year 3. Using 10 percent as a discount rate, you calculate the NPV as follows:

NPV = −$2 + $0.50/(1.10) + $0.75/(1.10)2 + $1.35/(1.10)3

= −$2 + $0.454545 + $0.619835 + $1.014275

= $0.088655 million

Because the NPV of $88,655 is positive, you accept the proposal under the NPV rule.
Consider an example in which a research and development program is evaluated using

the NPV rule.

EXAMPLE 2-1 Evaluating a Research and Development
Program Using the NPV Rule

As an analyst covering the RAD Corporation, you are evaluating its research and
development (R&D) program for the current year. Management has announced that
it intends to invest $1 million in R&D. Incremental net cash flows are forecasted to
be $150,000 per year in perpetuity. RAD Corporation’s opportunity cost of capital is
10 percent.

1. State whether RAD’s R&D program will benefit shareholders, as judged by the
NPV rule.

2. Evaluate whether your answer to Part 1 changes if RAD Corporation’s opportunity
cost of capital is 15 percent rather than 10 percent.

Solution to 1: The constant net cash flows of $150,000, which we can denote as CF,
form a perpetuity. The present value of the perpetuity is CF/r, so we calculate the
project’s NPV as

NPV = CF0 + CF/r = −$1,000,000 + $150,000/0.10 = $500,000

With an opportunity cost of 10 percent, the present value of the program’s cash inflows
is $1.5 million. The program’s cost is an immediate outflow of $1 million; therefore, its
net present value is $500,000. As NPV is positive, you conclude that RAD Corporation’s
R&D program will benefit shareholders.
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Solution to 2: With an opportunity cost of capital of 15 percent, you compute the NPV
as you did above, but this time you use a 15 percent discount rate:

NPV = −$1,000,000 + $150,000/0.15 = $0

With a higher opportunity cost of capital, the present value of the inflows is smaller
and the program’s NPV is smaller: At 15 percent, the NPV exactly equals $0. At
NPV = 0, the program generates just enough cash flow to compensate shareholders
for the opportunity cost of making the investment. When a company undertakes a
zero-NPV project, the company becomes larger but shareholders’ wealth does not
increase.

2.2. The Internal Rate of Return and the Internal Rate of Return Rule

Financial managers often want a single number that represents the rate of return generated
by an investment. The rate of return computation most often used in investment applications
(including capital budgeting) is the internal rate of return (IRR). The internal rate of return
rule is a second method for choosing among investment proposals. The internal rate of return
is the discount rate that makes net present value equal to zero. It equates the present value of
the investment’s costs (outflows) to the present value of the investment’s benefits (inflows).
The rate is ‘‘internal’’ because it depends only on the cash flows of the investment; no external
data are needed. As a result, we can apply the IRR concept to any investment that can be
represented as a series of cash flows. In the study of bonds, we encounter IRR under the name
of yield to maturity. Later in this chapter, we will explore IRR as the money-weighted rate of
return for portfolios.

Before we continue, however, we must add a note of caution about interpreting IRR:
Even if our cash flow projections are correct, we will realize a compound rate of return that
is equal to IRR over the life of the investment only if we can reinvest all interim cash flows
at exactly the IRR. Suppose the IRR for a project is 15 percent but we consistently reinvest
the cash generated by the project at a lower rate. In this case, we will realize a return that is
less than 15 percent. (This principle can work in our favor if we can reinvest at rates above 15
percent.)

To return to the definition of IRR, in mathematical terms we said the following:

NPV = CF0 + CF1

(1 + IRR)1
+ CF2

(1 + IRR)2
+ · · · + CFN

(1 + IRR)N
= 0 (2-2)

Again, the IRR in Equation 2-2 must be compatible with the timing of the cash flows. If
the cash flows are quarterly, we have a quarterly IRR in Equation 2-2. We can then state the
IRR on an annual basis. For some simple projects, the cash flow at t = 0, CF0, captures the
single capital outlay or initial investment; cash flows after t = 0 are the positive returns to
the investment. In such cases, we can say CF0 = −Investment (the negative sign indicates an
outflow). Thus we can rearrange Equation 2-2 in a form that is helpful in those cases:

Investment = CF1

(1 + IRR)1
+ CF2

(1 + IRR)2
+ · · · + CFN

(1 + IRR)N
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For most real-life problems, financial analysts use software, spreadsheets, or financial calculators
to solve this equation for IRR, so you should familiarize yourself with such tools.3

The investment decision rule using IRR, the IRR rule, states the following: ‘‘Accept
projects or investments for which the IRR is greater than the opportunity cost of capital.’’ The
IRR rule uses the opportunity cost of capital as a hurdle rate, or rate that a project’s IRR must
exceed for the project to be accepted. Note that if the opportunity cost of capital is equal to
the IRR, then the NPV is equal to 0. If the project’s opportunity cost is less than the IRR, the
NPV is greater than 0 (using a discount rate less than the IRR will make the NPV positive).
With these comments in mind, we work through two examples that involve the internal rate
of return.

EXAMPLE 2-2 Evaluating a Research and Development
Program Using the IRR Rule

In the previous RAD Corporation example, the initial outlay is $1 million and the
program’s cash flows are $150,000 in perpetuity. Now you are interested in determining
the program’s internal rate of return. Address the following:

1. Write the equation for determining the internal rate of return of this R&D program.
2. Calculate the IRR.

Solution to 1: Finding the IRR is equivalent to finding the discount rate that makes the
NPV equal to 0. Because the program’s cash flows are a perpetuity, you can set up the
NPV equation as

NPV = −Investment + CF/IRR = 0

NPV = −$1,000,000 + $150,000/IRR = 0

or as

Investment = CF/IRR

$1,000,000 = $150,000/IRR

Solution to 2: We can solve for IRR as IRR = $150,000/$1,000,000 = 0.15 or 15
percent. The solution of 15 percent accords with the definition of IRR. In Example 2-1,
you found that a discount rate of 15 percent made the program’s NPV equal to 0. By
definition, therefore, the program’s IRR must be 15 percent. If the opportunity cost of
capital is also 15 percent, the R&D program just covers its opportunity costs and neither

3In some real-world capital budgeting problems, the initial investment (which has a minus sign) may
be followed by subsequent cash inflows (which have plus signs) and outflows (which have minus signs).
In these instances, the project can have more than one IRR. The possibility of multiple solutions is a
theoretical limitation of IRR.
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increases nor decreases shareholder wealth. If it is less than 15 percent, the IRR rule
indicates that management should invest in the program because it more than covers its
opportunity cost. If the opportunity cost is greater than 15 percent, the IRR rule tells
management to reject the R&D program. For a given opportunity cost, the IRR rule
and the NPV rule lead to the same decision in this example.

EXAMPLE 2-3 The IRR and NPV Rules Side by Side

The Japanese company Kageyama Ltd. is considering whether or not to open a new
factory to manufacture capacitors used in cell phones. The factory will require an
investment of ¥1,000 million. The factory is expected to generate level cash flows of
¥294.8 million per year in each of the next five years. According to information in its
financial reports, Kageyama’s opportunity cost of capital for this type of project is 11
percent.

1. Determine whether the project will benefit Kageyama’s shareholders using the
NPV rule.

2. Determine whether the project will benefit Kageyama’s shareholders using the
IRR rule.

Solution to 1: The cash flows can be grouped into an initial outflow of ¥1,000 million and
an ordinary annuity of five inflows of ¥294.8 million. The expression for the present
value of an annuity is A[1 − (1 + r)−N ]/r, where A is the level annuity payment.
Therefore, with amounts shown in millions of Japanese yen,

NPV = −1,000 + 294.8[1 − (1.11)−5]/0.11

= −1,000 + 1,089.55 = 89.55

Because the project’s NPV is positive ¥89.55 million, it should benefit Kageyama’s
shareholders.

Solution to 2: The IRR of the project is the solution to

NPV = −1,000 + 294.8[1 − (1 + IRR)−5]/IRR = 0

This project’s positive NPV tells us that the internal rate of return must be greater
than 11 percent. Using a calculator, we find that IRR is 0.145012 or 14.50 percent.
Table 2-1 gives the keystrokes on most financial calculators.

Because the IRR of 14.50 percent is greater than the opportunity cost of the project,
the project should benefit Kageyama’s shareholders. Whether it uses the IRR rule or the
NPV rule, Kageyama makes the same decision: Build the factory.
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TABLE 2-1 Computing IRR

Notation Used on Numerical Value
Most Calculators for This Problem

N 5
%i compute X
PV −1,000
PMT 294.8
FV n/a (=0)

In the previous example, value creation is evident: For a single ¥1,000 million payment,
Kageyama creates a project worth ¥1,089.55 million, a value increase of ¥89.55 million.
Another perspective on value creation comes from converting the initial investment into
a capital charge against the annual operating cash flows that the project generates. Recall
that the project generates an annual operating cash flow of ¥294,800,000. If we subtract a
capital charge of ¥270,570,310 (the amount of a five-year annuity having a present value of
¥1,000 million at 11 percent), we find ¥294,800,000 − ¥270,570,310 = ¥24,229,690. The
amount of ¥24,229,690 represents the profit in each of the next five years after taking into
account opportunity costs. The present value of a five-year annuity of ¥24,229,690 at an 11
percent cost of capital is exactly what we calculated as the project’s NPV: ¥89.55 million.
Therefore, we can also calculate NPV by converting the initial investment to an annual capital
charge against cash flow.

2.3. Problems with the IRR Rule

The IRR and NPV rules give the same accept or reject decision when projects are inde-
pendent—that is, when the decision to invest in one project does not affect the decision
to undertake another. When a company cannot finance all the projects it would like to
undertake—that is, when projects are mutually exclusive—it must rank the projects from
most profitable to least. However, rankings according to IRR and NPV may not be the same.
The IRR and NPV rules rank projects differently when

• the size or scale of the projects differs (measuring size by the investment needed to undertake
the project), or

• the timing of the projects’ cash flows differs.

When the IRR and NPV rules conflict in ranking projects, we should take directions
from the NPV rule. Why that preference? The NPV of an investment represents the expected
addition to shareholder wealth from an investment, and we take the maximization of
shareholder wealth to be a basic financial objective of a company. To illustrate the preference
for the NPV rule, consider first the case of projects that differ in size. Suppose that a company
has only ¤30,000 available to invest.4 The company has available two one-period investment
projects described as A and B in Table 2-2.

4Or suppose the two projects require the same physical or other resources, so that only one can be
undertaken.
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TABLE 2-2 IRR and NPV for Mutually Exclusive Projects of Different Size

Investment Cash Flow NPV
Project at t = 0 at t = 1 IRR at 8%

A −¤10,000 ¤15,000 50% ¤3,888.89
B −¤30,000 ¤42,000 40% ¤8,888.89

Project A requires an immediate investment of ¤10,000. This project will make a single
cash payment of $15,000 at t = 1. Because the IRR is the discount rate that equates the
present value of the future cash flow with the cost of the investment, the IRR equals 50
percent. If we assume that the opportunity cost of capital is 8 percent, then the NPV of Project
A is ¤3,888.89. We compute the IRR and NPV of Project B as 40 percent and ¤8,888.89,
respectively. The IRR and NPV rules indicate that we should undertake both projects, but
to do so we would need ¤40,000—more money than is available. So we need to rank the
projects. How do the projects rank according to IRR and NPV?

The IRR rule ranks Project A, with the higher IRR, first. The NPV rule, however, ranks
Project B, with the higher NPV, first—a conflict with the IRR rule’s ranking. Choosing
Project A because it has the higher IRR would not lead to the largest increase in shareholders’
wealth. Investing in Project A effectively leaves ¤20,000 (¤30,000 minus A’s cost) uninvested.
Project A increases wealth by almost ¤4,000, but Project B increases wealth by almost ¤9,000.
The difference between the two projects’ scale creates the inconsistency in the ranking between
the two rules.

IRR and NPV can also rank projects of the same scale differently when the timing of cash
flows differs. We can illustrate this principle with Projects A and D, presented in Table 2-3.

TABLE 2-3 IRR and NPV for Mutually Exclusive Projects with Different Timing of Cash Flows

Project CF0 CF1 CF2 CF3 IRR NPV at 8%

A − ¤10,000 ¤15,000 0 0 50.0% ¤3,888.89
D − ¤10,000 0 0 ¤21,220 28.5% ¤6,845.12

The terms CF0, CF1, CF2, and CF3 represent the cash flows at time periods 0, 1, 2, and
3. The IRR for Project A is the same as it was in the previous example. The IRR for Project D
is found as follows:

−10,000 + 21,220

(1 + IRR)3
= 0

The IRR for Project D is 28.5 percent, compared with 50 percent for Project A. IRRs and IRR
rankings are not affected by any external interest rate or discount rate because a project’s cash
flows alone determine the internal rate of return. The IRR calculation furthermore assumes
reinvestment at the IRR, so we generally cannot interpret them as achievable rates of return. For
Project D, for example, to achieve a 28.5 percent return we would need to earn 28.5 percent on
¤10,000 for the first year, earn 28.5 percent on ¤10,000(1.285) = ¤12,850 the second year,
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and earn 28.5 percent on ¤10,000(1.285)2 = ¤16,512.25 the third year.5 A reinvestment
rate such as 50 percent or 28.5 percent may be quite unrealistic. By contrast, the calculation of
NPV uses an external market-determined discount rate, and reinvestment is assumed to take
place at that discount rate. NPV rankings can depend on the external discount rate chosen.
Here, Project D has a larger but more distant cash inflow (¤21,220 versus ¤15,000). As a
result, Project D has a higher NPV than Project A at lower discount rates.6 The NPV rule’s
assumption about reinvestment rates is more realistic and more economically relevant because
it incorporates the market-determined opportunity cost of capital as a discount rate. As a
consequence, the NPV is the expected addition to shareholder wealth from an investment.

In summary, when dealing with mutually exclusive projects, choose among them using
the NPV rule when the IRR rule and NPV rule conflict.7

3. PORTFOLIO RETURN MEASUREMENT

Suppose you are an investor and you want to assess the success of your investments. You
face two related but distinct tasks. The first is performance measurement, which involves
calculating returns in a logical and consistent manner. Accurate performance measurement
provides the basis for your second task, performance appraisal.8 Performance measurement is
thus of great importance for all investors and investment managers because it is the foundation
for all further analysis.

In our discussion of portfolio return measurement, we will use the fundamental concept
of holding period return (HPR), the return that an investor earns over a specified holding
period. For an investment that makes one cash payment at the end of the holding period,
HPR = (P1 − P0 + D1)/P0, where P0 is the initial investment, P1 is the price received at the
end of the holding period, and D1 is the cash paid by the investment at the end of the holding
period.

Particularly when we measure performance over many periods, or when the portfolio is
subject to additions and withdrawals, portfolio performance measurement is a challenging task.
Two of the measurement tools available are the money-weighted rate of return measure and the
time-weighted rate of return measure. The first measure we discuss, the money-weighted rate
of return, implements a concept we have already covered in the context of capital budgeting:
internal rate of return.

3.1. Money-Weighted Rate of Return

The first performance measurement concept that we will discuss is an internal rate of return
calculation. In investment management applications, the internal rate of return is called the

5The ending amount ¤10,000(1.285)3 = ¤21,218 differs from the ¤21,220 amount listed in Table 2-3
because we rounded IRR.
6There is a crossover discount rate above which Project A has a higher NPV than Project D. This
crossover rate is 18.94 percent.
7Technically, different reinvestment rate assumptions account for this conflict between the IRR and
NPV rules. The IRR rule assumes that the company can earn the IRR on all reinvested cash flows, but
the NPV rule assumes that cash flows are reinvested at the company’s opportunity cost of capital. The
NPV assumption is far more realistic. For further details on this and other topics in capital budgeting,
see Brealey and Myers (2003).
8The term ‘‘performance evaluation’’ has been used as a synonym for performance appraisal. In later
chapters we will discuss one performance appraisal tool, the Sharpe ratio.
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TABLE 2-4 Cash Flows

Time Outlay

0 $200 to purchase the first share
1 $225 to purchase the second share

Proceeds

1 $5 dividend received from first share (and not reinvested)
2 $10 dividend ($5 per share × 2 shares) received
2 $470 received from selling two shares at $235 per share

money-weighted rate of return because it accounts for the timing and amount of all dollar
flows into and out of the portfolio.9

To illustrate the money-weighted return, consider an investment that covers a two-year
horizon. At time t = 0, an investor buys one share at $200. At time t = 1, he purchases an
additional share at $225. At the end of Year 2, t = 2, he sells both shares for $235 each.
During both years, the stock pays a per-share dividend of $5. The t = 1 dividend is not
reinvested. Table 2-4 shows the total cash inflows and outflows.

The money-weighted return on this portfolio is its internal rate of return for the two-year
period. The portfolio’s internal rate of return is the rate, r, for which the present value of the
cash inflows minus the present value of the cash outflows equals 0, or

PV(outflows) = PV(inflows)

$200 + $225

(1 + r)
= $5

(1 + r)
+ $480

(1 + r)2

The left-hand side of this equation details the outflows: $200 at time t = 0 and $225
at time t = 1. The $225 outflow is discounted back one period because it occurs at t = 1.
The right-hand side of the equation shows the present value of the inflows: $5 at time t = 1
(discounted back one period) and $480 (the $10 dividend plus the $470 sale proceeds) at time
t = 2 (discounted back two periods).

To solve for the money-weighted return, we use either a financial calculator that allows
us to enter cash flows or a spreadsheet with an IRR function.10 The first step is to group
net cash flows by time. For this example, we have −$200 for the t = 0 net cash flow,
−$220 = −$225 + $5 for the t = 1 net cash flow, and $480 for the t = 2 net cash flow.
After entering these cash flows, we use the spreadsheet’s or calculator’s IRR function to find
that the money-weighted rate of return is 9.39 percent.11

Now we take a closer look at what has happened to the portfolio during each of the
two years. In the first year, the portfolio generated a one-period holding period return of

9In the United States, the money-weighted return is frequently called the dollar-weighted return. We
follow a standard presentation of the money-weighted return as an IRR concept.
10In this particular case we could solve for r by solving the quadratic equation 480x2 − 220x − 200 = 0
with x = 1/(1 + r), using standard results from algebra. In general, however, we rely on a calculator or
spreadsheet software to compute a money-weighted rate of return.
11Note that the calculator or spreadsheet will give the IRR as a periodic rate. If the periods are not
annual, we annualize the periodic rate.
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($5 + $225 − $200)/$200 = 15 percent. At the beginning of the second year, the amount
invested is $450, calculated as $225 (per share price of stock) × 2 shares, because the $5
dividend was spent rather than reinvested. At the end of the second year, the proceeds from
the liquidation of the portfolio are $470 (as detailed in Table 2-4) plus $10 in dividends (as
also detailed in Table 2-4). So in the second year the portfolio produced a holding period
return of ($10 + $470 − $450)/$450 = 6.67 percent. The mean holding period return was
(15% + 6.67%)/2 = 10.84 percent. The money-weighted rate of return, which we calculated
as 9.39 percent, puts a greater weight on the second year’s relatively poor performance (6.67
percent) than the first year’s relatively good performance (15 percent), as more money was
invested in the second year than in the first. That is the sense in which returns in this method
of calculating performance are ‘‘money weighted.’’

As a tool for evaluating investment managers, the money-weighted rate of return has a
serious drawback. Generally, the investment manager’s clients determine when money is given
to the investment manager and how much money is given. As we have seen, those decisions
may significantly influence the investment manager’s money-weighted rate of return. A general
principle of evaluation, however, is that persons or entities should be judged only on the basis
of their own actions, or actions under their control. An evaluation tool should isolate the
effects of the investment manager’s actions. The next section presents a tool that is effective in
that respect.

3.2. Time-Weighted Rate of Return

An investment measure that is not sensitive to the additions and withdrawals of funds is the
time-weighted rate of return. In the investment management industry, the time-weighted rate
of return is the preferred performance measure. The time-weighted rate of return measures
the compound rate of growth of $1 initially invested in the portfolio over a stated measurement
period. In contrast to the money-weighted rate of return, the time-weighted rate of return
is not affected by cash withdrawals or additions to the portfolio. The term ‘‘time-weighted’’
refers to the fact that returns are averaged over time. To compute an exact time-weighted rate
of return on a portfolio, take the following three steps:

1. Price the portfolio immediately prior to any significant addition or withdrawal of funds.
Break the overall evaluation period into subperiods based on the dates of cash inflows
and outflows.

2. Calculate the holding period return on the portfolio for each subperiod.
3. Link or compound holding period returns to obtain an annual rate of return for the

year (the time-weighted rate of return for the year). If the investment is for more than
one year, take the geometric mean of the annual returns to obtain the time-weighted
rate of return over that measurement period.

Let us return to our money-weighted example and calculate the time-weighted rate of
return for that investor’s portfolio. In that example, we computed the holding period returns
on the portfolio, Step 2 in the procedure for finding time-weighted rate of return. Given that
the portfolio earned returns of 15 percent during the first year and 6.67 percent during the
second year, what is the portfolio’s time-weighted rate of return over an evaluation period of
two years?
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We find this time-weighted return by taking the geometric mean of the two holding
period returns, Step 3 in the procedure above. The calculation of the geometric mean exactly
mirrors the calculation of a compound growth rate. Here, we take the product of 1 plus the
holding period return for each period to find the terminal value at t = 2 of $1 invested at
t = 0. We then take the square root of this product and subtract 1 to get the geometric mean.
We interpret the result as the annual compound growth rate of $1 invested in the portfolio at
t = 0. Thus we have

(1 + Time-weighted return)2 = (1.15)(1.0667)

Time-weighted return =
√

(1.15)(1.0667) − 1 = 10.76%

The time-weighted return on the portfolio was 10.76 percent, compared with the money-
weighted return of 9.39 percent, which gave larger weight to the second year’s return. We
can see why investment managers find time-weighted returns more meaningful. If a client
gives an investment manager more funds to invest at an unfavorable time, the manager’s
money-weighted rate of return will tend to be depressed. If a client adds funds at a favorable
time, the money-weighted return will tend to be elevated. The time-weighted rate of return
removes these effects.

In defining the steps to calculate an exact time-weighted rate of return, we said that the
portfolio should be valued immediately prior to any significant addition or withdrawal of
funds. With the amount of cash flow activity in many portfolios, this task can be costly. We
can often obtain a reasonable approximation of the time-weighted rate of return by valuing the
portfolio at frequent, regular intervals, particularly if additions and withdrawals are unrelated
to market movements. The more frequent the valuation, the more accurate the approximation.
Daily valuation is commonplace. Suppose that a portfolio is valued daily over the course of a
year. To compute the time-weighted return for the year, we first compute each day’s holding
period return:

rt = MVEt − MVBt

MVBt

where MVBt equals the market value at the beginning of day t and MVEt equals the market
value at the end of day t. We compute 365 such daily returns, denoted r1, r2, . . . , r365.
We obtain the annual return for the year by linking the daily holding period returns
in the following way: (1 + r1) × (1 + r2) × · · · × (1 + r365) − 1. If withdrawals and addi-
tions to the portfolio happen only at day’s end, this annual return is a precise time-
weighted rate of return for the year. Otherwise, it is an approximate time-weighted return
for the year.

If we have a number of years of data, we can calculate a time-weighted return for
each year individually, as above. If ri is the time-weighted return for year i, we calcu-
late an annualized time-weighted return as the geometric mean of N annual returns, as
follows:

r TW = [(1 + r1) × (1 + r2) × · · · × (1 + rN )]1/N − 1

Example 2-4 illustrates the calculation of the time-weighted rate of return.
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EXAMPLE 2-4 Time-Weighted Rate of Return

Strubeck Corporation sponsors a pension plan for its employees. It manages part of
the equity portfolio in-house and delegates management of the balance to Super Trust
Company. As chief investment officer of Strubeck, you want to review the performance
of the in-house and Super Trust portfolios over the last four quarters. You have arranged
for outflows and inflows to the portfolios to be made at the very beginning of the
quarter. Table 2-5 summarizes the inflows and outflows as well as the two portfolios’
valuations. In the table, the ending value is the portfolio’s value just prior to the cash
inflow or outflow at the beginning of the quarter. The amount invested is the amount
each portfolio manager is responsible for investing.

TABLE 2-5 Cash Flows for the In-House Strubeck Account and the Super Trust Account

Quarter

1 2 3 4

In-House Account
Beginning value $4,000,000 $6,000,000 $5,775,000 $6,720,000
Beginning of period inflow

(outflow) $1,000,000 ($500,000) $225,000 ($600,000)
Amount invested $5,000,000 $5,500,000 $6,000,000 $6,120,000
Ending value $6,000,000 $5,775,000 $6,720,000 $5,508,000
Super Trust Account
Beginning value $10,000,000 $13,200,000 $12,240,000 $5,659,200
Beginning of period inflow

(outflow) $2,000,000 ($1,200,000) ($7,000,000) ($400,000)
Amount invested $12,000,000 $12,000,000 $5,240,000 $5,259,200
Ending value $13,200,000 $12,240,000 $5,659,200 $5,469,568

Based on the information given, address the following:

1. Calculate the time-weighted rate of return for the in-house account.
2. Calculate the time-weighted rate of return for the Super Trust account.

Solution to 1: To calculate the time-weighted rate of return for the in-house account,
we compute the quarterly holding period returns for the account and link them into
an annual return. The in-house account’s time-weighted rate of return is 27 percent,
calculated as follows:

1Q HPR: r1 = ($6,000,000 − $5,000,000)/$5,000,000 = 0.20

2Q HPR: r2 = ($5,775,000 − $5,500,000)/$5,500,000 = 0.05

3Q HPR: r3 = ($6,720,000 − $6,000,000)/$6,000,000 = 0.12



52 Quantitative Investment Analysis

4Q HPR: r4 = ($5,508,000 − $6,120,000)/$6,120,000 = −0.10

(1 + r1)(1 + r2)(1 + r3)(1 + r4) − 1 = (1.20)(1.05)(1.12)(0.90) − 1 = 0.27 or 27%

Solution to 2: The account managed by Super Trust has a time-weighted rate of return
of 26 percent, calculated as follows:

1Q HPR: r1 = ($13,200,000 − $12,000,000)/$12,000,000 = 0.10

2Q HPR: r2 = ($12,240,000 − $12,000,000)/$12,000,000 = 0.02

3Q HPR: r3 = ($5,659,200 − $5,240,000)/$5,240,000 = 0.08

4Q HPR: r4 = ($5,469,568 − $5,259,200)/$5,259,200 = 0.04

(1 + r1)(1 + r2)(1 + r3)(1 + r4) − 1 = (1.10)(1.02)(1.08)(1.04) − 1 = 0.26 or 26%

The in-house portfolio’s time-weighted rate of return is higher than the Super Trust
portfolio’s by 100 basis points.

Having worked through this exercise, we are ready to look at a more detailed case.

EXAMPLE 2-5 Time-Weighted and Money-Weighted Rates
of Return Side by Side

Your task is to compute the investment performance of the Walbright Fund during
2003. The facts are as follows:

• On 1 January 2003, the Walbright Fund had a market value of $100 million.
• During the period 1 January 2003 to 30 April 2003, the stocks in the fund showed

a capital gain of $10 million.
• On 1 May 2003, the stocks in the fund paid a total dividend of $2 million. All

dividends were reinvested in additional shares.
• Because the fund’s performance had been exceptional, institutions invested an

additional $20 million in Walbright on 1 May 2003, raising assets under management
to $132 million ($100 + $10 + $2 + $20).

• On 31 December 2003, Walbright received total dividends of $2.64 million. The
fund’s market value on 31 December 2003, not including the $2.64 million in
dividends, was $140 million.

• The fund made no other interim cash payments during 2003.

Based on the information given, address the following:

1. Compute the Walbright Fund’s time-weighted rate of return.
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2. Compute the Walbright Fund’s money-weighted rate of return.
3. Interpret the differences between the time-weighted and money-weighted rates of

return.

Solution to 1: Because interim cash flows were made on 1 May 2003, we must compute
two interim total returns and then link them to obtain an annual return. Table 2-6
lists the relevant market values on 1 January, 1 May, and 31 December as well as the
associated interim four-month (1 January to 1 May) and eight-month (1 May to 31
December) holding period returns.

TABLE 2-6 Cash Flows for the Walbright Fund

1 January 2003 Beginning portfolio value = $100 million
1 May 2003 Dividends received before additional investment = $2 million

Ending portfolio value = $110 million

Holding period return = $2 + $10

$100
= 12%

New investment = $20 million
Beginning market value for last 2/3 of year = $132 million

31 December 2003 Dividends received = $2.64 million
Ending portfolio value = $140 million

Holding period return = $2.64 + $140 − $132

$132
= 8.06%

Now we must geometrically link the four- and eight-month returns to compute an
annual return. We compute the time-weighted return as follows:

Time-weighted return = 1.12 × 1.0806 − 1 = 0.2103

In this instance, we compute a time-weighted rate of return of 21.03 percent for one
year. The four-month and eight-month intervals combine to equal one year. (Taking
the square root of the product 1.12 × 1.0806 would be appropriate only if 1.12 and
1.0806 each applied to one full year.)

Solution to 2: To calculate the money-weighted return, we find the discount rate that
sets the present value of the outflows (purchases) equal to the present value of the inflows
(dividends and future payoff). The initial market value of the fund and all additions to
it are treated as cash outflows. (Think of them as expenditures.) Withdrawals, receipts,
and the ending market value of the fund are counted as inflows. (The ending market
value is the amount investors receive on liquidating the fund.) Because interim cash
flows have occurred at four-month intervals, we must solve for the four-month internal
rate of return. Table 2-6 details the cash flows and their timing.

The present value equation (in millions) is as follows:

PV(outflows) = PV(inflows)

$100 + $2

(1 + r)1
+ $20

(1 + r)1
= $2

(1 + r)1
+ $2.64

(1 + r)3
+ $140

(1 + r)3
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The left-hand side of the equation shows the investments in the fund or outflows:
a $100 million initial investment followed by the $2 million dividend reinvested and
an additional $20 million of new investment (both occurring at the end of the first
four-month interval, which makes the exponent in the denominator 1). The right-hand
side of the equation shows the payoffs or inflows: the $2 million dividend at the first
four-month interval followed by the $2.64 million dividend and the terminal market
value of $140 million (both occurring at the end of the third four-month interval, which
makes the exponent in the denominator 3). The second four-month interval has no cash
flow. We can bring all the terms to the right of the equal sign, arranging them in order
of time. After simplification,

0 = −$100 − $20

(1 + r)1
+ $142.64

(1 + r)3

Using a spreadsheet or IRR-enabled calculator, we use −100, −20, 0, and $142.64 for
the t = 0, t = 1, t = 2, and t = 3 net cash flows, respectively.12 Using either tool, we
get a four-month IRR of 6.28 percent. The quick way to annualize this is to multiply
by 3. A more accurate way is (1.0628)3 − 1 = 0.20 or 20 percent.

Solution to 3: In this example, the time-weighted return (21.03 percent) is greater
than the money-weighted return (20 percent). The Walbright Fund’s performance was
relatively poorer during the eight-month period, when the fund owned more shares,
than it was overall. This fact is reflected in a lower money-weighted rate of return
compared with time-weighted rate of return, as the money-weighted return is sensitive
to the timing and amount of withdrawals and additions to the portfolio.

The accurate measurement of portfolio returns is important to the process of evaluating
portfolio managers. In addition to considering returns, however, analysts must also weigh
risk. When we worked through Example 2-4, we stopped short of suggesting that in-
house management was superior to Super Trust because it earned a higher time-weighted
rate of return. With risk in focus, we can talk of risk-adjusted performance and make
comparisons—but only cautiously. In later chapters, we will discuss the Sharpe ratio, an
important risk-adjusted performance measure that we might apply to an investment manager’s
time-weighted rate of return. For now, we have illustrated the major tools for measuring the
return on a portfolio.

4. MONEY MARKET YIELDS

In our discussion of internal rate of return and net present value, we referred to the opportunity
cost of capital as a market-determined rate. In this section, we begin a discussion of discounted
cash flow analysis in actual markets by considering short-term debt markets.

To understand the various ways returns are presented in debt markets, we must discuss
some of the conventions for quoting yields on money-market instruments. The money market

12By convention, we denote outflows with a negative sign, and we need 0 as a placeholder for t = 2.
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is the market for short-term debt instruments (one-year maturity or less). Some instruments
require the issuer to repay the lender the amount borrowed plus interest. Others are pure
discount instruments that pay interest as the difference between the amount borrowed and
the amount paid back.

In the U.S. money market, the classic example of a pure discount instrument is the U.S.
Treasury bill (T-bill) issued by the federal government. The face value of a T-bill is the
amount the U.S. government promises to pay back to a T-bill investor. In buying a T-bill,
investors pay the face amount less the discount, and receive the face amount at maturity.
The discount is the reduction from the face amount that gives the price for the T-bill. This
discount becomes the interest that accumulates, because the investor receives the face amount at
maturity. Thus, investors earn a dollar return equal to the discount if they hold the instrument
to maturity. T-bills are by far the most important class of money-market instruments in
the United States. Other types of money-market instruments include commercial paper and
bankers’ acceptances, which are discount instruments, and negotiable certificates of deposit,
which are interest-bearing instruments. The market for each of these instruments has its own
convention for quoting prices or yields. The remainder of this section examines the quoting
conventions for T-bills and other money-market instruments. In most instances, the quoted
yields must be adjusted for use in other present value problems.

Pure discount instruments such as T-bills are quoted differently from U.S. government
bonds. T-bills are quoted on a bank discount basis, rather than on a price basis. The bank
discount basis is a quoting convention that annualizes, based on a 360-day year, the discount
as a percentage of face value. Yield on a bank discount basis is computed as follows:

rBD = D
F

360

t
(2-3)

where

rBD = the annualized yield on a bank discount basis
D = the dollar discount, which is equal to the difference between the face value

of the bill, F , and its purchase price, P0

F = the face value of the T-bill
t = the actual number of days remaining to maturity

360 = bank convention of the number of days in a year

The bank discount yield (often called simply the discount yield) takes the dollar discount
from par, D, and expresses it as a fraction of the face value (not the price) of the T-bill. This
fraction is then multiplied by the number of periods of length t in one year (that is, 360/t),
where the year is assumed to have 360 days. Annualizing in this fashion assumes simple interest
(no compounding). Consider the following example.

EXAMPLE 2-6 The Bank Discount Yield

Suppose a T-bill with a face value (or par value) of $100,000 and 150 days until maturity
is selling for $98,000. What is its bank discount yield?
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Solution: For this example, the dollar discount, D, is $2,000. The yield on a bank
discount basis is 4.8 percent, as computed with Equation 2-3:

rBD = $2,000

$100,000

360

150
= 4.8%

The bank discount formula takes the T-bill’s dollar discount from face or par as a
fraction of face value, 2 percent, and then annualizes by the factor 360/150 = 2.4. The
price of discount instruments such as T-bills is quoted using discount yields, so we
typically translate discount yield into price.

Suppose we know the bank discount yield of 4.8 percent but do not know the
price. We solve for the dollar discount, D, as follows:

D = rBDF
t

360

With rBD = 4.8 percent, the dollar discount is D = 0.048 × $100,000 × 150/360 =
$2,000. Once we have computed the dollar discount, the purchase price for the T-bill
is its face value minus the dollar discount, F − D = $100,000 − $2,000 = $98,000.

Yield on a bank discount basis is not a meaningful measure of investors’ return, for three
reasons. First, the yield is based on the face value of the bond, not on its purchase price.
Returns from investments should be evaluated relative to the amount that is invested. Second,
the yield is annualized based on a 360-day year rather than a 365-day year. Third, the bank
discount yield annualizes with simple interest, which ignores the opportunity to earn interest
on interest (compound interest).

We can extend Example 2-6 to discuss three often-used alternative yield measures. The
first is the holding period return over the remaining life of the instrument (150 days in the case
of the T-bill in Example 2-6). It determines the return that an investor will earn by holding
the instrument to maturity; as used here, this measure refers to an unannualized rate of return
(or periodic rate of return). In fixed income markets, this holding period return is also called
a holding period yield (HPY).13 For an instrument that makes one cash payment during its
life, HPY is

HPY = P1 − P0 + D1

P0
(2-4)

where

P0 = the initial purchase price of the instrument
P1 = the price received for the instrument at its maturity
D1 = the cash distribution paid by the instrument at its maturity (i.e., interest)

13Bond-market participants often use the term ‘‘yield’’ when referring to total returns (returns incorpo-
rating both price change and income), as in yield to maturity. In other cases, yield refers to returns from
income alone (as in current yield, which is annual interest divided by price). As used in this book and by
many writers, holding period yield is a bond market synonym for holding period return, total return,
and horizon return.
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When we use this expression to calculate the holding period yield for an interest-bearing
instrument (for example, coupon-bearing bonds), we need to observe an important detail: The
purchase and sale prices must include any accrued interest added to the trade price because
the bond was traded between interest payment dates. Accrued interest is the coupon interest
that the seller earns from the last coupon date but does not receive as a coupon, because the
next coupon date occurs after the date of sale.14

For pure discount securities, all of the return is derived by redeeming the bill for more
than its purchase price. Because the T-bill is a pure discount instrument, it makes no interest
payment and thus D1 = 0. Therefore, the holding period yield is the dollar discount divided
by the purchase price, HPY = D/P0, where D = P1 − P0. The holding period yield is the
amount that is annualized in the other measures. For the T-bill in Example 2-6, the investment
of $98,000 will pay $100,000 in 150 days. The holding period yield on this investment using
Equation 2-4 is ($100,000 − $98,000)/$98,000 = $2,000/$98,000 = 2.0408 percent. For
this example, the periodic return of 2.0408 percent is associated with a 150-day period. If
we were to use the T-bill rate of return as the opportunity cost of investing, we would use a
discount rate of 2.0408 percent for the 150-day T-bill to find the present value of any other
cash flow to be received in 150 days. As long as the other cash flow has risk characteristics
similar to those of the T-bill, this approach is appropriate. If the other cash flow were riskier
than the T-bill, then we could use the T-bill’s yield as a base rate, to which we would add a
risk premium. The formula for the holding period yield is the same regardless of the currency
of denomination.

The second measure of yield is the effective annual yield (EAY). The EAY takes the
quantity 1 plus the holding period yield and compounds it forward to one year, then subtracts
1 to recover an annualized return that accounts for the effect of interest-on-interest.15

EAY = (1 + HPY)365/t − 1 (2-5)

In our example, we can solve for EAY as follows:

EAY = (1.020408)365/150 − 1 = 1.050388 − 1 = 5.0388%

This example illustrates a general rule: The bank discount yield is less than the effective annual
yield.

The third alternative measure of yield is the money market yield (also known as the
CD equivalent yield). This convention makes the quoted yield on a T-bill comparable to
yield quotations on interest-bearing money-market instruments that pay interest on a 360-day
basis. In general, the money market yield is equal to the annualized holding period yield;
assuming a 360-day year, rMM = (HPY)(360/t). Compared to the bank discount yield, the
money market yield is computed on the purchase price, so rMM = (rBD)(F/P0). This equation

14The price with accrued interest is called the full price. Trade prices are quoted ‘‘clean’’ (without
accrued interest), but accrued interest, if any, is added to the purchase price. For more on accrued
interest, see Fabozzi (2004).
15Effective annual yield was called the effective annual rate (Equation 1-5) in the chapter on the time
value of money.



58 Quantitative Investment Analysis

TABLE 2-7 Three Commonly Used Yield Measures

Holding Period Yield Effective Annual Yield Money Market Yield
(HPY) (EAY) (CD Equivalent Yield)

HPY = P1 − P0 + D1

P0
EAY = (1 + HPY)365/t − 1 r MM = 360r BD

360 − (t)(r BD)

shows that the money market yield is larger than the bank discount yield. In practice, the
following expression is more useful because it does not require knowing the T-bill price:

rMM = 360rBD

360 − (t)(rBD)
(2-6)

For the T-bill example, the money market yield is rMM = (360)(0.048)/[360 − (150)(0.048)]
= 4.898 percent.16

Table 2-7 summarizes the three yield measures we have discussed.
The next example will help you consolidate your knowledge of these yield measures.

EXAMPLE 2-7 Using the Appropriate Discount Rate

You need to find the present value of a cash flow of $1,000 that is to be received in
150 days. You decide to look at a T-bill maturing in 150 days to determine the relevant
interest rate for calculating the present value. You have found a variety of yields for the
150-day bill. Table 2-8 presents this information.

TABLE 2-8 Short-Term Money Market Yields

Holding period yield 2.0408%
Bank discount yield 4.8%
Money market yield 4.898%
Effective annual yield 5.0388%

Which yield or yields are appropriate for finding the present value of the $1,000 to
be received in 150 days?

Solution: The holding period yield is appropriate, and we can also use the money market
yield and effective annual yield after converting them to a holding period yield.

16Some national markets use the money market yield formula, rather than the bank discount yield
formula, to quote the yields on discount instruments such as T-bills. In Canada, the convention is to
quote Treasury bill yields using the money market formula assuming a 365-day year. Yields for German
Treasury discount paper with a maturity less than one year and French BTFs (T-bills) are computed
with the money market formula assuming a 360-day year.
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• Holding period yield (2.0408 percent). This yield is exactly what we want. Because
it applies to a 150-day period, we can use it in a straightforward fashion to find the
present value of the $1,000 to be received in 150 days. (Recall the principle that
discount rates must be compatible with the time period.) The present value is

PV = $1,000

1.020408
= $980.00

Now we can see why the other yield measures are inappropriate or not as easily applied.

• Bank discount yield (4.8 percent). We should not use this yield measure to determine
the present value of the cash flow. As mentioned earlier, the bank discount yield is
based on the face value of the bill and not on its price.

• Money market yield (4.898 percent). To use the money market yield, we need to
convert it to the 150-day holding period yield by dividing it by (360/150). After
obtaining the holding period yield 0.04898/(360/150) = 0.020408, we use it to
discount the $1,000 as above.

• Effective annual yield (5.0388 percent). This yield has also been annualized, so it
must be adjusted to be compatible with the timing of the cash flow. We can obtain
the holding period yield from the EAY as follows:

(1.050388)150/365 − 1 = 0.020408

Recall that when we found the effective annual yield, the exponent was 365/150, or
the number of 150-day periods in a 365-day year. To shrink the effective annual yield
to a 150-day yield, we use the reciprocal of the exponent that we used to annualize.

In Example 2-7, we converted two short-term measures of annual yield to a holding
period yield for a 150-day period. That is one type of conversion. We frequently also need
to convert periodic rates to annual rates. The issue can arise both in money markets and
in longer-term debt markets. As an example, many bonds (long-term debt instruments) pay
interest semiannually. Bond investors compute IRRs for bonds, known as yields to maturity
(YTM). If the semiannual yield to maturity is 4 percent, how do we annualize it? An exact
approach, taking account of compounding, would be to compute (1.04)2 − 1 = 0.0816 or
8.16 percent. This is what we have been calling an effective annual yield. An approach used in
U.S. bond markets, however, is to double the semiannual YTM: 4% × 2 = 8%. The yield
to maturity calculated this way, ignoring compounding, has been called a bond-equivalent
yield. Annualizing a semiannual yield by doubling is putting the yield on a bond-equivalent
basis. In practice, the result, 8 percent, would be referred to simply as the bond’s yield to
maturity. In money markets, if we annualized a six-month-period yield by doubling it, in
order to make the result comparable to bonds’ YTMs, we would also say that the result was a
bond-equivalent yield.





CHAPTER 3
STATISTICAL CONCEPTS
AND MARKET RETURNS

1. INTRODUCTION

Statistical methods provide a powerful set of tools for analyzing data and drawing conclusions
from them. Whether we are analyzing asset returns, earnings growth rates, commodity prices,
or any other financial data, statistical tools help us quantify and communicate the data’s
important features. This chapter presents the basics of describing and analyzing data, the
branch of statistics known as descriptive statistics. The chapter supplies a set of useful concepts
and tools, illustrated in a variety of investment contexts. One theme of our presentation,
reflected in the chapter’s title, is the demonstration of the statistical methods that allow us to
summarize return distributions.1 We explore four properties of return distributions:

• where the returns are centered (central tendency),
• how far returns are dispersed from their center (dispersion),
• whether the distribution of returns is symmetrically shaped or lopsided (skewness), and
• whether extreme outcomes are likely (kurtosis).

These same concepts are generally applicable to the distributions of other types of data, too.
The chapter is organized as follows. After defining some basic concepts in Section 2, in

Sections 3 and 4 we discuss the presentation of data: Section 3 describes the organization of
data in a table format, and Section 4 describes the graphic presentation of data. We then turn
to the quantitative description of how data are distributed: Section 5 focuses on measures that
quantify where data are centered, or measures of central tendency. Section 6 presents other
measures that describe the location of data. Section 7 presents measures that quantify the
degree to which data are dispersed. Sections 8 and 9 describe additional measures that provide
a more accurate picture of data. Section 10 discusses investment applications of concepts
introduced in Section 5.

2. SOME FUNDAMENTAL CONCEPTS

Before starting the study of statistics with this chapter, it may be helpful to examine a picture
of the overall field. In the following, we briefly describe the scope of statistics and its branches

1Ibbotson Associates (www.ibbotson.com) generously provided much of the data used in this chapter.
We also draw on Dimson, Marsh, and Staunton’s (2002) history and study of world markets, as well as
other sources.
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of study. We explain the concepts of population and sample. Data come in a variety of types,
affecting the ways they can be measured and the appropriate statistical methods for analyzing
them. We conclude by discussing the basic types of data measurement.

2.1. The Nature of Statistics

The term statistics can have two broad meanings, one referring to data and the other to
method. A company’s average earnings per share (EPS) for the last 20 quarters or its average
returns for the past 10 years are statistics. We may also analyze historical EPS to forecast future
EPS or use the company’s past returns to infer its risk. The totality of methods we employ to
collect and analyze data is also called statistics.

Statistical methods include descriptive statistics and statistical inference (inferential
statistics). Descriptive statistics is the study of how data can be summarized effectively
to describe the important aspects of large data sets. By consolidating a mass of numerical
details, descriptive statistics turns data into information. Statistical inference involves making
forecasts, estimates, or judgments about a larger group from the smaller group actually
observed. The foundation for statistical inference is probability theory, and both statistical
inference and probability theory will be discussed in later chapters. Our focus in this chapter
is solely on descriptive statistics.

2.2. Populations and Samples

Throughout the study of statistics we make a critical distinction between a population and a
sample. In this section, we explain these two terms as well as the related terms ‘‘parameter’’
and ‘‘sample statistic.’’2

• Definition of Population. A population is defined as all members of a specified group.

Any descriptive measure of a population characteristic is called a parameter. Although a
population can have many parameters, investment analysts are usually concerned with only a
few, such as the mean value, the range of investment returns, and the variance.

Even if it is possible to observe all the members of a population, it is often too expensive
in terms of time or money to attempt to do so. For example, if the population is all
telecommunications customers worldwide and an analyst is interested in their purchasing
plans, she will find it too costly to observe the entire population. The analyst can address this
situation by taking a sample of the population.

• Definition of Sample. A sample is a subset of a population.

In taking a sample, the analyst hopes it is characteristic of the population. The field of statistics
known as sampling deals with taking samples in appropriate ways to achieve the objective of
representing the population well. A later chapter addresses the details of sampling.

Earlier, we mentioned statistics in the sense of referring to data. Just as a parameter is a
descriptive measure of a population characteristic, a sample statistic (statistic, for short) is a
descriptive measure of a sample characteristic.

2This chapter introduces many statistical concepts and formulas. To make it easy to locate them, we
have set off some of the more important ones with bullet points.
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• Definition of Sample Statistic. A sample statistic (or statistic) is a quantity computed
from or used to describe a sample.

We devote much of this chapter to explaining and illustrating the use of statistics in this
sense. The concept is critical also in statistical inference, which addresses such problems as
estimating an unknown population parameter using a sample statistic.

2.3. Measurement Scales

To choose the appropriate statistical methods for summarizing and analyzing data, we need
to distinguish among different measurement scales or levels of measurement. All data
measurements are taken on one of four major scales: nominal, ordinal, interval, or ratio.

Nominal scales represent the weakest level of measurement: They categorize data but
do not rank them. If we assigned integers to mutual funds that follow different investment
strategies, the number 1 might refer to a small-cap value fund, the number 2 to a large-cap
value fund, and so on for each possible style. This nominal scale categorizes the funds according
to their style but does not rank them.

Ordinal scales reflect a stronger level of measurement. Ordinal scales sort data into
categories that are ordered with respect to some characteristic. For example, the Morningstar
and Standard & Poor’s star ratings for mutual funds represent an ordinal scale in which one
star represents a group of funds judged to have had relatively the worst performance, with
two, three, four, and five stars representing groups with increasingly better performance, as
evaluated by those services.

An ordinal scale may also involve numbers to identify categories. For example, in ranking
balanced mutual funds based on their five-year cumulative return, we might assign the number
1 to the top 10 percent of funds, and so on, so that the number 10 represents the bottom
10 percent of funds. The ordinal scale is stronger than the nominal scale because it reveals
that a fund ranked 1 performed better than a fund ranked 2. The scale tells us nothing,
however, about the difference in performance between funds ranked 1 and 2 compared with
the difference in performance between funds ranked 3 and 4, or 9 and 10.

Interval scales provide not only ranking but also assurance that the differences between
scale values are equal. As a result, scale values can be added and subtracted meaningfully. The
Celsius and Fahrenheit scales are interval measurement scales. The difference in temperature
between 10◦C and 11◦C is the same amount as the difference between 40◦C and 41◦C. We
can state accurately that 12◦C = 9◦C + 3◦C, for example. Nevertheless, the zero point of an
interval scale does not reflect complete absence of what is being measured; it is not a true zero
point or natural zero. Zero degrees Celsius corresponds to the freezing point of water, not
the absence of temperature. As a consequence of the absence of a true zero point, we cannot
meaningfully form ratios on interval scales.

As an example, 50◦C, although five times as large a number as 10◦C, does not represent
five times as much temperature. Also, questionnaire scales are often treated as interval scales.
If an investor is asked to rank his risk aversion on a scale from 1 (extremely risk-averse) to 7
(extremely risk-loving), the difference between a response of 1 and a response of 2 is sometimes
assumed to represent the same difference in risk aversion as the difference between a response
of 6 and a response of 7. When that assumption can be justified, the data are measured on
interval scales.

Ratio scales represent the strongest level of measurement. They have all the characteristics
of interval measurement scales as well as a true zero point as the origin. With ratio scales, we
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can meaningfully compute ratios as well as meaningfully add and subtract amounts within the
scale. As a result, we can apply the widest range of statistical tools to data measured on a ratio
scale. Rates of return are measured on a ratio scale, as is money. If we have twice as much
money, then we have twice the purchasing power. Note that the scale has a natural zero—zero
means no money.

EXAMPLE 3-1 Identifying Scales of Measurement

State the scale of measurement for each of the following:

1. Credit ratings for bond issues.3

2. Cash dividends per share.
3. Hedge fund classification types.4

4. Bond maturity in years.

Solution to 1: Credit ratings are measured on an ordinal scale. A rating places a bond
issue in a category, and the categories are ordered with respect to the expected probability
of default. But the difference in the expected probability of default between AA− and
A+, for example, is not necessarily equal to that between BB− and B+. In other words,
letter credit ratings are not measured on an interval scale.

Solution to 2: Cash dividends per share are measured on a ratio scale. For this variable,
0 represents the complete absence of dividends; it is a true zero point.

Solution to 3: Hedge fund classification types are measured on a nominal scale. Each
type groups together hedge funds with similar investment strategies. In contrast to credit
ratings for bonds, however, hedge fund classification schemes do not involve a ranking.
Thus such classification schemes are not measured on an ordinal scale.

Solution to 4 : Bond maturity is measured on a ratio scale.

Now that we have addressed the important preliminaries, we can discuss summarizing
and describing data.

3Credit ratings for a bond issue gauge the bond issuer’s ability to meet the promised principal and
interest payments on the bond. For example, one rating agency, Standard & Poor’s, assigns bond issues
to one of the following ratings, given in descending order of credit quality (increasing probability of
default): AAA, AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−, BB+, BB, BB−, B, CCC+, CCC−,
CC, C, CI, D. For more information on credit risk and credit ratings, see Fabozzi (2004a).
4‘‘Hedge fund’’ refers to investment vehicles with legal structures that result in less regulatory oversight
than other pooled investment vehicles such as mutual funds. Hedge fund classification types group hedge
funds by the kind of investment strategy they pursue.
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3. SUMMARIZING DATA USING
FREQUENCY DISTRIBUTIONS

In this section, we discuss one of the simplest ways to summarize data—the frequency
distribution.

• Definition of Frequency Distribution. A frequency distribution is a tabular display of
data summarized into a relatively small number of intervals.

Frequency distributions help in the analysis of large amounts of statistical data, and they work
with all types of measurement scales.

Rates of return are the fundamental units that analysts and portfolio managers use for
making investment decisions, and we can use frequency distributions to summarize rates of
return. When we analyze rates of return, our starting point is the holding period return (also
called the total return).

• Holding Period Return Formula. The holding period return for time period t, Rt , is

Rt = Pt − Pt−1 + Dt

Pt−1
(3-1)

where

Pt = price per share at the end of time period t
Pt−1 = price per share at the end of time period t − 1, the time period immediately

preceding time period t
Dt = cash distributions received during time period t

Thus the holding period return for time period t is the capital gain (or loss) plus distributions
divided by the beginning-period price. (For common stocks, the distribution is a dividend;
for bonds, the distribution is a coupon payment.) Equation 3-1 can be used to define the
holding period return on any asset for a day, week, month, or year simply by changing the
interpretation of the time interval between successive values of the time index, t.

The holding period return, as defined in Equation 3-1, has two important characteristics.
First, it has an element of time attached to it. For example, if a monthly time interval is
used between successive observations for price, then the rate of return is a monthly figure.
Second, rate of return has no currency unit attached to it. For instance, suppose that prices are
denominated in euros. The numerator and denominator of Equation 3-1 would be expressed
in euros, and the resulting ratio would not have any units because the units in the numerator
and denominator would cancel one another. This result holds regardless of the currency in
which prices are denominated.5

With these concerns noted, we now turn to the frequency distribution of the holding
period returns on the S&P 500 Index.6 First, we examine annual rates of return; then we

5Note, however, that if price and cash distributions in the expression for holding period return were
not in one’s home currency, one would generally convert those variables to one’s home currency before
calculating the holding period return. Because of exchange rate fluctuations during the holding period,
holding period returns on an asset computed in different currencies would generally differ.
6We use the total return series on the S&P 500 from January 1926 to December 2002 provided by
Ibbotson Associates.
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look at monthly rates of return. The annual rates of return on the S&P 500 calculated with
Equation 3-1 span the period January 1926 to December 2002, for a total of 77 annual
observations. Monthly return data cover the period January 1926 to December 2002, for a
total of 924 monthly observations.

We can state a basic procedure for constructing a frequency distribution as follows:

• Construction of a Frequency Distribution.

1. Sort the data in ascending order.
2. Calculate the range of the data, defined as Range = Maximum value − Minimum value.
3. Decide on the number of intervals in the frequency distribution, k.
4. Determine interval width as Range/k.
5. Determine the intervals by successively adding the interval width to the minimum

value, to determine the ending points of intervals, stopping after reaching an interval
that includes the maximum value.

6. Count the number of observations falling in each interval.
7. Construct a table of the intervals listed from smallest to largest that shows the number

of observations falling in each interval.

In Step 4, when rounding the interval width, round up rather than down, to ensure that
the final interval includes the maximum value of the data.

As the above procedure makes clear, a frequency distribution groups data into a set of intervals.7

An interval is a set of values within which an observation falls. Each observation falls into
only one interval, and the total number of intervals covers all the values represented in the
data. The actual number of observations in a given interval is called the absolute frequency,
or simply the frequency. The frequency distribution is the list of intervals together with the
corresponding measures of frequency.

To illustrate the basic procedure, suppose we have 12 observations sorted in ascending
order: −4.57, −4.04, −1.64, 0.28, 1.34, 2.35, 2.38, 4.28, 4.42, 4.68, 7.16, and 11.43. The
minimum observation is −4.57 and the maximum observation is +11.43, so the range is
+11.43 − (−4.57) = 16. If we set k = 4, the interval width is 16/4 = 4. Table 3-1 shows the
repeated addition of the interval width of 4 to determine the endpoints for the intervals (Step 5).

Thus the intervals are [−4.57 to −0.57), [−0.57 to 3.43), [3.43 to 7.43), and [7.43 to
11.43].8 Table 3-2 summarizes Steps 5 through 7.

TABLE 3-1
Endpoints of Intervals

−4.57 + 4.00 = −0.57
−0.57 + 4.00 = 3.43

3.43 + 4.00 = 7.43
7.43 + 4.00 = 11.43

7Intervals are also sometimes called classes, ranges, or bins.
8The notation [−4.57 to −0.57) means −4.57 ≤ observation < −0.57. In this context, a square bracket
indicates that the endpoint is included in the interval.
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TABLE 3-2 Frequency Distribution

Interval Absolute Frequency

A −4.57 ≤ observation < −0.57 3
B −0.57 ≤ observation < 3.43 4
C 3.43 ≤ observation < 7.43 4
D 7.43 ≤ observation ≤ 11.43 1

Note that the intervals do not overlap, so each observation can be placed uniquely into
one interval.

In practice, we may want to refine the above basic procedure. For example, we may want
the intervals to begin and end with whole numbers for ease of interpretation. We also need
to explain the choice of the number of intervals, k. We turn to these issues in discussing the
construction of frequency distributions for the S&P 500.

We first consider the case of constructing a frequency distribution for the annual returns
on the S&P 500 over the period 1926 to 2002. During that period, the return on the S&P
500 had a minimum value of −43.34 percent (in 1931) and a maximum value of +53.99
percent (in 1933). Thus the range of the data was +54% − (−43%) = 97%, approximately.
The question now is the number k of intervals into which we should group observations.
Although some guidelines for setting k have been suggested in statistical literature, the setting
of a useful value for k often involves inspecting the data and exercising judgment. How
much detail should we include? If we use too few intervals, we will summarize too much
and lose pertinent characteristics. If we use too many intervals, we may not summarize
enough.

We can establish an appropriate value for k by evaluating the usefulness of the resulting
interval width. A large number of empty intervals may indicate that we are trying to organize
the data to present too much detail. Starting with a relatively small interval width, we can see
whether or not the intervals are mostly empty and whether or not the value of k associated with
that interval width is too large. If intervals are mostly empty or k is very large, we can consider
increasingly larger intervals (smaller values of k) until we have a frequency distribution that
effectively summarizes the distribution. For the annual S&P 500 series, return intervals of
1 percent width would result in 97 intervals and many of them would be empty because we
have only 77 annual observations. We need to keep in mind that the purpose of a frequency
distribution is to summarize the data. Suppose that for ease of interpretation we want to use an
interval width stated in whole rather than fractional percents. A 2 percent interval width would
have many fewer empty intervals than a 1 percent interval width and effectively summarize the
data. A 2 percent interval width would be associated with 97/2 = 48.5 intervals, which we
can round up to 49 intervals. That number of intervals will cover 2% × 49 = 98%. We can
confirm that if we start the smallest 2 percent interval at the whole number −44.0 percent,
the final interval ends at −44.0% + 98% = 54% and includes the maximum return in the
sample, 53.99 percent. In so constructing the frequency distribution, we will also have intervals
that end and begin at a value of 0 percent, allowing us to count the negative and positive
returns in the data. Without too much work, we have found an effective way to summarize the
data. We will use return intervals of 2 percent, beginning with −44% ≤ Rt < −42% (given
as ‘‘−44% to −42%’’ in the table) and ending with 52% ≤ Rt ≤ 54%. Table 3-3 shows the
frequency distribution for the annual total returns on the S&P 500.
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Table 3-3 includes three other useful ways to present data, which we can compute once we
have established the frequency distribution: the relative frequency, the cumulative frequency
(also called the cumulative absolute frequency), and the cumulative relative frequency.

• Definition of Relative Frequency. The relative frequency is the absolute frequency of
each interval divided by the total number of observations.

The cumulative relative frequency cumulates (adds up) the relative frequencies as we move
from the first to the last interval. It tells us the fraction of observations that are less than the
upper limit of each interval. Examining the frequency distribution given in Table 3-3, we see
that the first return interval, −44 percent to −42 percent, has one observation; its relative
frequency is 1/77 or 1.30 percent. The cumulative frequency for this interval is 1 because
only one observation is less than −42 percent. The cumulative relative frequency is thus
1/77 or 1.30 percent. The next return interval has zero observations; therefore, its cumulative
frequency is 0 plus 1 and its cumulative relative frequency is 1.30 percent (the cumulative
relative frequency from the previous interval). We can find the other cumulative frequencies
by adding the (absolute) frequency to the previous cumulative frequency. The cumulative
frequency, then, tells us the number of observations that are less than the upper limit of each
return interval.

As Table 3-3 shows, return intervals have frequencies from 0 to 7 in this sample. The
interval encompassing returns between −10 percent and −8 percent (−10% ≤ Rt < −8%)
has the most observations, seven. Next most frequent are returns between 18 percent and 20
percent (18% ≤ Rt < 20%), with six observations. From the cumulative frequency column,
we see that the number of negative returns is 23. The number of positive returns must then
be equal to 77 − 23, or 54. We can express the number of positive and negative outcomes as
a percentage of the total to get a sense of the risk inherent in investing in the stock market.
During the 77-year period, the S&P 500 had negative annual returns 29.9 percent of the
time (that is, 23/77). This result appears in the fifth column of Table 3-3, which reports the
cumulative relative frequency.

The frequency distribution gives us a sense of not only where most of the observations
lie but also whether the distribution is evenly distributed, lopsided, or peaked. In the case of
the S&P 500, we can see that more than half of the outcomes are positive and most of those
annual returns are larger than 10 percent. (Only 11 of the 54 positive annual returns—about
20 percent—were between 0 and 10 percent.)

Table 3-3 permits us to make an important further point about the choice of the num-
ber of intervals related to equity returns in particular. From the frequency distribution in
Table 3-3, we can see that only five outcomes fall between −44 percent and −16 percent
and between 38 percent and 54 percent. Stock return data are frequently characterized by a
few very large or small outcomes. We could have collapsed the return intervals in the tails
of the frequency distribution by choosing a smaller value of k, but then we would have lost
the information about how extremely poorly or well the stock market had performed. A risk
manager may need to know the worst possible outcomes and thus may want to have detailed
information on the tails (the extreme values). A frequency distribution with a relatively large
value of k is useful for that. A portfolio manager or analyst may be equally interested in
detailed information on the tails; however, if the manager or analyst wants a picture only of
where most of the observations lie, he might prefer to use an interval width of 4 percent (25
intervals beginning at −44 percent), for example.

The frequency distribution for monthly returns on the S&P 500 looks quite different
from that for annual returns. The monthly return series from January 1926 to December
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TABLE 3-4 Frequency Distribution for the Monthly Total Return on the S&P 500,
January 1926 to December 2002

Cumulative Cumulative
Absolute Relative Absolute Relative

Return Interval Frequency Frequency Frequency Frequency

−30.0% to −28.0% 1 0.11% 1 0.11%
−28.0% to −26.0% 0 0.00% 1 0.11%
−26.0% to −24.0% 1 0.11% 2 0.22%
−24.0% to −22.0% 1 0.11% 3 0.32%
−22.0% to −20.0% 2 0.22% 5 0.54%
−20.0% to −18.0% 2 0.22% 7 0.76%
−18.0% to −16.0% 2 0.22% 9 0.97%
−16.0% to −14.0% 3 0.32% 12 1.30%
−14.0% to −12.0% 5 0.54% 17 1.84%
−12.0% to −10.0% 6 0.65% 23 2.49%
−10.0% to −8.0% 20 2.16% 43 4.65%
−8.0% to −6.0% 30 3.25% 73 7.90%
−6.0% to −4.0% 54 5.84% 127 13.74%
−4.0% to −2.0% 90 9.74% 217 23.48%
−2.0% to 0.0% 138 14.94% 355 38.42%

0.0% to 2.0% 182 19.70% 537 58.12%
2.0% to 4.0% 153 16.56% 690 74.68%
4.0% to 6.0% 126 13.64% 816 88.31%
6.0% to 8.0% 58 6.28% 874 94.59%
8.0% to 10.0% 21 2.27% 895 96.86%

10.0% to 12.0% 14 1.52% 909 98.38%
12.0% to 14.0% 6 0.65% 915 99.03%
14.0% to 16.0% 2 0.22% 917 99.24%
16.0% to 18.0% 3 0.32% 920 99.57%
18.0% to 20.0% 0 0.00% 920 99.57%
20.0% to 22.0% 0 0.00% 920 99.57%
22.0% to 24.0% 0 0.00% 920 99.57%
24.0% to 26.0% 1 0.11% 921 99.68%
26.0% to 28.0% 0 0.00% 921 99.68%
28.0% to 30.0% 0 0.00% 921 99.68%
30.0% to 32.0% 0 0.00% 921 99.68%
32.0% to 34.0% 0 0.00% 921 99.68%
34.0% to 36.0% 0 0.00% 921 99.68%
36.0% to 38.0% 0 0.00% 921 99.68%
38.0% to 40.0% 2 0.22% 923 99.89%
40.0% to 42.0% 0 0.00% 923 99.89%
42.0% to 44.0% 1 0.11% 924 100.00%

Note: The lower class limit is the weak inequality (≤) and the upper class limit is the strong inequality
(<). The relative frequency is the absolute frequency or cumulative frequency divided by the total
number of observations.
Source: Frequency distribution generated with Ibbotson Associates EnCorr Analyzer.
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2002 has 924 observations. Returns range from a minimum of approximately −30 percent to
a maximum of approximately +43 percent. With such a large quantity of monthly data we
must summarize to get a sense of the distribution, and so we group the data into 37 equally
spaced return intervals of 2 percent. The gains from summarizing in this way are substantial.
Table 3-4 presents the resulting frequency distribution. The absolute frequencies appear in
the second column, followed by the relative frequencies. The relative frequencies are rounded
to two decimal places. The cumulative absolute and cumulative relative frequencies appear in
the fourth and fifth columns, respectively.

The advantage of a frequency distribution is evident in Table 3-4, which tells us that
the vast majority of observations (599/924 = 65 percent) lie in the four intervals spanning
−2 percent to +6 percent. Altogether, we have 355 negative returns and 569 positive returns.
Almost 62 percent of the monthly outcomes are positive. Looking at the cumulative relative
frequency in the last column, we see that the interval −2 percent to 0 percent shows a
cumulative frequency of 38.42 percent, for an upper return limit of 0 percent. This means
that 38.42 percent of the observations lie below the level of 0 percent. We can also see that
not many observations are greater than +12 percent or less than −12 percent. Note that
the frequency distributions of annual and monthly returns are not directly comparable. On
average, we should expect the returns measured at shorter intervals (for example, months) to
be smaller than returns measured over longer periods (for example, years).

Next, we construct a frequency distribution of average inflation-adjusted returns over
1900–2000 for 16 major equity markets.

EXAMPLE 3-2 Constructing a Frequency Distribution

How have equities rewarded investors in different countries in the long run? To answer
this question, we could examine the average annual returns directly.9 The worth of a
nominal level of return depends on changes in the purchasing power of money, however,
and internationally there have been a variety of experiences with price inflation. It is
preferable, therefore, to compare the average real or inflation-adjusted returns earned
by investors in different countries. Dimson, Marsh, and Staunton (2002) presented
authoritative evidence on asset returns in 16 countries for the 101 years 1900–2000.
Table 3-5 excerpts their findings for average inflation-adjusted returns.

Table 3-6 summarizes the data in Table 3-5 into six intervals spanning 4 percent
to 10 percent.

As Table 3-6 shows, there is substantial variation internationally of average real
equity returns. Three-fourths of the observations fall in one of three intervals: 6.0 to
7.0 percent, 7.0 to 8.0 percent, or 9.0 to 10.0 percent. Most average real equity returns
are between 6.0 percent and 10 percent; the cumulative relative frequency of returns
less than 6.0 percent was only 12.50 percent.

9The average or arithmetic mean of a set of values equals the sum of the values divided by the number
of values summed. To find the arithmetic mean of 101 annual returns, for example, we sum the 101
annual returns and then divide the total by 101. Among the most familiar of statistical concepts, the
arithmetic mean is explained in more detail later in the chapter.
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TABLE 3-5 Real (Inflation-Adjusted) Equity
Returns: Sixteen Major Equity Markets,
1900–2000

Country Arithmetic Mean

Australia 9.0%
Belgium 4.8%
Canada 7.7%
Denmark 6.2%
France 6.3%
Germany 8.8%
Ireland 7.0%
Italy 6.8%
Japan 9.3%
Netherlands 7.7%
South Africa 9.1%
Spain 5.8%
Sweden 9.9%
Switzerland 6.9%
United Kingdom 7.6%
United States 8.7%

Source: Dimson, Marsh, and Staunton (2002),
Table 4-3. Swiss equities date from 1911.

TABLE 3-6 Frequency Distribution of Average Real Equity Returns

Cumulative Cumulative
Return Absolute Relative Absolute Relative
Interval Frequency Frequency Frequency Frequency

4.0% to 5.0% 1 6.25% 1 6.25%
5.0% to 6.0% 1 6.25% 2 12.50%
6.0% to 7.0% 4 25.00% 6 37.50%
7.0% to 8.0% 4 25.00% 10 62.50%
8.0% to 9.0% 2 12.50% 12 75.00%
9.0% to 10% 4 25.00% 16 100.00%

Note: Relative frequencies are rounded to sum to 100%.

4. THE GRAPHIC PRESENTATION OF DATA

A graphical display of data allows us to visualize important characteristics quickly. For example,
we may see that the distribution is symmetrically shaped, and this finding may influence which
probability distribution we use to describe the data. In this section, we discuss the histogram,
the frequency polygon, and the cumulative frequency distribution as methods for displaying
data graphically. We construct all of these graphic presentations with the information contained
in the frequency distribution of the S&P 500 shown in either Table 3-3 or Table 3-4.
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4.1. The Histogram

A histogram is the graphical equivalent of a frequency distribution.

• Definition of Histogram. A histogram is a bar chart of data that have been grouped into
a frequency distribution.

The advantage of the visual display is that we can see quickly where most of the observations
lie. To see how a histogram is constructed, look at the return interval 18% ≤ Rt < 20% in
Table 3-3. This interval has an absolute frequency of 6. Therefore, we erect a bar or rectangle
with a height of 6 over that return interval on the horizontal axis. Continuing with this
process for all other return intervals yields a histogram. Figure 3-1 presents the histogram of
the annual total return series on the S&P 500 from 1926 to 2002.

In the histogram in Figure 3-1, the height of each bar represents the absolute frequency
for each return interval. The return interval −10% ≤ Rt < −8% has a frequency of 7 and is
represented by the tallest bar in the histogram. Because there are no gaps between the interval
limits, there are no gaps between the bars of the histogram. Many of the return intervals have
zero frequency; therefore, they have no height in the histogram.
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FIGURE 3-1 Histogram of S&P 500 Annual Total Returns: 1926 to 2002
Source: Ibbotson EnCorr Analyzer.
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FIGURE 3-2 Histogram of S&P 500 Monthly Total Returns: January 1926 to December 2002

Figure 3-2 presents the histogram for the distribution of monthly returns on the S&P
500. Somewhat more symmetrically shaped than the histogram of annual returns shown
in Figure 3-1, this histogram also appears more bell-shaped than the distribution of annual
returns.

4.2. The Frequency Polygon and the Cumulative Frequency Distribution

Two other graphical tools for displaying data are the frequency polygon and the cumulative
frequency distribution. To construct a frequency polygon, we plot the midpoint of each
interval on the x-axis and the absolute frequency for that interval on the y-axis; we then
connect neighboring points with a straight line. Figure 3-3 shows the frequency polygon for
the 924 monthly returns for the S&P 500 from January 1926 to December 2002.

In Figure 3-3, we have replaced the bars in the histogram with points connected with
straight lines. For example, the return interval 0 percent to 2 percent has an absolute frequency
of 182. In the frequency polygon, we plot the return-interval midpoint of 1 percent and a
frequency of 182. We plot all other points in a similar way.10 This form of visual display adds
a degree of continuity to the representation of the distribution.

10Even though the upper limit on the interval is not a return falling in the interval, we still average it
with the lower limit to determine the midpoint.
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FIGURE 3-3 Frequency Polygon of S&P 500 Monthly Total Returns: January 1926 to
December 2002
Source: Ibbotson Associates.

Another form of line graph is the cumulative frequency distribution. Such a graph can
plot either the cumulative absolute or cumulative relative frequency against the upper interval
limit. The cumulative frequency distribution allows us to see how many or what percent of
the observations lie below a certain value. To construct the cumulative frequency distribution,
we graph the returns in the fourth or fifth column of Table 3-4 against the upper limit of each
return interval. Figure 3-4 presents a graph of the cumulative absolute distribution for the
monthly returns on the S&P 500. Notice that the cumulative distribution tends to flatten out
when returns are extremely negative or extremely positive. The steep slope in the middle of
Figure 3-4 reflects the fact that most of the observations lie in the neighborhood of −2 percent
to 6 percent.

We can further examine the relationship between the relative frequency and the cumulative
relative frequency by looking at the two return intervals reproduced in Table 3-7. The first
return interval (0 percent to 2 percent) has a cumulative relative frequency of 58.12 percent.
The next return interval (2 percent to 4 percent) has a cumulative relative frequency of 74.68
percent. The change in the cumulative relative frequency as we move from one interval to
the next is the next interval’s relative frequency. For instance, as we go from the first return
interval (0 percent to 2 percent) to the next return interval (2 percent to 4 percent), the change
in the cumulative relative frequency is 74.68% − 58.12% = 16.56%. (Values in the table
have been rounded to two decimal places.) The fact that the slope is steep indicates that
these frequencies are large. As you can see in the graph of the cumulative distribution, the
slope of the curve changes as we move from the first return interval to the last. A fairly small
slope for the cumulative distribution for the first few return intervals tells us that these return
intervals do not contain many observations. You can go back to the frequency distribution
in Table 3-4 and verify that the cumulative absolute frequency is only 23 observations (the
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FIGURE 3-4 Cumulative Absolute Frequency Distribution of S&P 500 Monthly Total Returns:
January 1926 to December 2002
Source: Ibbotson Associates.

TABLE 3-7 Selected Class Frequencies for the S&P 500 Monthly Returns

Cumulative Cumulative
Absolute Relative Absolute Relative

Return Interval Frequency Frequency Frequency Frequency

0.0% to 2.0% 182 19.70% 537 58.12%
2.0% to 4.0% 153 16.56% 690 74.68%

cumulative relative frequency is 2.49 percent) up to the 10th return interval (−12 percent to
−10 percent). In essence, the slope of the cumulative absolute distribution at any particular
interval is proportional to the number of observations in that interval.

5. MEASURES OF CENTRAL TENDENCY

So far, we have discussed methods we can use to organize and present data so that they are
more understandable. The frequency distribution of an asset class’s return series, for example,
reveals the nature of the risks that investors may encounter in a particular asset class. As
an illustration, the histogram for the annual returns on the S&P 500 clearly shows that
large positive and negative annual returns are common. Although frequency distributions and
histograms provide a convenient way to summarize a series of observations, these methods are
just a first step toward describing the data. In this section we discuss the use of quantitative
measures that explain characteristics of data. Our focus is on measures of central tendency and
other measures of location or location parameters. A measure of central tendency specifies



Chapter 3 Statistical Concepts and Market Returns 77

where the data are centered. Measures of central tendency are probably more widely used than
any other statistical measure because they can be computed and applied easily. Measures of
location include not only measures of central tendency but other measures that illustrate the
location or distribution of data.

In the following subsections we explain the common measures of central tendency—the
arithmetic mean, the median, the mode, the weighted mean, and the geometric mean. We also
explain other useful measures of location, including quartiles, quintiles, deciles, and percentiles.

5.1. The Arithmetic Mean
Analysts and portfolio managers often want one number that describes a representative possible
outcome of an investment decision. The arithmetic mean is by far the most frequently used
measure of the middle or center of data.

• Definition of Arithmetic Mean. The arithmetic mean is the sum of the observations
divided by the number of observations.

We can compute the arithmetic mean for both populations and samples, known as the
population mean and the sample mean, respectively.

5.1.1. The Population Mean The population mean is the arithmetic mean computed for
a population. If we can define a population adequately, then we can calculate the population
mean as the arithmetic mean of all the observations or values in the population. For example,
analysts examining the fiscal 2002 year-over-year growth in same-store sales of major U.S.
wholesale clubs might define the population of interest to include only three companies: BJ’s
Wholesale Club (NYSE: BJ), Costco Wholesale Corporation (Nasdaq: COST), and Sam’s
Club, part of Wal-Mart Stores (NYSE: WMT).11 As another example, if a portfolio manager’s
investment universe (the set of securities she must choose from) is the Nikkei–Dow Jones
Average, the relevant population is the 225 shares on the First Section of the Tokyo Stock
Exchange that compose the Nikkei.

• Population Mean Formula. The population mean, µ, is the arithmetic mean value of
a population. For a finite population, the population mean is

µ =

N∑
i=1

Xi

N
(3-2)

where N is the number of observations in the entire population and Xi is the ith observation.

The population mean is an example of a parameter. The population mean is unique; that
is, a given population has only one mean. To illustrate the calculation, we can take the case
of the population mean of current price-to-earnings ratio (P/E) of stocks of U.S. companies
running major wholesale clubs as of the beginning of September 2003. As of that date, the
current P/Es for BJ, COST, and WMT were 16.73, 22.02, and 29.30, respectively, according
to First Call/Thomson Financial. Thus the population mean current P/E on that date was
µ = (16.73 + 22.02 + 29.30)/3 = 68.05/3 = 22.68.

11A wholesale club implements a store format dedicated mostly to bulk sales in warehouse-sized stores
to customers who pay membership dues. As of the early 2000s, those three wholesale clubs dominated
the segment in the United States.



78 Quantitative Investment Analysis

5.1.2. The Sample Mean The sample mean is the arithmetic mean computed for a
sample. Many times we cannot observe every member of a set; instead, we observe a subset
or sample of the population. The concept of the mean can be applied to the observations
in a sample with a slight change in notation.

• Sample Mean Formula. The sample mean or average, X (read ‘‘X-bar’’), is the arithmetic
mean value of a sample:

X =

n∑
i=1

Xi

n
(3-3)

where n is the number of observations in the sample.

Equation 3-3 tells us to sum the values of the observations (Xi) and divide the sum by the
number of observations. For example, if the sample of P/E multiples contains the values 35,
30, 22, 18, 15, and 12, the sample mean P/E is 132/6 = 22. The sample mean is also called
the arithmetic average.12 As we discussed earlier, the sample mean is a statistic (that is, a
descriptive measure of a sample).

Means can be computed for individual units or over time. For instance, the sample might
be the 2003 return on equity (ROE) for the 300 companies in the Financial Times Stock
Exchange (FTSE) Eurotop 300, an index of Europe’s 300 largest companies. In this case, we
calculate mean ROE in 2003 as an average across 300 individual units. When we examine the
characteristics of some units at a specific point in time (such as ROE for the FTSE Eurotop
300), we are examining cross-sectional data. The mean of these observations is called a
cross-sectional mean. On the other hand, if our sample consists of the historical monthly
returns on the FTSE Eurotop 300 for the past five years, then we have time-series data. The
mean of these observations is called a time-series mean. We will examine specialized statistical
methods related to the behavior of time series in the chapter on times-series analysis.

Next, we show an example of finding the sample mean return for equities in 16 European
countries for 2002. In this case, the mean is cross-sectional because we are averaging individual
country returns.

EXAMPLE 3-3 Calculating a Cross-Sectional Mean

The MSCI EAFE (Europe, Australasia, and Far East) Index is a free float-adjusted
market capitalization index designed to measure developed-market equity performance
excluding the United States and Canada.13 As of the end of 2002, the EAFE consisted
of 21 developed market country indexes, including indexes for 16 European markets, 2

12Statisticians prefer the term ‘‘mean’’ to ‘‘average.’’ Some writers refer to all measures of central tendency
(including the median and mode) as averages. The term ‘‘mean’’ avoids any possibility of confusion.
13The term ‘‘free float-adjusted’’ means that the weights of companies in the index reflect the value of
the shares actually available for investment.
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Australasian markets (Australia and New Zealand), and 3 Far Eastern markets (Hong
Kong, Japan, and Singapore).

Suppose we are interested in the local currency performance of the 16 European
markets in the EAFE in 2002, a severe bear market year. We want to find the sample
mean total return for 2002 across these 16 markets. The return series reported in
Table 3-8 are in local currency (that is, returns are for investors living in the country).
Because this return is not stated in any single investor’s home currency, it is not a return
any single investor would earn. Rather, it is an average of returns in 16 local currencies.

TABLE 3-8 Total Returns for European
Equity Markets, 2002

Total Return
Market in Local Currency

Austria −2.97%
Belgium −29.71%
Denmark −29.67%
Finland −41.65%
France −33.99%
Germany −44.05%
Greece −39.06%
Ireland −38.97%
Italy −23.64%
Netherlands −34.27%
Norway −29.73%
Portugal −28.29%
Spain −29.47%
Sweden −43.07%
Switzerland −25.84%
United Kingdom −25.66%

Source: www.mscidata.com.

Using the data in Table 3-8, calculate the sample mean return for the 16 equity markets
in 2002.

Solution: The calculation applies Equation 3-3 to the returns in Table 3-8: (−2.97 −
29.71 − 29.67 − 41.65 − 33.99 − 44.05 − 39.06 − 38.97 − 23.64 − 34.27 −
29.73 − 28.29 − 29.47 − 43.07 − 25.84 − 25.66)/16 = −500.04/16 =
−31.25 percent.

In Example 3-3, we can verify that seven markets had returns less than the mean and
nine had returns that were greater. We should not expect any of the actual observations to
equal the mean, because sample means provide only a summary of the data being analyzed.
As an analyst, you will often need to find a few numbers that describe the characteristics of
the distribution. The mean is generally the statistic that you will use as a measure of the
typical outcome for a distribution. You can then use the mean to compare the performance of
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FIGURE 3-5 Center of Gravity Analogy for the Arithmetic Mean

two different markets. For example, you might be interested in comparing the stock market
performance of investments in Pacific Rim countries with investments in European countries.
You can use the mean returns in these markets to compare investment results.

5.1.3. Properties of the Arithmetic Mean The arithmetic mean can be likened to the
center of gravity of an object. Figure 3-5 expresses this analogy graphically by plotting nine
hypothetical observations on a bar. The nine observations are 2, 4, 4, 6, 10, 10, 12, 12, and
12; the arithmetic mean is 72/9 = 8. The observations are plotted on the bar with various
heights based on their frequency (that is, 2 is one unit high, 4 is two units high, and so on).
When the bar is placed on a fulcrum, it balances only when the fulcrum is located at the point
on the scale that corresponds to the arithmetic mean.

As analysts, we often use the mean return as a measure of the typical outcome for an asset.
As in the example above, however, some outcomes are above the mean and some are below
it. We can calculate the distance between the mean and each outcome and call it a deviation.
Mathematically, it is always true that the sum of the deviations around the mean equals 0. We
can see this by using the definition of the arithmetic mean shown in Equation 3-3, multiplying

both sides of the equation by n: nX =
n∑

i=1

Xi. The sum of the deviations from the mean can

thus be calculated as follows:

n∑
i=1

(Xi − X ) =
n∑

i=1

Xi −
n∑

i=1

X =
n∑

i=1

Xi − nX = 0

Deviations from the arithmetic mean are important information because they indicate
risk. The concept of deviations around the mean forms the foundation for the more complex
concepts of variance, skewness, and kurtosis, which we will discuss later in this chapter.

An advantage of the arithmetic mean over two other measures of central tendency, the
median and mode, is that the mean uses all the information about the size and magnitude of
the observations. The mean is also easy to work with mathematically.

A property and potential drawback of the arithmetic mean is its sensitivity to extreme
values. Because all observations are used to compute the mean, the arithmetic mean can be
pulled sharply upward or downward by extremely large or small observations, respectively.
For example, suppose we compute the arithmetic mean of the following seven numbers: 1,
2, 3, 4, 5, 6, and 1,000. The mean is 1,021/7 = 145.86 or approximately 146. Because the
magnitude of the mean, 146, is so much larger than that of the bulk of the observations
(the first six), we might question how well it represents the location of the data. In practice,
although an extreme value or outlier in a financial dataset may only represent a rare value in



Chapter 3 Statistical Concepts and Market Returns 81

the population, it may also reflect an error in recording the value of an observation, or an
observation generated from a different population from that producing the other observations
in the sample. In the latter two cases in particular, the arithmetic mean could be misleading.
Perhaps the most common approach in such cases is to report the median in place of or in
addition to the mean.14 We discuss the median next.

5.2. The Median

A second important measure of central tendency is the median.

• Definition of Median. The median is the value of the middle item of a set of items
that has been sorted into ascending or descending order. In an odd-numbered sample of n
items, the median occupies the (n + 1)/2 position. In an even-numbered sample, we define
the median as the mean of the values of items occupying the n/2 and (n + 2)/2 positions
(the two middle items).15

Earlier we gave the current P/Es of three wholesale clubs as 16.73, 22.02, and 29.30. With
an odd number of observations (n = 3), the median occupies the (n + 1)/2 = 4/2 = 2nd
position. The median P/E was 22.02. The P/E value of 22.02 is the ‘‘middlemost’’ observation:
One lies above it, and one lies below it. Whether we use the calculation for an even- or odd-
numbered sample, an equal number of observations lie above and below the median. A
distribution has only one median.

A potential advantage of the median is that, unlike the mean, extreme values do not affect
it. The median, however, does not use all the information about the size and magnitude of the
observations; it focuses only on the relative position of the ranked observations. Calculating
the median is also more complex; to do so, we need to order the observations from smallest
to largest, determine whether the sample size is even or odd, and, on that basis, apply one of
two calculations. Mathematicians express this disadvantage by saying that the median is less
mathematically tractable than the mean.

To demonstrate finding the median, we use the data from Example 3-3, reproduced
in Table 3-9 in ascending order, of the 2002 total return for European equities. Because
this sample has 16 observations, the median is the mean of the values in the sorted
array that occupy the 16/2 = 8th and 18/2 = 9th positions. Norway’s return occupies the
eighth position with a return of −29.73 percent, and Belgium’s return occupies the ninth

14Other approaches to handling extreme values involve variations of the arithmetic mean. The trimmed
mean is computed by excluding a stated small percentage of the lowest and highest values and then
computing an arithmetic mean of the remaining values. For example, a 5 percent trimmed mean discards
the lowest 2.5 percent and the largest 2.5 percent of values and computes the mean of the remaining
95 percent of values. A trimmed mean is used in sports competitions when judges’ lowest and highest
scores are discarded in computing a contestant’s score. A Winsorized mean assigns a stated percent of
the lowest values equal to one specified low value, and a stated percent of the highest values equal to one
specified high value, then computes a mean from the restated data. For example, a 95 percent Winsorized
mean sets the bottom 2.5 percent of values equal to the 2.5th percentile value and the upper 2.5 percent
of values equal to the 97.5th percentile value. (Percentile values are defined later.)
15The notation Md is occasionally used for the median. Just as for the mean, we may distinguish between
a population median and a sample median. With the understanding that a population median divides a
population in half while a sample median divides a sample in half, we follow general usage in using the
term ‘‘median’’ without qualification, for the sake of brevity.
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TABLE 3-9 Total Returns for European Equity
Markets, 2002 (in ascending order)

Total Return
No. Market in Local Currency

1 Germany −44.05%
2 Sweden −43.07%
3 Finland −41.65%
4 Greece −39.06%
5 Ireland −38.97%
6 Netherlands −34.27%
7 France −33.99%
8 Norway −29.73%
9 Belgium −29.71%

10 Denmark −29.67%
11 Spain −29.47%
12 Portugal −28.29%
13 Switzerland −25.84%
14 United Kingdom −25.66%
15 Italy −23.64%
16 Austria −2.97%

Source: www.mscidata.com.

position with a return of −29.71 percent. The median, as the mean of these two returns, is
(−29.73 − 29.71)/2 = −29.72 percent. Note that the median is not influenced by extremely
large or small outcomes. Had Germany’s total return been a much lower value or Austria’s
total return a much larger value, the median would not have changed.

Using a context that arises often in practice, Example 3-4 shows how to use the mean and
median in a sample with extreme values.

EXAMPLE 3-4 Median and Arithmetic Mean:
The Case of the Price–Earnings Ratio

Suppose a client asks you for a valuation analysis on the seven-stock U.S. common stock
portfolio given in Table 3-10. The stocks are equally weighted in the portfolio. One
valuation measure that you use is P/E, the ratio of share price to earnings per share
(EPS). Many variations exist for the denominator in the P/E, but you are examining
P/E defined as current price divided by the current mean of all analysts’ EPS estimates
for the company for the current fiscal year (‘‘Consensus Current EPS’’ in the table).16

The values in Table 3-10 are as of 11 September 2003. For comparison purposes, the
consensus current P/E on the S&P 500 was 23.63 at that time.

Using the data in Table 3-10, address the following:

16For more information on price multiples, see Stowe, Robinson, Pinto, and McLeavey (2002).
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1. Calculate the arithmetic mean P/E.
2. Calculate the median P/E.
3. Evaluate the mean and median P/Es as measures of central tendency for the above

portfolio.

TABLE 3-10 P/Es for a Client Portfolio

Consensus Consensus
Current Current

Stock EPS P/E

Exponent Inc. (Nasdaq: EXPO) 1.23 13.68
Express Scripts (Nasdaq: ESRX) 3.19 19.07
General Dynamics (NYSE: GD) 4.95 17.56
Limited Brands (NYSE: LTD) 1.06 15.60
Merant plc (Nasdaq: MRNT) 0.03 443.33
Microsoft Corporation (Nasdaq: MSFT) 1.11 25.61
O’Reilly Automotive, Inc. (Nasdaq: ORLY) 1.84 21.01

Source: First Call/Thomson Financial.

Solution to 1: The mean P/E is (13.68 + 19.07 + 17.56 + 15.60 + 443.33 + 25.61 +
21.01)/7 = 555.86/7 = 79.41.

Solution to 2: The P/Es listed in ascending order are:

13.68 15.60 17.56 19.07 21.01 25.61 443.33

The sample has an odd number of observations with n = 7, so the median occupies the
(n + 1)/2 = 8/2 = 4th position in the sorted list. Therefore, the median P/E is 19.07.

Solution to 3: Merant’s P/E of approximately 443 tremendously influences the value of
the portfolio’s arithmetic mean P/E. The mean P/E of 79 is much larger than the P/E
of six of the seven stocks in the portfolio. The mean P/E also misleadingly suggests an
orientation to stocks with high P/Es. The mean P/E of the stocks excluding Merant,
or excluding the largest- and smallest-P/E stocks (Merant and Exponent), is below the
S&P 500’s P/E of 23.63. The median P/E of 19.07 appears to better represent the
central tendency of the P/Es.

It frequently happens that when a company’s EPS is close to zero—at a low point
in the business cycle, for example—its P/E is extremely high. The high P/E in those
circumstances reflects an anticipated future recovery of earnings. Extreme P/E values
need to be investigated and handled with care. For reasons related to this example,
analysts often use the median of price multiples to characterize the valuation of industry
groups.
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5.3. The Mode

The third important measure of central tendency is the mode.

• Definition of Mode. The mode is the most frequently occurring value in a distribution.17

A distribution can have more than one mode or even no mode. When a distribution has
one most frequently occurring value, the distribution is said to be unimodal. If a distribution
has two most frequently occurring values, then it has two modes, and we say it is bimodal. If
the distribution has three most frequently occurring values, then it is trimodal. When all the
values in a data set are different, the distribution has no mode because no value occurs more
frequently than any other value.

Stock return data and other data from continuous distributions may not have a modal
outcome. When such data are grouped into intervals, however, we often find an interval
(possibly more than one) with the highest frequency: the modal interval (or intervals).
For example, the frequency distribution for the monthly returns on the S&P 500 has a
modal interval of 0 percent to 2 percent, as shown in Figure 3-2; this return interval has 182
observations out of a total of 924. The modal interval always has the highest bar in the
histogram.

The mode is the only measure of central tendency that can be used with nominal data.
When we categorize mutual funds into different styles and assign a number to each style, the
mode of these categorized data is the most frequent mutual fund style.

EXAMPLE 3-5 Calculating a Mode

Table 3-11 gives the credit ratings on senior unsecured debt as of September 2002 of
nine U.S. department stores rated by Moody’s Investors Service. In descending order of
credit quality (increasing expected probability of default), Moody’s ratings are Aaa, Aa1,
Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa, Ca, and C.18

Using the data in Table 3-11, address the following concerning the senior unsecured
debt of U.S. department stores:

1. State the modal credit rating.
2. State the median credit rating.

Solution to 1: The group of companies represents seven distinct credit ratings, ranging
from A2 to B1. To make our task easy, we first organize the ratings into a frequency
distribution.

All credit ratings have a frequency of 1 except for Baa1, which has a frequency of
3. Therefore, the modal credit rating of U.S. department stores as of the date of the

17The notation Mo is occasionally used for the mode. Just as for the mean and the median, we may
distinguish between a population mode and a sample mode. With the understanding that a population
mode is the value with the greatest probability of occurrence, while a sample mode is the most frequently
occurring value in the sample, we follow general usage in using the term ‘‘mode’’ without qualification,
for the sake of brevity.
18For more information on credit risk and credit ratings, see Fabozzi (2004a).
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Moody’s report was Baa1. Moody’s considers bonds rated Baa1 to be medium-grade
obligations—they are neither highly protected nor poorly secured.

TABLE 3-11 Senior Unsecured Debt Ratings:
U.S. Department Stores, September 2002

Company Credit Rating

Dillards, Inc. Ba3
Federated Department Stores, Inc. Baa1
Kohl’s Corporation A3
May’s Department Stores Company A2
Neiman Marcus Group, Inc. Baa2
Nordstom, Inc. Baa1
Penney, JC, Company, Inc. Ba2
Saks Incorporated B1
Sears, Roebuck and Co. Baa1

Source: Moody’s Investors Service.

Solution to 2: For the group, n = 9, an odd number. The group’s median occupies the
(n + 1)/2 = 10/2 = 5th position. We see from Table 3-12 that Baa1 occupies the fifth
position. Therefore, the median credit rating as of September 2002 was Baa1.

TABLE 3-12 Senior Unsecured
Debt Ratings: U.S. Department Stores,
Distribution of Credit Ratings

Credit Rating Frequency

A2 1
A3 1
Baa1 3
Baa2 1
Ba2 1
Ba3 1
B1 1

5.4. Other Concepts of Mean
Earlier we explained the arithmetic mean, which is a fundamental concept for describing the
central tendency of data. Other concepts of mean are very important in investments, however.
In the following, we discuss such concepts.

5.4.1. The Weighted Mean The concept of weighted mean arises repeatedly in portfolio
analysis. In the arithmetic mean, all observations are equally weighted by the factor 1/n (or
1/N ). In working with portfolios, we need the more general concept of weighted mean to
allow different weights on different observations.

To illustrate the weighted mean concept, an investment manager with $100 million to
invest might allocate $70 million to equities and $30 million to bonds. The portfolio has a
weight of 0.70 on stocks and 0.30 on bonds. How do we calculate the return on this portfolio?
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TABLE 3-13 Total Returns for Canadian
Equities and Bonds, 1998–2002

Year Equities Bonds

1998 −1.6% 9.1%
1999 31.7% −1.1%
2000 7.4% 10.3%
2001 −12.6% 8.0%
2002 −12.4% 8.7%

Source: www.fidelity.ca and www.money.msn.ca.

The portfolio’s return clearly involves an averaging of the returns on the stock and bond
investments. The mean that we compute, however, must reflect the fact that stocks have a 70
percent weight in the portfolio and bonds have a 30 percent weight. The way to reflect this
weighting is to multiply the return on the stock investment by 0.70 and the return on the
bond investment by 0.30, then sum the two results. This sum is an example of a weighted
mean. It would be incorrect to take an arithmetic mean of the return on the stock and bond
investments, equally weighting the returns on the two asset classes.

Consider a portfolio invested in Canadian stocks and bonds in which the stock component
is indexed on the S&P/TSX Composite Index and the bond component is indexed on the
RBC Capital Markets Canadian Bond Market Index. These indexes represent the broad
Canadian equity and bond markets, respectively. The portfolio manager allocates 60 percent
of the portfolio to Canadian stocks and 40 percent to Canadian bonds. Table 3-13 presents
total returns for these indexes for 1998 to 2002.

• Weighted Mean Formula. The weighted mean X w (read ‘‘X -bar sub-w’’) for a set of
observations X1, X2, . . . , Xn with corresponding weights of w1, w2, . . . , wn is computed as

X w =
n∑

i=1

wiXi (3-4)

where the sum of the weights equals 1; that is,
∑

i

wi = 1.

In the context of portfolios, a positive weight represents an asset held long and a negative
weight represents an asset held short.19

The return on the portfolio under consideration is the weighted average of the return
on Canadian stocks and Canadian bonds (the weight on stocks is 0.60; that on bonds
is 0.40). Apart from expenses, if the portfolio tracks the indexes perfectly, we find, using
Equation 3-4, that

19The formula for the weighted mean can be compared to the formula for the arithmetic mean. For a set
of observations X1, X2, . . . , Xn, let the weights w1, w2, . . . , wn all equal 1/n. Under this assumption, the

formula for the weighted mean is (1/n)
n∑

i=1

Xi. This is the formula for the arithmetic mean. Therefore,

the arithmetic mean is a special case of the weighted mean in which all the weights are equal.
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Portfolio return for 1998 = wstockRstock + wbondsRbonds

= 0.60(−1.6%) + 0.40(9.1%)

= 2.7%
It should be clear that the correct mean to compute in this example is the weighted mean
and not the arithmetic mean. If we had computed the arithmetic mean for 1998, we would
have calculated a return equal to 1/2(−1.6%) + 1/2(9.1%) = (−1.6% + 9.1%)/2 = 3.8%.
Given that the portfolio manager invested 60 percent in stocks and 40 percent in bonds, the
arithmetic mean would underweight the investment in stocks and overweight the investment
in bonds, resulting in a number for portfolio return that is too high by 1.1 percentage points
(3.8% − 2.7%).

Now suppose that the portfolio manager maintains constant weights of 60 percent in
stocks and 40 percent in bonds for all five years. This method is called a constant-proportions
strategy. Because value is price multiplied by quantity, price fluctuation causes portfolio
weights to change. As a result, the constant-proportions strategy requires rebalancing to restore
the weights in stocks and bonds to their target levels. Assuming that the portfolio manager is
able to accomplish the necessary rebalancing, we can compute the portfolio returns in 1999,
2000, 2001, and 2002 with Equation 3-4 as follows:

Portfolio return for 1999 = 0.60(31.7) + 0.40(−1.1) = 18.6%

Portfolio return for 2000 = 0.60(7.4) + 0.40(10.3) = 8.6%

Portfolio return for 2001 = 0.60(−12.6) + 0.40(8.0) = −4.4%

Portfolio return for 2002 = 0.60(−12.4) + 0.40(8.7) = −4.0%

We can now find the time-series mean of the returns for 1998 through 2002 using
Equation 3-3 for the arithmetic mean. The time-series mean total return for the portfolio is
(2.7 + 18.6 + 8.6 − 4.4 − 4.0)/5 = 21.5/5 = 4.3 percent.

Instead of calculating the portfolio time-series mean return from portfolio annual returns,
we can calculate the arithmetic mean bond and stock returns for the five years and then apply
the portfolio weights of 0.60 and 0.40, respectively, to those values. The mean stock return
is (−1.6 + 31.7 + 7.4 − 12.6 − 12.4)/5 = 12.5/5 = 2.5 percent. The mean bond return is
(9.1 − 1.1 + 10.3 + 8.0 + 8.7)/5 = 35.0/5 = 7.0 percent. Therefore, the mean total return
for the portfolio is 0.60(2.5) + 0.40(7.0) = 4.3 percent, which agrees with our previous
calculation.

EXAMPLE 3-6 Portfolio Return as a Weighted Mean

Table 3-14 gives information on the estimated average asset allocation of Canadian
pension funds as well as four-year asset class returns.20

20In Table 3-14, equities are represented by the S&P/TSX Composite Index, U.S. equities by the S&P
500, international (non–North American) equities by the MSCI EAFE Index, bonds by the Scotia
Capital Markets Universe Bond Index, mortgages by the Scotia Capital Markets Mortgage Index, real
estate by the Standard Life Investments pooled real estate fund, and cash and equivalents by 91-day
T-bills.
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TABLE 3-14 Asset Allocation for Average Canadian Pension Fund as of 31 March 2003

Asset Class Asset Allocation (Weight) Asset Class Return (%)

Equities 34.6 0.6
U.S. equities 10.8 −9.3
International equities 6.4 −10.5
Bonds 34.0 6.0
Mortgages 1.3 9.0
Real estate 4.5 10.2
Cash and equivalents 8.4 4.2

Source: Standard Life Investments, Inc.

Using the information in Table 3-14, calculate the mean return earned by the average
Canadian pension fund over the four years ending 31 March 2003.

Solution: Converting the percent asset allocation to decimal form, we find the mean
return as a weighted average of the asset class returns. We have

Mean portfolio return = 0.346(0.6%) + 0.108(−9.3%) + 0.064(−10.5%)

+0.340(6.0%) + 0.013(9.0%) + 0.045(10.2%)

+0.084(4.2%)

= 0.208% − 1.004% − 0.672% + 2.040%

+0.117% + 0.459% + 0.353%

= 1.5%

The previous examples illustrate the general principle that a portfolio return is a weighted
sum. Specifically, a portfolio’s return is the weighted average of the returns on the assets in the
portfolio; the weight applied to each asset’s return is the fraction of the portfolio invested in
that asset.

Market indexes are computed as weighted averages. For market-capitalization indexes
such as the CAC-40 in France or the S&P 500 in the United States, each included stock
receives a weight corresponding to its outstanding market value divided by the total market
value of all stocks in the index.

Our illustrations of weighted mean use past data, but they might just as well use
forward-looking data. When we take a weighted average of forward-looking data, the weighted
mean is called expected value. Suppose we make one forecast for the year-end level of the
S&P 500 assuming economic expansion and another forecast for the year-end level of the
S&P 500 assuming economic contraction. If we multiply the first forecast by the probability
of expansion and the second forecast by the probability of contraction and then add these
weighted forecasts, we are calculating the expected value of the S&P 500 at year-end. If we
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take a weighted average of possible future returns on the S&P 500, we are computing the
S&P 500’s expected return. The probabilities must sum to 1, satisfying the condition on the
weights in the expression for weighted mean, Equation 3-4.

5.4.2. The Geometric Mean The geometric mean is most frequently used to average
rates of change over time or to compute the growth rate of a variable. In investments, we
frequently use the geometric mean to average a time series of rates of return on an asset or a
portfolio or to compute the growth rate of a financial variable such as earnings or sales. In the
chapter on the time value of money, for instance, we computed a sales growth rate (Example
1-17). That growth rate was a geometric mean. Because of the subject’s importance, in a later
section we will return to the use of the geometric mean and offer practical perspectives on its
use. The geometric mean is defined by the following formula.

• Geometric Mean Formula. The geometric mean, G, of a set of observations X1, X2, . . . ,
Xn is

G = n
√

X1X2X3 . . . Xn (3-5)

with Xi ≥ 0 for i = 1, 2, . . . , n.

Equation 3-5 has a solution, and the geometric mean exists, only if the product under the radical
sign is non-negative. We impose the restriction that all the observations Xi in Equation 3-5
are greater than or equal to zero. We can solve for the geometric mean using Equation 3-5
directly with any calculator that has an exponentiation key (on most calculators, yx). We
can also solve for the geometric mean using natural logarithms. Equation 3-5 can also be
stated as

ln G = 1

n
ln(X1X2X3 . . . Xn)

or as

ln G =

n∑
i=1

ln Xi

n

When we have computed ln G, then G = eln G (on most calculators, the key for this step
is e x).

Risky assets can have negative returns up to −100 percent (if their price falls to zero),
so we must take some care in defining the relevant variables to average in computing a
geometric mean. We cannot just use the product of the returns for the sample and then
take the nth root because the returns for any period could be negative. We must redefine
the returns to make them positive. We do this by adding 1.0 to the returns expressed as
decimals. The term (1 + Rt ) represents the year-ending value relative to an initial unit of
investment at the beginning of the year. As long as we use (1 + Rt ), the observations will never
be negative because the biggest negative return is −100 percent. The result is the geometric
mean of 1 + Rt ; by then subtracting 1.0 from this result, we obtain the geometric mean of
the individual returns Rt . For example, the returns on Canadian stocks as represented by
the S&P/TSX Composite Index during the 1998–2002 period were given in Table 3-13 as
−0.016, 0.317, 0.074, −0.126, and −0.124, putting the returns into decimal form. Adding
1.0 to those returns produces 0.9840, 1.317, 1.074, 0.874, and 0.876. Using Equation 3-5
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we have 5
√

(0.9840)(1.317)(1.074)(0.874)(0.876) = 5
√

1.065616 = 1.012792. This number
is 1 plus the geometric mean rate of return. Subtracting 1.0 from this result, we have
1.012792 − 1.0 = 0.012792 or approximately 1.3 percent. The geometric mean return for
Canadian stocks during the 1998–2002 period was 1.3 percent.

An equation that summarizes the calculation of the geometric mean return, RG , is a
slightly modified version of Equation 3-5 in which the Xi represent ‘‘1 + return in decimal
form.’’ Because geometric mean returns use time series, we use a subscript t indexing time
as well.

1 + RG = T
√

(1 + R1)(1 + R2) . . . (1 + RT )

1 + RG =
[

T∏
t=1

(1 + Rt )

] 1

T

which leads to the following formula:

• Geometric Mean Return Formula. Given a time series of holding period returns
Rt , t = 1, 2, . . . , T , the geometric mean return over the time period spanned by the returns
R1 through RT is

RG =
[

T∏
t=1

(1 + Rt )

] 1

T

− 1 (3-6)

We can use Equation 3-6 to solve for the geometric mean return for any return data series.
Geometric mean returns are also referred to as compound returns. If the returns being averaged
in Equation 3-6 have a monthly frequency, for example, we may call the geometric mean
monthly return the compound monthly return. The next example illustrates the computation
of the geometric mean while contrasting the geometric and arithmetic means.

EXAMPLE 3-7 Geometric and Arithmetic Mean Returns (1)

As a mutual fund analyst, you are examining, as of early 2003, the most recent five years
of total returns for two U.S. large-cap value equity mutual funds.

Based on the data in Table 3-15, address the following:

1. Calculate the geometric mean return of SLASX.
2. Calculate the arithmetic mean return of SLASX and contrast it to the fund’s

geometric mean return.
3. Calculate the geometric mean return of PRFDX.
4. Calculate the arithmetic mean return of PRFDX and contrast it to the fund’s

geometric mean return.

Solution to 1: Converting the returns on SLASX to decimal form and adding 1.0 to
each return produces 1.162, 1.203, 1.093, 0.889, and 0.830. We use Equation 3-6 to
find SLASX’s geometric mean return:
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TABLE 3-15 Total Returns for Two Mutual Funds, 1998–2002

Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)

1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 −11.1% 1.6%
2002 −17.0% −13.0%

Source: American Association of Individual Investors (AAII).

RG = 5
√

(1.162)(1.203)(1.093)(0.889)(0.830) − 1

= 5
√

1.127384 − 1 = 1.024270 − 1 = 0.024270

= 2.43%

Solution to 2: For SLASX, R = (16.2 + 20.3 + 9.3 − 11.1 − 17.0)/5 = 17.7/5 =
3.54%. The arithmetic mean return for SLASX exceeds the geometric mean return by
3.54 − 2.43 = 1.11% or 111 basis points.

Solution to 3: Converting the returns on PRFDX to decimal form and adding 1.0 to
each return produces 1.092, 1.038, 1.131, 1.016, and 0.870. We use Equation 3-6 to
find PRFDX’s geometric mean return:

RG = 5
√

(1.092)(1.038)(1.131)(1.016)(0.870) − 1

= 5
√

1.133171 − 1 = 1.025319 − 1 = 0.025319

= 2.53%

Solution to 4 : For PRFDX, R = (9.2 + 3.8 + 13.1 + 1.6 − 13.0)/5 = 14.7/5 =
2.94%. The arithmetic mean for PRFDX exceeds the geometric mean return by
2.94 − 2.53 = 0.41% or 41 basis points. The table below summarizes the findings.

TABLE 3-16 Mutual Fund Arithmetic and Geometric
Mean Returns: Summary of Findings

Fund Arithmetic Mean Geometric Mean

SLASX 3.54% 2.43%
PRFDX 2.94% 2.53%
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In Example 3-7, for both mutual funds, the geometric mean return was less than the
arithmetic mean return. In fact, the geometric mean is always less than or equal to the arithmetic
mean.21 The only time that the two means will be equal is when there is no variability in the
observations—that is, when all the observations in the series are the same.22 In Example 3-7,
there was variability in the funds’ returns; thus for both funds, the geometric mean was strictly
less than the arithmetic mean. In general, the difference between the arithmetic and geometric
means increases with the variability in the period-by-period observations.23 This relationship
is also illustrated by Example 3-7. Even casual inspection reveals that the returns of SLASX
are more variable than those of PRFDX, and consequently, the spread between the arithmetic
and geometric mean returns is larger for SLASX (111 basis points) than for PRFDX (41 basis
points).24 The arithmetic and geometric mean also rank the two funds differently. Although
SLASX has the higher arithmetic mean return, PRFDX has the higher geometric mean return.
How should the analyst interpret this result?

The geometric mean return represents the growth rate or compound rate of return on an
investment. One dollar invested in SLASX at the beginning of 1998 would have grown to
(1.162)(1.203)(1.093)(0.889)(0.830) = $1.127, which is equal to 1 plus the geometric mean
return compounded over five periods: (1.0243)5 = $1.127, confirming that the geometric
mean is the compound rate of return. For PRFDX, one dollar would have grown to a larger
amount, (1.092)(1.038)(1.131)(1.016)(0.870) = $1.133, equal to (1.0253)5. With its focus
on the profitability of an investment over a multiperiod horizon, the geometric mean is
of key interest to investors. The arithmetic mean return, focusing on average single-period
performance, is also of interest. Both arithmetic and geometric means have a role to play in
investment management, and both are often reported for return series. Example 3-8 highlights
these points in a simple context.

EXAMPLE 3-8 Geometric and Arithmetic Mean Returns (2)

A hypothetical investment in a single stock initially costs ¤100. One year later, the
stock is trading at ¤200. At the end of the second year, the stock price falls back to
the original purchase price of ¤100. No dividends are paid during the two-year period.
Calculate the arithmetic and geometric mean annual returns.

Solution: First, we need to find the Year 1 and Year 2 annual returns with Equation 3-1.

Return in Year 1 = 200/100 − 1 = 100%

21This statement can be proved using Jensen’s inequality that the average value of a function is less than
or equal to the function evaluated at the mean if the function is concave from below—the case for ln(X ).
22For instance, suppose the return for each of the three years is 10 percent. The arithmetic mean is 10
percent. To find the geometric mean, we first express the returns as (1 + Rt ) and then find the geometric
mean: [(1.10)(1.10)(1.10)]1/3 − 1.0 = 10 percent. The two means are the same.
23We will soon introduce standard deviation as a measure of variability. Holding the arithmetic mean
return constant, the geometric mean return decreases for an increase in standard deviation.
24We will introduce formal measures of variability later. But note, for example, the 20.4 percentage
point swing in returns between 2000 and 2001 for SLASX versus the 11.5 percentage point for PRFDX.
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Return in Year 2 = 100/200 − 1 = −50%

The arithmetic mean of the annual returns is (100% − 50%)/2 = 25%.
Before we find the geometric mean, we must convert the percentage rates of

return to (1 + Rt ). After this adjustment, the geometric mean from Equation 3-6 is√
2.0 × 0.50 − 1 = 0%.

The geometric mean return of 0 percent accurately reflects that the ending value
of the investment in Year 2 equals the starting value in Year 1. The compound rate of
return on the investment is 0 percent. The arithmetic mean return reflects the average
of the one-year returns.

5.4.3. The Harmonic Mean The arithmetic mean, the weighted mean, and the geometric
mean are the most frequently used concepts of mean in investments. A fourth concept, the
harmonic mean, X H , is appropriate in a limited number of applications.25

• Harmonic Mean Formula. The harmonic mean of a set of observations X1, X2, . . . ,
Xn is

X H = n/

n∑
i=1

(1/Xi) (3-7)

with Xi > 0 for i = 1, 2, . . . , n.

The harmonic mean is the value obtained by summing the reciprocals of the observa-
tions—terms of the form 1/Xi —then averaging that sum by dividing it by the number of
observations n, and, finally, taking the reciprocal of the average.

The harmonic mean may be viewed as a special type of weighted mean in which an
observation’s weight is inversely proportional to its magnitude. The harmonic mean is a
relatively specialized concept of the mean that is appropriate when averaging ratios (‘‘amount
per unit’’) when the ratios are repeatedly applied to a fixed quantity to yield a variable number
of units. The concept is best explained through an illustration. A well-known application arises
in the investment strategy known as cost averaging, which involves the periodic investment
of a fixed amount of money. In this application, the ratios we are averaging are prices per share
at purchases dates, and we are applying those prices to a constant amount of money to yield a
variable number of shares.

Suppose an investor purchases ¤1,000 of a security each month for n = 2 months. The
share prices are ¤10 and ¤15 at the two purchase dates. What is the average price paid for the
security?

In this example, in the first month we purchase ¤1,000/¤10 = 100 shares, and in the
second month we purchase ¤1,000/¤15 = 66.67, or 166.67 shares in total. Dividing the
total euro amount invested, ¤2,000, by the total number of shares purchased, 166.67, gives an
average price paid of ¤2,000/166.67 = ¤12. The average price paid is in fact the harmonic
mean of the asset’s prices at the purchase dates. Using Equation 3-7, the harmonic mean

25The terminology ‘‘harmonic’’ arises from its use relative to a type of series involving reciprocals known
as a harmonic series.



94 Quantitative Investment Analysis

price is 2/[(1/10) + (1/15)] = ¤12. The value ¤12 is less than the arithmetic mean purchase
price (¤10 + ¤15)/2 = ¤12.5. However, we could find the correct value of ¤12 using the
weighted mean formula, where the weights on the purchase prices equal the shares purchased
at a given price as a proportion of the total shares purchased. In our example, the calculation
would be (100/166.67)¤10.00 + (66.67/166.67)¤15.00 = ¤12. If we had invested varying
amounts of money at each date, we could not use the harmonic mean formula. We could,
however, still use the weighted mean formula in a manner similar to that just described.

A mathematical fact concerning the harmonic, geometric, and arithmetic means is that
unless all the observations in a dataset have the same value, the harmonic mean is less than the
geometric mean, which in turn is less than the arithmetic mean. In the illustration given, the
harmonic mean price was indeed less than the arithmetic mean price.

6. OTHER MEASURES OF LOCATION:
QUANTILES

Having discussed measures of central tendency, we now examine an approach to describing
the location of data that involves identifying values at or below which specified proportions
of the data lie. For example, establishing that 25, 50, and 75 percent of the annual returns
on a portfolio are at or below the values −0.05, 0.16, and 0.25, respectively, provides concise
information about the distribution of portfolio returns. Statisticians use the word quantile (or
fractile) as the most general term for a value at or below which a stated fraction of the data
lies. In the following, we describe the most commonly used quantiles—quartiles, quintiles,
deciles, and percentiles—and their application in investments.

6.1. Quartiles, Quintiles, Deciles, and Percentiles

We know that the median divides a distribution in half. We can define other dividing lines
that split the distribution into smaller sizes. Quartiles divide the distribution into quarters,
quintiles into fifths, deciles into tenths, and percentiles into hundredths. Given a set of
observations, the yth percentile is the value at or below which y percent of observations
lie. Percentiles are used frequently, and the other measures can be defined with respect to
them. For example, the first quartile (Q 1) divides a distribution such that 25 percent of the
observations lie at or below it; therefore, the first quartile is also the 25th percentile. The
second quartile (Q 2) represents the 50th percentile, and the third quartile (Q 3) represents the
75th percentile because 75 percent of the observations lie at or below it.

When dealing with actual data, we often find that we need to approximate the value of a
percentile. For example, if we are interested in the value of the 75th percentile, we may find
that no observation divides the sample such that exactly 75 percent of the observations lie at
or below that value. The following procedure, however, can help us determine or estimate a
percentile. The procedure involves first locating the position of the percentile within the set of
observations and then determining (or estimating) the value associated with that position.

Let Py be the value at or below which y percent of the distribution lies, or the yth
percentile. (For example, P18 is the point at or below which 18 percent of the observations lie;
100 − 18 = 82 percent are greater than P18.) The formula for the position of a percentile in
an array with n entries sorted in ascending order is

Ly = (n + 1)
y

100
(3-8)
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where y is the percentage point at which we are dividing the distribution and Ly is the location
(L) of the percentile (Py) in the array sorted in ascending order. The value of Ly may or
may not be a whole number. In general, as the sample size increases, the percentile location
calculation becomes more accurate; in small samples it may be quite approximate.

As an example of the case in which Ly is not a whole number, suppose that we want
to determine the third quartile of returns for 2002 (Q 3 or P75) for the 16 European equity
markets given in Table 3-8. According to Equation 3-8, the position of the third quartile is
L75 = (16 + 1)75/100 = 12.75, or between the 12th and 13th items in Table 3-9, which
ordered the returns into ascending order. The 12th item in Table 3-9 is the return to equities
in Portugal in 2002, −28.29 percent. The 13th item is the return to equities in Switzerland
in 2002, −25.84 percent. Reflecting the ‘‘0.75’’ in ‘‘12.75,’’ we would conclude that P75 lies
75 percent of the distance between −28.29 percent and −25.84 percent.

To summarize:

• When the location, Ly, is a whole number, the location corresponds to an actual observation.
For example, if Italy had not been included in the sample, then n + 1 would have been
16 and, with L75 = 12, the third quartile would be P75 = X12, where Xi is defined as the
value of the observation in the ith (i = L75) position of the data sorted in ascending order
(i.e., P75 = −28.29).

• When Ly is not a whole number or integer, Ly lies between the two closest integer
numbers (one above and one below), and we use linear interpolation between those two
places to determine Py. Interpolation means estimating an unknown value on the basis
of two known values that surround it (lie above and below it); the term ‘‘linear’’ refers
to a straight-line estimate. Returning to the calculation of P75 for the equity returns,
we found that Ly = 12.75; the next lower whole number is 12 and the next higher
whole number is 13. Using linear interpolation, P75 ≈ X12 + (12.75 − 12)(X13 − X12).
As above, in the 12th position is the return to equities in Portugal, so X12 = −28.29
percent; X13 = −25.84 percent, the return to equities in Switzerland. Thus our esti-
mate is P75 ≈ X12 + (12.75 − 12)(X13 − X12) = −28.29 + 0.75[−25.84 − (−28.29)] =
−28.29 + 0.75(2.45) = −28.29 + 1.84 = −26.45 percent. In words, −28.29 and
−25.84 bracket P75 from below and above, respectively. Because 12.75 − 12 = 0.75,
using linear interpolation we move 75 percent of the distance from −28.29 to −25.84 as
our estimate of P75. We follow this pattern whenever Ly is non-integer: The nearest whole
numbers below and above Ly establish the positions of observations that bracket Py and
then interpolate between the values of those two observations.

Example 3-9 illustrates the calculation of various quantiles for the dividend yield on the
components of a major European equity index.

EXAMPLE 3-9 Calculating Percentiles, Quartiles,
and Quintiles

The DJ EuroSTOXX 50 is an index of Europe’s 50 largest publicly traded companies
as measured by market capitalization. Table 3-17 shows the dividend yields on the 50
component stocks in the index as of mid-2003, ranked in ascending order.
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TABLE 3-17 Dividend Yields on the Components of the DJ EuroSTOXX 50

Dividend Dividend
No. Company Yield No. Company Yield

1 AstraZeneca 0.00% 26 UBS 2.65%
2 BP 0.00% 27 Tesco 2.95%
3 Deutsche Telekom 0.00% 28 Total 3.11%
4 HSBC Holdings 0.00% 29 GlaxoSmithKline 3.31%
5 Credit Suisse Group 0.26% 30 BT Group 3.34%
6 L’Oréal 1.09% 31 Unilever 3.53%
7 SwissRe 1.27% 32 BASF 3.59%
8 Roche Holding 1.33% 33 Santander Central
9 Munich Re Group 1.36% Hispano 3.66%

10 General Assicurazioni 1.39% 34 Banco Bilbao Vizcaya
11 Vodafone Group 1.41% Argentaria 3.67%
12 Carrefour 1.51% 35 Diageo 3.68%
13 Nokia 1.75% 36 HBOS 3.78%
14 Novartis 1.81% 37 E.ON 3.87%
15 Allianz 1.92% 38 Shell Transport and Co. 3.88%
16 Koninklije Philips 39 Barclays 4.06%

Electronics 2.01% 40 Royal Dutch
17 Siemens 2.16% Petroleum Co. 4.27%
18 Deutsche Bank 2.27% 41 Fortis 4.28%
19 Telecom Italia 2. 27% 42 Bayer 4.45%
20 AXA 2.39% 43 DaimlerChrysler 4.68%
21 Telefonica 2.49% 44 Suez 5.13%
22 Nestlé 2.55% 45 Aviva 5.15%
23 Royal Bank of Scotland 46 Eni 5.66%

Group 2.60% 47 ING Group 6.16%
24 ABN-AMRO 48 Prudential 6.43%

Holding 2.65% 49 Lloyds TSB 7.68%
25 BNP Paribas 2.65% 50 AEGON 8.14%

Source: http://france.finance.yahoo.com accessed 8 July 2003.

Using the data in Table 3-17, address the following:

1. Calculate the 10th and 90th percentiles.
2. Calculate the first, second, and third quartiles.
3. State the value of the median.
4. How many quintiles are there, and to what percentiles do the quintiles correspond?
5. Calculate the value of the first quintile.

Solution to 1: In this example, n = 50. Using Equation 3-8, Ly = (n + 1)y/100 for
position of the yth percentile, so for the 10th percentile we have

L10 = (50 + 1)(10/100) = 5.1
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L10 is between the fifth and sixth observations with values X5 = 0.26 and X6 = 1.09.
The estimate of the 10th percentile (first decile) for dividend yield is

P10 ≈ X5 + (5.1 − 5)(X6 − X5) = 0.26 + 0.1(1.09 − 0.26)

= 0.26 + 0.1(0.83) = 0.34%

For the 90th percentile,

L90 = (50 + 1)(90/100) = 45.9

L90 is between the 45th and 46th observations with values X45 = 5.15 and X46 = 5.66,
respectively. The estimate of the 90th percentile (ninth decile) is

P90 ≈ X45 + (45.9 − 45)(X46 − X45) = 5.15 + 0.9(5.66 − 5.15)

= 5.15 + 0.9(0.51) = 5.61%

Solution to 2: The first, second, and third quartiles correspond to P25, P50, and P75,
respectively.

L25 = (51)(25/100) = 12.75 L25 is between the 12th and 13th entries
with values X12 = 1.51 and X13 = 1.75.

P25 = Q1 ≈ X12 + (12.75 − 12)(X13 − X12)

= 1.51 + 0.75(1.75 − 1.51)

= 1.51 + 0.75(0.24) = 1.69%

L50 = (51)(50/100) = 25.5 L25 is between the 25th and 26th entries.
But these entries share the same value,
X25 = X26 = 2.65, so no interpolation is needed.

P50 = Q2 = 2.65%

L75 = (51)(75/100) = 38.25 L75 is between the 38th and 39th entries
with values X38 = 3.88 and X39 = 4.06.

P75 = Q3 ≈ X38 + (38.25 − 38)(X39 − X38)

= 3.88 + 0.25(4.06 − 3.88)

= 3.88 + 0.25(0.18) = 3.93%

Solution to 3: The median is the 50th percentile, 2.65 percent. This is the same
value that we would obtain by taking the mean of the n/2 = 50/2 = 25th item and
(n + 2)/2 = 52/2 = 26th item, consistent with the procedure given earlier for the
median of an even-numbered sample.
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Solution to 4 : There are four quintiles, and they correspond to P20, P40, P60, and P80.

Solution to 5: The first quintile is P20.

L20 = (50 + 1)(20/100) = 10.2 L20 is between the 10th and 11th
observations with values X10 = 1.39
and X11 = 1.41.

The estimate of the first quintile is

P20 ≈ X10 + (10.2 − 10)(X11 − X10)

= 1.39 + 0.2(1.41 − 1.39)

= 1.39 + 0.2(0.02) = 1.394% or 1.39%

6.2. Quantiles in Investment Practice

In this section, we discuss the use of quantiles in investments. Quantiles are used in portfolio
performance evaluation as well as in investment strategy development and research.

Investment analysts use quantiles every day to rank performance—for example, the
performance of portfolios. The performance of investment managers is often characterized
in terms of the quartile in which they fall relative to the performance of their peer group of
managers. The Morningstar mutual fund star rankings, for example, associates the number of
stars with percentiles of performance relative to similar-style mutual funds.

Another key use of quantiles is in investment research. Analysts refer to a group defined by
a particular quantile as that quantile. For example, analysts often refer to the set of companies
with returns falling below the 10th percentile cutoff point as the bottom return decile. Dividing
data into quantiles based on some characteristic allows analysts to evaluate the impact of that
characteristic on a quantity of interest. For instance, empirical finance studies commonly rank
companies based on the market value of their equity and then sort them into deciles. The 1st
decile contains the portfolio of those companies with the smallest market values, and the 10th
decile contains those companies with the largest market value. Ranking companies by decile
allows analysts to compare the performance of small companies with large ones.

We can illustrate the use of quantiles, in particular quartiles, in investment research using
the example of Bauman, Conover, and Miller (1998). That study compared the performance
of international growth stocks to value stocks. Typically, value stocks are defined as those for
which the market price is relatively low in relation to earnings per share, book value per share,
or dividends per share. Growth stocks, on the other hand, have comparatively high prices in
relation to those same measures. The Bauman et al. classification criteria were the following
valuation measures: price-to-earnings (P/E), price-to-cash flow (P/CF), price-to-book value
(P/B), and dividend yield (D/P). They assigned one-fourth of the total sample with the lowest
P/E on 30 June of each year from 1986 to 1996 (the value group) to Quartile 1, and the
one-fourth with the highest P/E of each year (the growth group) to Quartile 4. The stocks with
the second-highest P/E formed Quartile 3, and the stocks with the second-lowest P/E, Quartile
2. The authors repeated this process for each of the four fundamental factors. Treating each
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TABLE 3-18 Mean Annual Returns of Value and Growth Stocks Based on
Selected Characteristics, 1986–1996

Spread

Total Q1 Q4 in Return,
Selection Criteria Observations (Value) Q2 Q3 (Growth) Q1 to Q4

Classification by P/E 28,463
Median P/E 8.7 15.2 24.2 72.5
Return 15.0% 13.6% 13.5% 10.6% +4.4%
Standard deviation 46.5 38.3 42.5 50.4
Classification by

P/CF 30,240
Median P/CF 4.4 8.2 13.3 34.2
Return 15.5% 13.7% 12.9% 11.2% +4.3%
Standard deviation 48.7 41.2 41.9 51.4
Classification by P/B 32,265
Median P/B 0.8 1.4 2.2 4.3
Return 18.1% 14.4% 12.6% 12.4% +5.7%
Standard deviation 69.6 45.9 45.1 57.0
Classification by D/P 25,394
Median D/P 5.6% 3.2% 1.9% 0.6%
Return 14.1% 14.1% 12.5% 9.3% +4.8%
Standard deviation 40.5 38.7 38.9 42.0

Source: Bauman et al.

quartile group as a portfolio composed of equally weighted stocks, they were able to compare
the performance of the various value/growth quartiles. Table 1 from their study is reproduced
as Table 3-18.

Table 3-18 reports each valuation factor’s median, mean return, and standard deviation
for each quartile grouping. Moving from Quartile 1 to Quartile 4, P/E, P/CF, and P/B
increase, but D/P decreases. Regardless of the selection criteria, international value stocks
outperformed international growth stocks during the sample period.

Bauman, Conover, and Miller also divided companies into one of four quartiles based on
market value of equity. Then they examined the returns to the stocks in the quartiles. Table 7
from their article is reproduced here as Table 3-19. As the table shows, the small-company
portfolio had a median market value of $46.6 million and the large-company portfolio had
a median value of $2,472.3 million. Large companies were more than 50 times larger than
small companies, yet their mean stock returns were less than half those of the small companies
(small, 22.0 percent; large, 10.8 percent). Overall, Bauman et al. found two effects. First,
international value stocks (as the authors defined them) outperformed international growth
stocks. Second, international small stocks outperformed international large stocks.

The authors’ next step was to examine how value and growth stocks performed while
controlling for size. This step involved constructing 16 different value/growth and size
portfolios (4 × 4 = 16) and investigating the interaction between these two fundamental
factors. They found that international value stocks outperformed international growth stocks
except when market capitalization was very small. For portfolio managers, these findings
suggest that value stocks offered investors relatively more favorable returns than did growth
stocks in international markets during the specific time period studied.
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TABLE 3-19 Mean Annual Returns of International Stocks Grouped by Market Capitalization,
1986–1996

Spread
Total Q1 Q4 in Return,

Selection Criteria Observations (Small) Q2 Q3 (Large) Q1 to Q4

Classification by
size 32,555

Median size
(millions) $46.6 $209.9 $583.7 $2,472.3

Return 22.0% 13.6% 11.1% 10.8% +11.2%
Standard

deviation 87.8 45.2 39.5 34.0

Source: Bauman et al.

7. MEASURES OF DISPERSION

As the well-known researcher Fischer Black has written, ‘‘[t]he key issue in investments is
estimating expected return.’’26 Few would disagree with the importance of expected return
or mean return in investments: The mean return tells us where returns, and investment
results, are centered. To completely understand an investment, however, we also need to know
how returns are dispersed around the mean. Dispersion is the variability around the central
tendency. If mean return addresses reward, dispersion addresses risk.

In this section, we examine the most common measures of dispersion: range, mean
absolute deviation, variance, and standard deviation. These are all measures of absolute
dispersion. Absolute dispersion is the amount of variability present without comparison to
any reference point or benchmark.

These measures are used throughout investment practice. The variance or standard
deviation of return is often used as a measure of risk pioneered by Nobel laureate Harry
Markowitz. William Sharpe, another winner of the Nobel Prize in economics, developed the
Sharpe ratio, a measure of risk-adjusted performance. That measure makes use of standard
deviation of return. Other measures of dispersion, mean absolute deviation and range, are also
useful in analyzing data.

7.1. The Range

We encountered range earlier when we discussed the construction of frequency distribution.
The simplest of all the measures of dispersion, range can be computed with interval or
ratio data.

• Definition of Range. The range is the difference between the maximum and minimum
values in a dataset:

Range = Maximum value − Minimum value (3-9)

26Black (1993).
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As an illustration of range, the largest monthly return for the S&P 500 in the period from
January 1926 to December 2002 is 42.56 percent (in April 1933) and the smallest is −29.73
percent (in September 1931). The range of returns is thus 72.29 percent [42.56 percent −
(−29.73 percent)]. An alternative definition of range reports the maximum and minimum
values. This alternative definition provides more information than does the range as defined
in Equation 3-9.

One advantage of the range is ease of computation. A disadvantage is that the range
uses only two pieces of information from the distribution. It cannot tell us how the data are
distributed (that is, the shape of the distribution). Because the range is the difference between
the maximum and minimum returns, it can reflect extremely large or small outcomes that may
not be representative of the distribution.27

7.2. The Mean Absolute Deviation

Measures of dispersion can be computed using all the observations in the distribution rather
than just the highest and lowest. The question is, how should we measure dispersion? Our
previous discussion on properties of the arithmetic mean introduced the notion of distance or
deviation from the mean (Xi − X ) as a fundamental piece of information used in statistics. We
could compute measures of dispersion as the arithmetic average of the deviations around the
mean, but we would encounter a problem: The deviations around the mean always sum to 0.
If we computed the mean of the deviations, the result would also equal 0. Therefore, we need
to find a way to address the problem of negative deviations canceling out positive deviation.

One solution is to examine the absolute deviations around the mean as in the mean
absolute deviation.

• Mean Absolute Deviation Formula. The mean absolute deviation (MAD) for a
sample is

MAD =

n∑
i=1

∣∣Xi − X
∣∣

n
(3-10)

where X is the sample mean and n is the number of observations in the sample.

In calculating MAD, we ignore the signs of the deviations around the mean. For example,
if Xi = −11.0 and X = 4.5, the absolute value of the difference is | − 11.0 − 4.5| =
| − 15.5| = 15.5. The mean absolute deviation uses all of the observations in the sample and
is thus superior to the range as a measure of dispersion. One technical drawback of MAD
is that it is difficult to manipulate mathematically compared with the next measure we will
introduce, variance.28 Example 3-10 illustrates the use of the range and the mean absolute
deviation in evaluating risk.

27Another distance measure of dispersion that we may encounter, the interquartile range, focuses on the
middle rather than the extremes. The interquartile range (IQR) is the difference between the third and
first quartiles of a dataset: IQR = Q3 − Q1. The IQR represents the length of the interval containing
the middle 50 percent of the data, with a larger interquartile range indicating greater dispersion, all else
equal.
28In some analytic work such as optimization, the calculus operation of differentiation is important.
Variance as a function can be differentiated, but absolute value cannot.
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EXAMPLE 3-10 The Range and the Mean
Absolute Deviation

Having calculated mean returns for the two mutual funds in Example 3-7, the analyst
is now concerned with evaluating risk.

TABLE 3-15 (repeated) Total Returns for Two Mutual Funds, 1998–2002

Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)

1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 −11.1% 1.6%
2002 −17.0% −13.0%

Source: AAII.

Based on the data in Table 3-15 repeated above, answer the following:

1. Calculate the range of annual returns for (A) SLASX and (B) PRFDX, and state
which mutual fund appears to be riskier based on these ranges.

2. Calculate the mean absolute deviation of returns on (A) SLASX and (B) PRFDX,
and state which mutual fund appears to be riskier based on MAD.

Solutions to 1:

A. For SLASX, the largest return was 20.3 percent and the smallest was −17.0
percent. The range is thus 20.3 − (−17.0) = 37.3%.

B. For PFRDX, the range is 13.1 − (−13.0) = 26.1%. With a larger range of returns
than PRFDX, SLASX appeared to be the riskier fund during the 1998–2002
period.

Solutions to 2:

A. The arithmetic mean return for SLASX as calculated in Example 3-7 is 3.54
percent. The MAD of SLASX returns is

MAD = |16.2 − 3.54| + |20.3 − 3.54| + |9.3 − 3.54| + | − 11.1 − 3.54| + | − 17.0 − 3.54|
5

= 12.66 + 16.76 + 5.76 + 14.64 + 20.54

5

= 70.36

5
= 14.1%
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B. The arithmetic mean return for PRFDX as calculated in Example 3-7 is 2.94
percent. The MAD of PRFDX returns is

MAD = |9.2 − 2.94| + |3.8 − 2.94| + |13.1 − 2.94| + |1.6 − 2.94| + | − 13.0 − 2.94|
5

= 6.26 + 0.86 + 10.16 + 1.34 + 15.94

5

= 34.56

5
= 6.9%

SLASX, with a MAD of 14.1 percent, appears to be much riskier than PRFDX,
with a MAD of 6.9 percent.

7.3. Population Variance and Population Standard Deviation

The mean absolute deviation addressed the issue that the sum of deviations from the mean
equals zero by taking the absolute value of the deviations. A second approach to the treatment
of deviations is to square them. The variance and standard deviation, which are based on
squared deviations, are the two most widely used measures of dispersion. Variance is defined
as the average of the squared deviations around the mean. Standard deviation is the positive
square root of the variance. The following discussion addresses the calculation and use of
variance and standard deviation.

7.3.1. Population Variance If we know every member of a population, we can compute
the population variance. Denoted by the symbol σ2, the population variance is the arithmetic
average of the squared deviations around the mean.

• Population Variance Formula. The population variance is

σ2 =

N∑
i=1

(Xi − µ)2

N
(3-11)

where µ is the population mean and N is the size of the population.

Given knowledge of the population mean, µ, we can use Equation 3-11 to calculate the
sum of the squared differences from the mean, taking account of all N items in the popu-
lation, and then to find the mean squared difference by dividing the sum by N . Whether
a difference from the mean is positive or negative, squaring that difference results in a
positive number. Thus variance takes care of the problem of negative deviations from the
mean canceling out positive deviations by the operation of squaring those deviations. The
P/Es for BJ, COST, and WMT were given earlier as 16.73, 22.02, and 29.30, respectively.
We calculated the mean P/E as 22.68. Therefore, the population variance of the P/Es
is (1/3)[(16.73 − 22.68)2 + (22.02 − 22.68)2 + (29.30 − 22.68)2] = (1/3)(−5.952 +
−0.662 + 6.622) = (1/3)(35.4025 + 0.4356 + 43.8244) = (1/3)(79.6625) = 26.5542.
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7.3.2. Population Standard Deviation Because the variance is measured in squared
units, we need a way to return to the original units. We can solve this problem by using
standard deviation, the square root of the variance. Standard deviation is more easily interpreted
than the variance because standard deviation is expressed in the same unit of measurement as
the observations.

• Population Standard Deviation Formula. The population standard deviation, defined
as the positive square root of the population variance, is

σ =

√√√√√√
N∑

i=1

(Xi − µ)2

N
(3-12)

where µ is the population mean and N is the size of the population.

Using the example of the P/Es for BJ, COST, and WMT, according to Equation 3-12 we
would calculate the variance, 26.5542, then take the square root:

√
26.5542 = 5.1531 or

approximately 5.2.
Both the population variance and standard deviation are examples of parameters of a

distribution. In later chapters, we will introduce the notion of variance and standard deviation
as risk measures.

In investments, we often do not know the mean of a population of interest, usually
because we cannot practically identify or take measurements from each member of the
population. We then estimate the population mean with the mean from a sample drawn
from the population, and we calculate a sample variance or standard deviation using formulas
different from Equations 3-11 and 3-12. We shall discuss these calculations in subsequent
sections. However, in investments we sometimes have a defined group that we can consider
to be a population. With well-defined populations, we use Equations 3-11 and 3-12, as in the
following example.

EXAMPLE 3-11 Calculating the Population
Standard Deviation

Table 3-20 gives the yearly portfolio turnover for the 10 U.S. equity funds that
composed the 2002 Forbes Magazine Honor Roll.29 Portfolio turnover, a measure of
trading activity, is the lesser of the value of sales or purchases over a year divided by
average net assets during the year. The number and identity of the funds on the Forbes
Honor Roll changes from year to year.

29Forbes magazine annually selects U.S. equity mutual funds meeting certain criteria for its Honor Roll.
The criteria relate to capital preservation (performance in bear markets), continuity of management (the
fund must have a manager with at least six years’ tenure), diversification, accessibility (disqualifying funds
that are closed to new investors), and after-tax long-term performance.
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TABLE 3-20 Portfolio Turnover: 2002 Forbes Honor Roll Mutual Funds

Fund Yearly Portfolio Turnover

FPA Capital Fund (FPPTX) 23%
Mairs & Power Growth Fund (MPGFX) 8%
Muhlenkamp Fund (MUHLX) 11%
Longleaf Partners Fund (LLPFX) 18%
Heartland Value Fund (HRTVX) 56%
Scudder–Dreman High Return Equity-A (KDHAX) 29%
Clipper Fund (CFIMX) 23%
Weitz Value Fund (WVALX) 13%
Third Avenue Value Fund (TAVFX) 16%
Dodge & Cox Stock Fund (DODGX) 10%

Source: Forbes (2003).

Based on the data in Table 3-20, address the following:

1. Calculate the population mean portfolio turnover for the period used by Forbes
for the ten 2002 Honor Roll funds.

2. Calculate the population variance and population standard deviation of portfolio
turnover.

3. Explain the use of the population formulas in this example.

Solution to 1: µ = (23 + 8 + 11 + 18 + 56 + 29 + 23 + 13 + 16 + 10)/10 = 207/

10 = 20.7 percent

Solution to 2: Having established that µ = 20.7, we can calculate σ2 =

N∑
i=1

(Xi − µ)2

N
by first calculating the numerator in the expression and then dividing by N = 10. The
numerator (the sum of the squared differences from the mean) is

(23 − 20.7)2 + (8 − 20.7)2 + (11 − 20.7)2 + (18 − 20.7)2 + (56 − 20.7)2 +
(29 − 20.7)2 + (23 − 20.7)2 + (13 − 20.7)2 + (16 − 20.7)2 +
(10 − 20.7)2 = 1,784.1

Thus σ2 = 1,784.1/10 = 178.41.

To calculate standard deviation, σ = √
178.41 = 13.357 percent. (The unit of variance

is percent squared, so the unit of standard deviation is percent.)

Solution to 3: If the population is clearly defined to be the Forbes Honor Roll funds in
one specific year (2002), and if portfolio turnover is understood to refer to the specific
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one-year period reported upon by Forbes, the application of the population formulas
to variance and standard deviation is appropriate. The results of 178.41 and 13.357
are, respectively, the cross-sectional variance and standard deviation in yearly portfolio
turnover for the 2002 Forbes Honor Roll Funds.30

7.4. Sample Variance and Sample Standard Deviation
7.4.1. Sample Variance In many instances in investment management, a subset or
sample of the population is all that we can observe. When we deal with samples, the summary
measures are called statistics. The statistic that measures the dispersion in a sample is called
the sample variance.

• Sample Variance Formula. The sample variance is

s2 =

n∑
i=1

(Xi − X )2

n − 1
(3-13)

where X is the sample mean and n is the number of observations in the sample.

Equation 3-13 tells us to take the following steps to compute the sample variance:

i. Calculate the sample mean, X .
ii. Calculate each observation’s squared deviation from the sample mean, (Xi − X )2.

iii. Sum the squared deviations from the mean:
n∑

i=1

(Xi − X )2.

iv. Divide the sum of squared deviations from the mean by n − 1:
n∑

i=1

(Xi − X )2/(n − 1).

We will illustrate the calculation of the sample variance and the sample standard deviation in
Example 3-12.

We use the notation s2 for the sample variance to distinguish it from population variance,
σ2. The formula for sample variance is nearly the same as that for population variance except
for the use of the sample mean, X , in place of the population mean, µ, and a different divisor.
In the case of the population variance, we divide by the size of the population, N . For the
sample variance, however, we divide by the sample size minus 1, or n − 1. By using n − 1
(rather than n) as the divisor, we improve the statistical properties of the sample variance.
In statistical terms, the sample variance defined in Equation 3-13 is an unbiased estimator
of the population variance.31 The quantity n − 1 is also known as the number of degrees of
freedom in estimating the population variance. To estimate the population variance with s2,
we must first calculate the mean. Once we have computed the sample mean, there are only
n − 1 independent deviations from it.

30In fact, we could not properly use the Honor Roll funds to estimate the population variance of portfolio
turnover (for example) of any other differently defined population, because the Honor Roll funds are
not a random sample from any larger population of U.S. equity mutual funds.
31We discuss this concept further in the chapter on sampling.
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7.4.2. Sample Standard Deviation Just as we computed a population standard devia-
tion, we can compute a sample standard deviation by taking the positive square root of the
sample variance.

• Sample Standard Deviation Formula. The sample standard deviation, s, is

s =

√√√√√√
n∑

i=1

(Xi − X )2

n − 1
(3-14)

where X is the sample mean and n is the number of observations in the sample.

To calculate the sample standard deviation, we first compute the sample variance using the steps
given. We then take the square root of the sample variance. Example 3-12 illustrates the calcula-
tion of the sample variance and standard deviation for the two mutual funds introduced earlier.

EXAMPLE 3-12 Calculating Sample Variance and
Sample Standard Deviation

After calculating the geometric and arithmetic mean returns of two mutual funds in
Example 3-7, we calculated two measures of dispersions for those funds, the range and
mean absolute deviation of returns, in Example 3-10. We now calculate the sample
variance and sample standard deviation of returns for those same two funds.

TABLE 3-15 (repeated) Total Returns for Two Mutual Funds,
1998–2002

Selected American Shares T. Rowe Price Equity Income
Year (SLASX) (PRFDX)

1998 16.2% 9.2%
1999 20.3% 3.8%
2000 9.3% 13.1%
2001 −11.1% 1.6%
2002 −17.0% −13.0%

Source: AAII.

Based on the data in Table 3-15 repeated above, answer the following:

1. Calculate the sample variance of return for (A) SLASX and (B) PRFDX.
2. Calculate sample standard deviation of return for (A) SLASX and (B) PRFDX.
3. Contrast the dispersion of returns as measured by standard deviation of return

and mean absolute deviation of return for each of the two funds.
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Solution to 1: To calculate the sample variance, we use Equation 3-13. (Deviation
answers are all given in percent squared.)

A. SLASX

i. The sample mean is R = (16.2 + 20.3 + 9.3 − 11.1 − 17.0)/5 =
17.7/5 = 3.54%.

ii. The squared deviations from the mean are

(16.2 − 3.54)2 = (12.66)2 = 160.2756
(20.3 − 3.54)2 = (16.76)2 = 280.8976
(9.3 − 3.54)2 = (5.76)2 = 33.1776

(−11.1 − 3.54)2 = (−14.64)2 = 214.3296
(−17.0 − 3.54)2 = (−20.54)2 = 421.8916

iii. The sum of the squared deviations from the mean is 160.2756 +
280.8976 + 33.1776 + 214.3296 + 421.8916 = 1,110.5720.

iv. Divide the sum of the squared deviations from the mean by n − 1:
1,110.5720/(5 − 1) = 1,110.5720/4 = 277.6430.

B. PRFDX

i. The sample mean is R = (9.2 + 3.8 + 13.1 + 1.6 − 13.0)/5 =
14.7/5 = 2.94%.

ii. The squared deviations from the mean are
(9.2 − 2.94)2 = (6.26)2 = 39.1876
(3.8 − 2.94)2 = (0.86)2 = 0.7396

(13.1 − 2.94)2 = (10.16)2 = 103.2256
(1.6 − 2.94)2 = (−1.34)2 = 1.7956

(−13.0 − 2.94)2 = (−15.94)2 = 254.0836
iii. The sum of the squared deviations from the mean is 39.1876 + 0.7396 +

103.2256 + 1.7956 + 254.0836 = 399.032.
iv. Divide the sum of the squared deviations from the mean by n − 1:

399.032/4 = 99.758.

Solution to 2: To find the standard deviation, we take the positive square root of
variance.

A. For SLASX, σ = √
277.6430 = 16.66% or 16.7 percent.

B. For PRFDX, σ = √
99.758 = 9.99% or 10.0 percent.

Solution to 3: Table 3-21 summarizes the results from Part 2 for standard deviation and
incorporates the results for MAD from Example 3-10.

Note that the mean absolute deviation is less than the standard deviation. The mean
absolute deviation will always be less than or equal to the standard deviation because the
standard deviation gives more weight to large deviations than to small ones (remember,
the deviations are squared).
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TABLE 3-21 Two Mutual Funds: Comparison of Standard Deviation
and Mean Absolute Deviation

Fund Standard Deviation Mean Absolute Deviation

SLASX 16.7% 14.1%
PRFDX 10.0% 6.9%

Because the standard deviation is a measure of dispersion about the arithmetic mean, we
usually present the arithmetic mean and standard deviation together when summarizing data.
When we are dealing with data that represent a time series of percent changes, presenting
the geometric mean—representing the compound rate of growth—is also very helpful.
Table 3-22 presents the historical geometric and arithmetic mean returns, along with the
historical standard deviation of returns, for various equity return series. We present these
statistics for nominal (rather than inflation-adjusted) returns so we can observe the original
magnitudes of the returns.

TABLE 3-22 Equity Market Returns: Means and
Standard Deviations

Geometric Arithmetic Standard
Return Series Mean Mean Deviation

I. Ibbotson Associates Series: 1926–2002

S&P 500 (Annual) 10.20% 12.20% 20.49
S&P 500 (Monthly) 0.81% 0.97% 5.65

II. Dimson et al. (2002) Series (Annual): 1900–2000

Australia 11.9% 13.3% 18.2%
Belgium 8.2% 10.5% 24.1%
Canada 9.7% 11.0% 16.6%
Denmark 8.9% 10.7% 21.7%
France 12.1% 14.5% 24.6%
Germany 9.7% 15.2% 36.4%
Ireland 9.5% 11.5% 22.8%
Italy 12.0% 16.1% 34.2%
Japan 12.5% 15.9% 29.5%
Netherlands 9.0% 11.0% 22.7%
South Africa 12.0% 14.2% 23.7%
Spain 10.0% 12.1% 22.8%
Sweden 11.6% 13.9% 23.5%
Switzerland 7.6% 9.3% 19.7%
United Kingdom 10.1% 11.9% 21.8%
United States 10.1% 12.0% 19.9%

Source: Ibbotson EnCorr Analyzer; Dimson et al.
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7.5. Semivariance, Semideviation, and Related Concepts
An asset’s variance or standard deviation of returns is often interpreted as a measure of the
asset’s risk. Variance and standard deviation of returns take account of returns above and
below the mean, but investors are concerned only with downside risk, for example, returns
below the mean. As a result, analysts have developed semivariance, semideviation, and related
dispersion measures that focus on downside risk. Semivariance is defined as the average
squared deviation below the mean. Semideviation (sometimes called semistandard deviation)
is the positive square root of semivariance. To compute the sample semivariance, for example,
we take the following steps:

i. Calculate the sample mean.
ii. Identify the observations that are smaller than the mean (discarding observations equal

to and greater than the mean); suppose there are n∗ observations smaller than the mean.
iii. Compute the sum of the squared negative deviations from the mean (using the n∗

observations that are smaller than the mean).
iv. Divide the sum of the squared negative deviations from Step iii by n∗ − 1. A formula

for semivariance is ∑
for all Xi<X

(Xi − X )2/(n∗ − 1)

To take the case of Selected American Shares with returns (in percent) of 16.2, 20.3, 9.3,
−11.1, and −17.0, we earlier calculated a mean return of 3.54 percent. Two returns, −11.1
and −17.0, are smaller than 3.54 (n∗ = 2). We compute the sum of the squared negative devi-
ations from the mean as (−11.1 − 3.54)2 + (−17.0 − 3.54)2 = −14.642 + (−20.54)2 =
214.3296 + 421.8916 = 636.2212. With n∗ − 1 = 1, we conclude that semivariance is
636.2212/1 = 636.2212 and that semideviation is

√
636.2212 = 25.2 percent, approx-

imately. The semideviation of 25.2 percent is greater than the standard deviation of
16.7 percent. From this downside risk perspective, therefore, standard deviation under-
states risk.

In practice, we may be concerned with values of return (or another variable) below some
level other than the mean. For example, if our return objective is 10 percent annually, we may
be concerned particularly with returns below 10 percent a year. We can call 10 percent the
target. The name target semivariance has been given to average squared deviation below a
stated target, and target semideviation is its positive square root. To calculate a sample target
semivariance, we specify the target as a first step. After identifying observations below the
target, we find the sum of the squared negative deviations from the target and divide that sum
by the number of observations below the target minus 1. A formula for target semivariance is

∑
for all Xi<B

(Xi − B)2/(n∗ − 1)

where B is the target and n∗ is the number of observations below the target. With a target return
of 10 percent, we find in the case of Selected American Shares that three returns (9.3, −11.1,
and −17.0) were below the target. The target semivariance is [(9.3 − 10.0)2 + (−11.1 −
10.0)2 + (−17.0 − 10.0)2]/(3 − 1) = 587.35, and the target semideviation is

√
587.35 =

24.24 percent, approximately.
When return distributions are symmetric, semivariance is a constant proportion (one-half)

of variance and the two measures are effectively equivalent. For asymmetric distributions,



Chapter 3 Statistical Concepts and Market Returns 111

variance and semivariance rank prospects’ risk differently.32 Semivariance (or semideviation)
and target semivariance (or target semideviation) have intuitive appeal, but they are harder
to work with mathematically than variance.33 Variance or standard deviation enters into the
definition of many of the most commonly used finance risk concepts, such as the Sharpe ratio
and beta. Perhaps because of these reasons, variance (or standard deviation) is much more
frequently used in investment practice.

7.6. Chebyshev’s Inequality
The Russian mathematician Pafnuty Chebyshev developed an inequality using standard
deviation as a measure of dispersion. The inequality gives the proportion of values within k
standard deviations of the mean.

• Definition of Chebyshev’s Inequality. According to Chebyshev’s inequality, the pro-
portion of the observations within k standard deviations of the arithmetic mean is at least
1 − 1/k2 for all k > 1.

Table 3-23 illustrates the proportion of the observations that must lie within a certain
number of standard deviations around the sample mean.

When k = 1.25, for example, the inequality states that the minimum proportion of the
observations that lie within ±1.25s is 1 − 1/(1.25)2 = 1 − 0.64 = 0.36 or 36 percent.

The most frequently cited facts that result from Chebyshev’s inequality are that a
two-standard-deviation interval around the mean must contain at least 75 percent of the
observations and a three-standard-deviation interval around the mean must contain at least 89
percent of the observations, no matter how the data are distributed.

The importance of Chebyshev’s inequality stems from its generality. The inequality holds
for samples and populations and for discrete and continuous data regardless of the shape
of the distribution. As we shall see in the chapter on sampling, we can make much more
precise interval statements if we can assume that the sample is drawn from a population that
follows a specific distribution called the normal distribution. Frequently, however, we cannot
confidently assume that distribution.

TABLE 3-23 Proportions from Chebyshev’s Inequality

k Interval Around the Sample Mean Proportion

1.25 X ± 1.25s 36%
1.50 X ± 1.50s 56%
2.00 X ± 2s 75%
2.50 X ± 2.50s 84%
3.00 X ± 3s 89%
4.00 X ± 4s 94%

Note: Standard deviation is denoted as s.

32For negatively skewed returns, semivariance is greater than one-half variance; for positively skewed
returns, semivariance is less than one-half variance. See Estrada (2003). We discuss skewness later in this
chapter.
33As discussed in the chapter on probability concepts and the chapter on portfolio concepts, we can find
a portfolio’s variance as a straightforward function of the variances and correlations of the component
securities. There is no similar procedure for semivariance and target semivariance. We also cannot take
the derivative of semivariance or target semivariance.
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The next example illustrates the use of Chebyshev’s inequality.

EXAMPLE 3-13 Applying Chebyshev’s Inequality

According to Table 3-22, the arithmetic mean monthly return and standard deviation of
monthly returns on the S&P 500 were 0.97 percent and 5.65 percent, respectively, during
the 1926–2002 period, totaling 924 monthly observations. Using this information,
address the following:

1. Calculate the endpoints of the interval that must contain at least 75 percent of
monthly returns according to Chebyshev’s inequality.

2. What are the minimum and maximum number of observations that must lie in
the interval computed in Part 1, according to Chebyshev’s inequality?

Solution to 1: According to Chebyshev’s inequality, at least 75 percent of the observations
must lie within two standard deviations of the mean, X ± 2s. For the monthly S&P 500
return series, we have 0.97% ± 2(5.65%) = 0.97% ± 11.30%. Thus the lower end-
point of the interval that must contain at least 75 percent of the observations is 0.97% −
11.30% = −10.33%, and the upper endpoint is 0.97% + 11.30% = 12.27%.

Solution to 2: For a sample size of 924, at least 0.75(924) = 693 observations must lie
in the interval from −10.33% to 12.27% that we computed in Part 1. Chebyshev’s
inequality gives the minimum percentage of observations that must fall within a given
interval around the mean, but it does not give the maximum percentage. Table 3-
4, which gave the frequency distribution of monthly returns on the S&P 500, is
excerpted below. The data in the excerpted table are consistent with the prediction of
Chebyshev’s inequality. The set of intervals running from −10.0% to 12.0% is just
slightly narrower than the two-standard-deviation interval −10.33% to 12.27%. A total
of 886 observations (approximately 96 percent of observations) fall in the range from
−10.0% to 12.0%.

TABLE 3-4 (Excerpt) Frequency Distribution
for the Monthly Total Return on the S&P 500,
January 1926 to December 2002

Return Interval Absolute Frequency

−10.0% to −8.0% 20
−8.0% to −6.0% 30
−6.0% to −4.0% 54
−4.0% to −2.0% 90
−2.0% to 0.0% 138

0.0% to 2.0% 182
2.0% to 4.0% 153
4.0% to 6.0% 126
6.0% to 8.0% 58
8.0% to 10.0% 21

10.0% to 12.0% 14
886
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7.7. Coefficient of Variation

We noted earlier that standard deviation is more easily interpreted than variance because
standard deviation uses the same units of measurement as the observations. We may sometimes
find it difficult to interpret what standard deviation means in terms of the relative degree of
variability of different sets of data, however, either because the datasets have markedly different
means or because the datasets have different units of measurement. In this section we explain a
measure of relative dispersion, the coefficient of variation that can be useful in such situations.
Relative dispersion is the amount of dispersion relative to a reference value or benchmark.

We can illustrate the problem of interpreting the standard deviation of datasets with
markedly different means using two hypothetical samples of companies. The first sample,
composed of small companies, includes companies with 2003 sales of ¤50 million, ¤75
million, ¤65 million, and ¤90 million. The second sample, composed of large companies,
includes companies with 2003 sales of ¤800 million, ¤825 million, ¤815 million, and ¤840
million. We can verify using Equation 3-14 that the standard deviation of sales in both samples
is ¤16.8 million.34 In the first sample, the largest observation, ¤90 million, is 80 percent larger
than the smallest observation, ¤50 million. In the second sample, the largest observation is
only 5 percent larger than the smallest observation. Informally, a standard deviation of ¤16.8
million represents a high degree of variability relative to the first sample, which reflects mean
2003 sales of ¤70 million, but a small degree of variability relative to the second sample, which
reflects mean 2003 sales of ¤820 million.

The coefficient of variation is helpful in situations such as that just described.

• Coefficient of Variation Formula. The coefficient of variation, CV, is the ratio of the
standard deviation of a set of observations to their mean value:35

CV = s/X (3-15)

where s is the sample standard deviation and X is the sample mean.

When the observations are returns, for example, the coefficient of variation measures the
amount of risk (standard deviation) per unit of mean return. Expressing the magnitude of
variation among observations relative to their average size, the coefficient of variation permits
direct comparisons of dispersion across different datasets. Reflecting the correction for scale,
the coefficient of variation is a scale-free measure (that is, it has no units of measurement).

We can illustrate the application of the coefficient of variation using our earlier example
of two samples of companies. The coefficient of variation for the first sample is (¤16.8
million)/(¤70 million) = 0.24; the coefficient of variation for the second sample is (¤16.8
million)/(¤820 million) = 0.02. This confirms our intuition that the first sample had much
greater variability in sales than the second sample. Note that 0.24 and 0.02 are pure numbers
in the sense that they are free of units of measurement (because we divided the standard
deviation by the mean, which is measured in the same units as the standard deviation). If we
need to compare the dispersion among data sets stated in different units of measurement, the
coefficient of variation can be useful because it is free from units of measurement. Example
3-14 illustrates the calculation of the coefficient of variation.

34The second sample was created by adding ¤750 million to each observation in the first sample.
Standard deviation (and variance) has the property of remaining unchanged if we add a constant amount
to each observation.
35The reader will also encounter CV defined as 100(s/X ), which states CV as a percentage.
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EXAMPLE 3-14 Calculating the Coefficient of Variation

Table 3-24 summarizes annual mean returns and standard deviations for several major
U.S. asset classes, using an option in Ibbotson EnCorr Analyzer to convert monthly
return statistics to annual ones.

TABLE 3-24 Arithmetic Mean Annual Return and Standard Deviation of
Returns, U.S. Asset Classes, 1926–2002

Arithmetic Mean Standard Deviation
Asset Class Return of Return

S&P 500 12.3% 21.9%
U.S. small stock 16.9% 35.1%
U.S. long-term corporate 6.1% 7.2%
U.S. long-term government 5.8% 8.2%
U.S. 30-day T-bill 3.8% 0.9%

Source: Ibbotson EnCorr Analyzer.

Using the information in Table 3-24, address the following:

1. Calculate the coefficient of variation for each asset class given.
2. Rank the asset classes from most risky to least risky using CV as a measure of

relative dispersion.
3. Determine whether there is more difference between the absolute or the relative

riskiness of the S&P 500 and U.S. small stocks. Use the standard deviation as a
measure of absolute risk and CV as a measure of relative risk.

Solution to 1:

S&P 500: CV = 21.9%/12.3% = 1.780

U.S. small stock: CV = 35.1%/16.9% = 2.077

U.S. long-term corporate: CV = 7.2%/6.1% = 1.180

U.S. long-term government: CV = 8.2%/5.8% = 1.414

U.S. 30-day T-bill: CV = 0.9%/3.8% = 0.237

Solution to 2: Based on CV, the ranking is U.S. small stocks (most risky), S&P 500,
U.S. long-term governments, U.S. long-term corporates, and U.S. 30-day T-bills (least
risky).

Solution to 3: As measured both by standard deviation and CV, U.S. small stocks
were riskier than the S&P 500. However, the CVs reveal less difference between small
stock and S&P 500 return variability than that suggested by the standard deviations
alone. The standard deviation of small stock returns was (35.1 − 21.9)/21.9 = 0.603
or about 60 percent larger than S&P 500 returns, compared with a difference in the CV
of (2.077 − 1.780)/1.780 = 0.167 or 17 percent.
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7.8. The Sharpe Ratio

Although CV was designed as a measure of relative dispersion, its inverse reveals something
about return per unit of risk because the standard deviation of returns is commonly used as
a measure of investment risk. For example, a portfolio with a mean monthly return of 1.19
percent and a standard deviation of 4.42 percent has an inverse CV of 1.19%/4.42% = 0.27.
This result indicates that each unit of standard deviation represents a 0.27 percent return.

A more precise return–risk measure recognizes the existence of a risk-free return, a return
for virtually zero standard deviation. With a risk-free asset, an investor can choose a risky
portfolio, p, and then combine that portfolio with the risk-free asset to achieve any desired
level of absolute risk as measured by standard deviation of return, sp. Consider a graph with
mean return on the vertical axis and standard deviation of return on the horizontal axis. Any
combination of portfolio p and the risk-free asset lies on a ray (line) with slope equal to the
quantity (Mean return − Risk-free return) divided by sp. The ray giving investors choices
offering the most reward (return in excess of the risk-free rate) per unit of risk is the one with
the highest slope. The ratio of excess return to standard deviation of return for a portfolio
p—the slope of the ray passing through p—is a single-number measure of a portfolio’s
performance known as the Sharpe ratio, after its developer, William F. Sharpe.

• Sharpe Ratio Formula. The Sharpe ratio for a portfolio p, based on historical returns,
is defined as

Sh = Rp − RF

sp
(3-16)

where Rp is the mean return to the portfolio, RF is the mean return to a risk-free asset, and
sp is the standard deviation of return on the portfolio.36

The numerator of the Sharpe measure is the portfolio’s mean return minus the mean return
on the risk-free asset over the sample period. The Rp − RF term measures the extra reward
that investors receive for the added risk taken. We call this difference the mean excess return
on portfolio p. Thus the Sharpe ratio measures the reward, in terms of mean excess return,
per unit of risk, as measured by standard deviation of return. Those risk-averse investors who
make decisions only in terms of mean return and standard deviation of return prefer portfolios
with larger Sharpe ratios to those with smaller Sharpe ratios.

36The equation presents the ex post or historical Sharpe ratio. We can also think of the Sharpe ratio for a
portfolio going forward based on our expectations for mean return, the risk-free return, and the standard
deviation of return; this would be the ex ante Sharpe ratio. One may also encounter an alternative
calculation for the Sharpe ratio in which the denominator is the standard deviation of the series (Portfolio
return − Risk-free return) rather than the standard deviation of portfolio return; in practice, the two
standard deviation calculations generally yield very similar results. For more information on the Sharpe
ratio (which has also been called the Sharpe measure, the reward-to-variability ratio, and the excess return
to variability measure), see Elton, Gruber, Brown, and Goetzmann (2003) and Sharpe (1994).
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To illustrate the calculation of the Sharpe ratio, consider the performance of the S&P
500 and U.S. small stocks during the 1926–2002 period, as given previously in Table 3-24.
Using the mean U.S. T-bill return to represent the risk-free rate, we find

S&P 500: Sh = 12.3 − 3.8

21.9
= 0.39

U.S. small stocks: Sh = 16.9 − 3.8

35.1
= 0.37

Although U.S. small stocks earned higher mean returns, they performed slightly less well than
the S&P 500, as measured by the Sharpe ratio.

The Sharpe ratio is a mainstay of performance evaluation. We must issue two cautions
concerning its use, one related to interpreting negative Sharpe ratios and the other to conceptual
limitations.

Finance theory tells us that in the long run, investors should be compensated with
additional mean return above the risk-free rate for bearing additional risk, at least if the risky
portfolio is well diversified. If investors are so compensated, the numerator of the Sharpe
ratio will be positive. Nevertheless, we often find that portfolios exhibit negative Sharpe ratios
when the ratio is calculated over periods in which bear markets for equities dominate. This
raises a caution when dealing with negative Sharpe ratios. With positive Sharpe ratios, a
portfolio’s Sharpe ratio decreases if we increase risk, all else equal. That result is intuitive for
a risk-adjusted performance measure. With negative Sharpe ratios, however, increasing risk
results in a numerically larger Sharpe ratio (for example, doubling risk may increase the Sharpe
ratio from −1 to −0.5). Therefore, in a comparison of portfolios with negative Sharpe ratios,
we cannot generally interpret the larger Sharpe ratio (the one closer to zero) to mean better
risk-adjusted performance.37 Practically, to make an interpretable comparison in such cases
using the Sharpe ratio, we may need to increase the evaluation period such that one or more
of the Sharpe ratios becomes positive; we might also consider using a different performance
evaluation metric.

The conceptual limitation of the Sharpe ratio is that it considers only one aspect of risk,
standard deviation of return. Standard deviation is most appropriate as a risk measure for
portfolio strategies with approximately symmetric return distributions. Strategies with option
elements have asymmetric returns. Relatedly, an investment strategy may produce frequent
small gains but have the potential for infrequent but extremely large losses.38 Such a strategy is
sometimes described as picking up coins in front of a bulldozer; for example, some hedge fund
strategies tend to produce that return pattern. Calculated over a period in which the strategy is
working (a large loss has not occurred), this type of strategy would have a high Sharpe ratio. In
this case, the Sharpe ratio would give an overly optimistic picture of risk-adjusted performance
because standard deviation would incompletely measure the risk assumed.39 Therefore, before
applying the Sharpe ratio to evaluate a manager, we should judge whether standard deviation
adequately describes the risk of the manager’s investment strategy.

37If the standard deviations are equal, however, the portfolio with the negative Sharpe ratio closer to zero
is superior.
38This statement describes a return distribution with negative skewness. We discuss skewness later in
this chapter.
39For more information, see Amin and Kat (2003).



Chapter 3 Statistical Concepts and Market Returns 117

Example 3-15 illustrates the calculation of the Sharpe ratio in a portfolio performance
evaluation context.

EXAMPLE 3-15 Calculating the Sharpe Ratio

In earlier examples, we computed the various statistics for two mutual funds, Selected
American Shares (SLASX) and T. Rowe Price Equity Income (PRFDX), for a five-year
period ending in December 2002. Table 3-25 summarizes selected statistics for these
two mutual funds for a longer period, the 10-year period ending in 2002.

TABLE 3-25 Mutual Fund Mean Return and Standard Deviation
of Return, 1993–2002

Fund Arithmetic Mean Standard Deviation of Return

SLASX 12.58% 19.44%
PRFDX 11.64% 13.65%

Source: AAII.

The U.S. 30-day T-bill rate is frequently used as a proxy for the risk-free rate. Table 3-26
gives the annual return on T-bills for the 1993–2002 period.

TABLE 3-26 Annualized
U.S. 30-Day T-Bill Rates of
Return, 1993–2002

Year Return

1993 2.90%
1994 3.90%
1995 5.60%
1996 5.21%
1997 5.26%
1998 4.86%
1999 4.68%
2000 5.89%
2001 3.83%
2002 1.65%

Source: Ibbotson Associates.

Using the information in Tables 3-25 and 3-26, address the following:

1. Calculate the Sharpe ratios for SLASX and PRFDX during the 1993–2002
period.
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2. State which fund had superior risk-adjusted performance during this period, as
measured by the Sharpe ratio.

Solution to 1: We already have in hand the means of the portfolio return and standard
deviations of returns. The mean annual risk-free rate of return from 1993 to 2002,
using U.S. T-bills as a proxy, is (2.90 + 3.90 + 5.60 + 5.21 + 5.26 + 4.86 + 4.68 +
5.89 + 3.83 + 1.65)/10 = 43.78/10 = 4.38 percent.

SLASX: Sh,SLASX = 12.58 − 4.38

19.44
= 0.42

PRFDX: Sh,PRFDX = 11.64 − 4.38

13.65
= 0.53

Solution to 2: PRFDX had a higher positive Sharpe ratio than SLASX during the period.
As measured by the Sharpe ratio, PRFDX’s performance was superior.

8. SYMMETRY AND SKEWNESS IN
RETURN DISTRIBUTIONS

Mean and variance may not adequately describe an investment’s distribution of returns. In
calculations of variance, for example, the deviations around the mean are squared, so we do
not know whether large deviations are likely to be positive or negative. We need to go beyond
measures of central tendency and dispersion to reveal other important characteristics of the
distribution. One important characteristic of interest to analysts is the degree of symmetry in
return distributions.

If a return distribution is symmetrical about its mean, then each side of the distribution
is a mirror image of the other. Thus equal loss and gain intervals exhibit the same frequencies.
Losses from −5 percent to −3 percent, for example, occur with about the same frequency as
gains from 3 percent to 5 percent.

One of the most important distributions is the normal distribution, depicted in Figure 3-
6. This symmetrical, bell-shaped distribution plays a central role in the mean–variance model
of portfolio selection; it is also used extensively in financial risk management. The normal
distribution has the following characteristics:

• Its mean and median are equal.
• It is completely described by two parameters—its mean and variance.
• Roughly 68 percent of its observations lie between plus and minus one standard deviation

from the mean; 95 percent lie between plus and minus two standard deviations; and 99
percent lie between plus and minus three standard deviations.

A distribution that is not symmetrical is called skewed. A return distribution with positive
skew has frequent small losses and a few extreme gains. A return distribution with negative
skew has frequent small gains and a few extreme losses. Figure 3-7 shows positively and
negatively skewed distributions. The positively skewed distribution shown has a long tail on its
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FIGURE 3-6 Properties of a Normal Distribution (EV = Expected Value)
Source: Reprinted with permission from Fixed Income Readings for the Chartered Financial Analyst
Program. Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.
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Distribution Skewed to the Right
(Positively Skewed)

Distribution Skewed to the Left
(Negatively Skewed)

FIGURE 3-7 Properties of a Skewed Distribution
Source: Reprinted with permission from Fixed Income Readings for the Chartered Financial
AnalystProgram. Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.

right side; the negatively skewed distribution has a long tail on its left side. For the positively
skewed unimodal distribution, the mode is less than the median, which is less than the mean.
For the negatively skewed unimodal distribution, the mean is less than the median, which
is less than the mode.40 Investors should be attracted by a positive skew because the mean
return falls above the median. Relative to the mean return, positive skew amounts to a limited,
though frequent, downside compared with a somewhat unlimited, but less frequent, upside.

Skewness is the name given to a statistical measure of skew. (The word ‘‘skewness’’ is also
sometimes used interchangeably for ‘‘skew.’’) Like variance, skewness is computed using each
observation’s deviation from its mean. Skewness (sometimes referred to as relative skewness)
is computed as the average cubed deviation from the mean standardized by dividing by the
standard deviation cubed to make the measure free of scale.41 A symmetric distribution has
skewness of 0, a positively skewed distribution has positive skewness, and a negatively skewed
distribution has negative skewness, as given by this measure.

We can illustrate the principle behind the measure by focusing on the numerator.
Cubing, unlike squaring, preserves the sign of the deviations from the mean. If a distribution
is positively skewed with a mean greater than its median, then more than half of the deviations
from the mean are negative and less than half are positive. In order for the sum to be positive,
the losses must be small and likely, and the gains less likely but more extreme. Therefore, if
skewness is positive, the average magnitude of positive deviations is larger than the average
magnitude of negative deviations.

A simple example illustrates that a symmetrical distribution has a skewness measure equal
to 0. Suppose we have the following data: 1, 2, 3, 4, 5, 6, 7, 8, and 9. The mean outcome
is 5, and the deviations are −4, −3, −2, −1, 0, 1, 2, 3, and 4. Cubing the deviations yields
−64, −27, −8, −1, 0, 1, 8, 27, and 64, with a sum of 0. The numerator of skewness (and
so skewness itself) is thus equal to 0, supporting our claim. Below we give the formula for
computing skewness from a sample.

40As a mnemonic, in this case the mean, median, and mode occur in the same order as they would be
listed in a dictionary.
41We are discussing a moment coefficient of skewness. Some textbooks present the Pearson coefficient
of skewness, equal to 3(Mean − Median)/Standard deviation, which has the drawback of involving the
calculation of the median.
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TABLE 3-27 S&P 500 Annual and Monthly Total Returns, 1926–2002: Summary Statistics

Number of Arithmetic Standard Excess
Return Series Periods Mean Deviation Skewness Kurtosis

S&P 500 (Annual) 77 12.20% 20.49% −0.2943 −0.2207
S&P 500 (Monthly) 924 0.97% 5.65% 0.3964 9.4645

Source: Ibbotson EnCorr Analyzer.

• Sample Skewness Formula. Sample skewness (also called sample relative skewness),
SK , is

SK =
[

n
(n − 1)(n − 2)

]
n∑

i=1

(Xi − X )3

s3
(3-17)

where n is the number of observations in the sample and s is the sample standard deviation.42

The algebraic sign of Equation 3-17 indicates the direction of skew, with a negative SK

indicating a negatively skewed distribution and a positive SK indicating a positively skewed
distribution. Note that as n becomes large, the expression reduces to the mean cubed deviation,

SK ≈
(

1

n

)
n∑

i=1

(Xi − X )3

s3
. As a frame of reference, for a sample size of 100 or larger taken

from a normal distribution, a skewness coefficient of ±0.5 would be considered unusually
large.

Table 3-27 shows several summary statistics for the annual and monthly returns on the
S&P 500. Earlier we discussed the arithmetic mean return and standard deviation of return,
and we shall shortly discuss kurtosis.

Table 3-27 reveals that S&P 500 annual returns during this period were negatively skewed
while monthly returns were positively skewed, and the magnitude of skewness was greater for
the monthly series. We would find for other market series that the shape of the distribution of
returns often depends on the holding period examined.

Some researchers believe that investors should prefer positive skewness, all else equal—that
is, they should prefer portfolios with distributions offering a relatively large frequency of
unusually large payoffs.43 Different investment strategies may tend to introduce different types
and amounts of skewness into returns. Example 3-16 illustrates the calculation of skewness for
a managed portfolio.

EXAMPLE 3-16 Calculating Skewness for a Mutual Fund

Table 3-28 presents 10 years of annual returns on the T. Rowe Price Equity Income
Fund (PRFDX).

42The term n/[(n − 1)(n − 2)] in Equation 3-17 corrects for a downward bias in small samples.
43For more on the role of skewness in portfolio selection, see Reilly and Brown (2003) and Elton et al.
(2003) and the references therein.
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TABLE 3-28 Annual Rates
of Return: T. Rowe Price
Equity Income, 1993–2002

Year Return

1993 14.8%
1994 4.5%
1995 33.3%
1996 20.3%
1997 28.8%
1998 9.2%
1999 3.8%
2000 13.1%
2001 1.6%
2002 −13.0%

Source: AAII.

Using the information in Table 3-28, address the following:

1. Calculate the skewness of PRFDX showing two decimal places.
2. Characterize the shape of the distribution of PRFDX returns based on your

answer to Part 1.

Solution to 1: To calculate skewness, we find the sum of the cubed deviations from
the mean, divide by the standard deviation cubed, and then multiply that result by
n/[(n − 1)(n − 2)]. Table 3-29 gives the calculations.

TABLE 3-29 Calculating Skewness for PRFDX

Year Rt Rt − R (Rt − R)3

1993 14.8% 3.16 31.554
1994 4.5% −7.14 −363.994
1995 33.3% 21.66 10,161.910
1996 20.3% 8.66 649.462
1997 28.8% 17.16 5,053.030
1998 9.2% −2.44 −14.527
1999 3.8% −7.84 −481.890
2000 13.1% 1.46 3.112
2001 1.6% −10.04 −1,012.048
2002 −13.0% −24.64 −14,959.673

n = 10
R = 11.64%

Sum = −933.064
s = 13.65% s3 = 2,543.302

Sum/s3 = −0.3669
n/[(n − 1)(n − 2)] = 0.1389

Skewness = −0.05

Source: AAII.
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Using Equation 3-17, the calculation is:

SK =
[

10

(9)(8)

] −933.064

13.653
= −0.05

In this example, five deviations are negative and five are positive. Two large positive
deviations, in 1995 and 1997, are more than offset by a very large negative deviation in
2002 and a moderately large negative deviation in 2001, both bear market years. The
result is that skewness is a very small negative number.

Solution to 2: Based on this small sample, the distribution of annual returns for the
fund appears to be approximately symmetric (or very slightly negatively skewed). The
negative and positive deviations from the mean are equally frequent, and large positive
deviations approximately offset large negative deviations.

9. KURTOSIS IN RETURN DISTRIBUTIONS

In the previous section, we discussed how to determine whether a return distribution deviates
from a normal distribution because of skewness. One other way in which a return distribution
might differ from a normal distribution is by having more returns clustered closely around
the mean (being more peaked) and more returns with large deviations from the mean (having
fatter tails). Relative to a normal distribution, such a distribution has a greater percentage
of small deviations from the mean return (more small surprises) and a greater percentage of
extremely large deviations from the mean return (more big surprises). Most investors would
perceive a greater chance of extremely large deviations from the mean as increasing risk.

Kurtosis is the statistical measure that tells us when a distribution is more or less
peaked than a normal distribution. A distribution that is more peaked than normal is called
leptokurtic (lepto from the Greek word for slender); a distribution that is less peaked than
normal is called platykurtic (platy from the Greek word for broad); and a distribution identical
to the normal distribution in this respect is called mesokurtic (meso from the Greek word for
middle). The situation of more-frequent extremely large surprises that we described is one of
leptokurtosis.44

Figure 3-8 illustrates a leptokurtic distribution. It is more peaked and has fatter tails than
the normal distribution.

The calculation for kurtosis involves finding the average of deviations from the mean
raised to the fourth power and then standardizing that average by dividing by the standard
deviation raised to the fourth power.45 For all normal distributions, kurtosis is equal to 3.
Many statistical packages report estimates of excess kurtosis, which is kurtosis minus 3.46

Excess kurtosis thus characterizes kurtosis relative to the normal distribution. A normal or
other mesokurtic distribution has excess kurtosis equal to 0. A leptokurtic distribution has

44Kurtosis has been described as an illness characterized by episodes of extremely rude behavior.
45This measure is free of scale. It is always positive because the deviations are raised to the fourth power.
46Ibbotson and some software packages, such as Microsoft Excel, label ‘‘excess kurtosis’’ as simply
‘‘kurtosis.’’ This highlights the fact that one should familiarize oneself with the description of statistical
quantities in any software packages that one uses.
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FIGURE 3-8 Leptokurtic: Fat Tailed
Source: Reprinted with permission from Fixed Income Readings for the Chartered Financial
AnalystProgram. Copyright 2000, Frank J. Fabozzi Associates, New Hope, PA.

excess kurtosis greater than 0, and a platykurtic distribution has excess kurtosis less than 0.
A return distribution with positive excess kurtosis—a leptokurtic return distribution—has
more frequent extremely large deviations from the mean than a normal distribution. Below is
the expression for computing kurtosis from a sample.

• Sample Excess Kurtosis Formula. The sample excess kurtosis is

KE =




n(n + 1)

(n − 1)(n − 2)(n − 3)

n∑
i=1

(Xi − X )4

s4


 − 3(n − 1)2

(n − 2)(n − 3)
(3-18)

where n is the sample size and s is the sample standard deviation.

In Equation 3-18, sample kurtosis is the first term. Note that as n becomes large, Equation 3-

18 approximately equals
n2

n3

∑
(X − X )4

s4
− 3n2

n2
= 1

n

∑
(X − X )4

s4
− 3. For a sample of 100

or larger taken from a normal distribution, a sample excess kurtosis of 1.0 or larger would be
considered unusually large.
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Most equity return series have been found to be leptokurtic. If a return distribution has
positive excess kurtosis (leptokurtosis) and we use statistical models that do not account for
the fatter tails, we will underestimate the likelihood of very bad or very good outcomes. For
example, the return on the S&P 500 for 19 October 1987 was 20 standard deviations away
from the mean daily return. Such an outcome is possible with a normal distribution, but its
likelihood is almost equal to 0. If daily returns are drawn from a normal distribution, a return
four standard deviations or more away from the mean is expected once every 50 years; a return
greater than five standard deviations away is expected once every 7,000 years. The return for
October 1987 is more likely to have come from a distribution that had fatter tails than from
a normal distribution. Looking at Table 3-27 given earlier, the monthly return series for the
S&P 500 has very large excess kurtosis, approximately 9.5. It is extremely fat-tailed relative to
the normal distribution. By contrast, the annual return series has very slightly negative excess
kurtosis (roughly −0.2). The results for excess kurtosis in the table are consistent with research
findings that the normal distribution is a better approximation for U.S. equity returns for
annual holding periods than for shorter ones (such as monthly).47

The following example illustrates the calculations for sample excess kurtosis for one of the
two mutual funds we have been examining.

EXAMPLE 3-17 Calculating Sample Excess Kurtosis

Having concluded in Example 3-16 that the annual returns on T. Rowe Price Equity
Income Fund were approximately symmetrically distributed during the 1993–2002
period, what can we say about the kurtosis of the fund’s return distribution? Table 3-28
(repeated below) recaps the annual returns for the fund.

TABLE 3-28 (repeated)
Annual Rates of Return:
T. Rowe Price Equity Income,
1993–2002

Year Return

1993 14.8%
1994 4.5%
1995 33.3%
1996 20.3%
1997 28.8%
1998 9.2%
1999 3.8%
2000 13.1%
2001 1.6%
2002 −13.0%

Source: AAII.

47See Campbell, Lo, and MacKinlay (1997) for more details.
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Using the information from Table 3-28 repeated above, address the following:

1. Calculate the sample excess kurtosis of PRFDX showing two decimal places.
2. Characterize the shape of the distribution of PRFDX returns based on your

answer to Part 1 as leptokurtic, mesokurtic, or platykurtic.

Solution to 1: To calculate excess kurtosis, we find the sum of the deviations from
the mean raised to the fourth power, divide by the standard deviation raised to
the fourth power, and then multiply that result by n(n + 1)/[(n − 1)(n − 2)(n − 3)].
This calculation determines kurtosis. Excess kurtosis is kurtosis minus 3(n − 1)2/[(n −
2)(n − 3)]. Table 3-30 gives the calculations.

TABLE 3-30 Calculating Kurtosis for PRFDX

Year Rt Rt − R (Rt − R)4

1993 14.8% 3.16 99.712
1994 4.5% −7.14 2,598.920
1995 33.3% 21.66 220,106.977
1996 20.3% 8.66 5,624.340
1997 28.8% 17.16 86,709.990
1998 9.2% −2.44 35.445
1999 3.8% −7.84 3,778.020
2000 13.1% 1.46 4.544
2001 1.6% −10.04 10,160.963
2002 −13.0% −24.64 368,606.351

n = 10
R = 11.64%

Sum = 697,725.261
s = 13.65% s4 = 34,716.074

Sum/s4 = 20.098
n(n + 1)/[(n − 1)(n − 2)(n − 3)] = 0.2183

Kurtosis = 4.39
3(n − 1)2/[(n − 2)(n − 3)] = 4.34

Excess Kurtosis = 0.05

Source: AAII.

Using Equation 3-18, the calculation is:

KE =
[

110

(9)(8)(7)

697,725.261

13.654

]
− 3(9)2

(8)(7)

= 4.39 − 4.34

= 0.05
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Solution to 2: The distribution of PRFDX’s annual returns appears to be mesokurtic,
based on a sample excess kurtosis close to zero. With skewness and excess kurtosis both
close to zero, PRFDX’s annual returns appear to have been approximately normally
distributed during the period.48

10. USING GEOMETRIC AND
ARITHMETIC MEANS

With the concepts of descriptive statistics in hand, we will see why the geometric mean is appro-
priate for making investment statements about past performance. We will also explore why the
arithmetic mean is appropriate for making investment statements in a forward-looking context.

For reporting historical returns, the geometric mean has considerable appeal because it
is the rate of growth or return we would have had to earn each year to match the actual,
cumulative investment performance. In our simplified Example 3-8, for instance, we purchased
a stock for ¤100 and two years later it was worth ¤100, with an intervening year at ¤200. The
geometric mean of 0 percent is clearly the compound rate of growth during the two years.
Specifically, the ending amount is the beginning amount times (1 + RG )2. The geometric
mean is an excellent measure of past performance.

Example 3-8 illustrated how the arithmetic mean can distort our assessment of historical
performance. In that example, the total performance for the two-year period was unambigu-
ously 0 percent. With a 100 percent return for the first year and −50 percent for the second,
however, the arithmetic mean was 25 percent. As we noted previously, the arithmetic mean is
always greater than or equal to the geometric mean. If we want to estimate the average return
over a one-period horizon, we should use the arithmetic mean because the arithmetic mean
is the average of one-period returns. If we want to estimate the average returns over more
than one period, however, we should use the geometric mean of returns because the geometric
mean captures how the total returns are linked over time.

As a corollary to using the geometric mean for performance reporting, the use of
semilogarithmic rather than arithmetic scales is more appropriate when graphing past
performance.49 In the context of reporting performance, a semilogarithmic graph has an
arithmetic scale on the horizontal axis for time and a logarithmic scale on the vertical
axis for the value of the investment. The vertical axis values are spaced according to the
differences between their logarithms. Suppose we want to represent £1, £10, £100, and
£1,000 as values of an investment on the vertical axis. Note that each successive value
represents a 10-fold increase over the previous value, and each will be equally spaced
on the vertical axis because the difference in their logarithms is roughly 2.30; that is,
ln 10 − ln 1 = ln 100 − ln 10 = ln 1,000 − ln 100 = 2.30. On a semilogarithmic scale, equal

48It is useful to know that we can conduct a Jarque-Bera (JB) statistical test of normality based on
sample size n, sample skewness, and sample excess kurtosis. We can conclude that a distribution is not
normal with no more than a 5 percent chance of being wrong if the quantity JB = n[(S2

K /6) + (K 2
E /24)]

is 6 or greater for a sample with at least 30 observations. In this mutual fund example, we have
only 10 observations and the test described is only correct based on large samples (as a guideline, for
n ≥ 30). Gujarati (2003) provides more details on this test.
49See Campbell (1974) for more information.
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movements on the vertical axis reflect equal percentage changes, and growth at a constant
compound rate plots as a straight line. A plot curving upward reflects increasing growth rates
over time. The slopes of a plot at different points may be compared in order to judge relative
growth rates.

In addition to reporting historical performance, financial analysts need to calculate
expected equity risk premiums in a forward-looking context. For this purpose, the arithmetic
mean is appropriate.

We can illustrate the use of the arithmetic mean in a forward-looking context with
an example based on an investment’s future cash flows. In contrasting the geometric and
arithmetic means for discounting future cash flows, the essential issue concerns uncertainty.
Suppose an investor with $100,000 faces an equal chance of a 100 percent return or a −50
percent return, represented on the tree diagram as a 50/50 chance of a 100 percent return or
a −50 percent return per period. With 100 percent return in one period and −50 percent
return in the other, the geometric mean return is

√
2(0.5) − 1 = 0.

The geometric mean return of 0 percent gives the mode or median of ending wealth
after two periods and thus accurately predicts the modal or median ending wealth of
$100,000 in this example. Nevertheless, the arithmetic mean return better predicts the
arithmetic mean ending wealth. With equal chances of 100 percent or −50 percent returns,
consider the four equally likely outcomes of $400,000, $100,000, $100,000, and $25,000
as if they actually occurred. The arithmetic mean ending wealth would be $156,250 =
($400,000 + $100,000 + $100,000 + $25,000)/4. The actual returns would be 300 percent,
0 percent, 0 percent, and −75 percent for a two-period arithmetic mean return of (300 +
0 + 0 − 75)/4 = 56.25 percent. This arithmetic mean return predicts the arithmetic mean
ending wealth of $100,000 × 1.5625 = $156,250. Noting that 56.25 percent for two periods
is 25 percent per period, we then must discount the expected terminal wealth of $156,250 at
the 25 percent arithmetic mean rate to reflect the uncertainty in the cash flows.

Uncertainty in cash flows or returns causes the arithmetic mean to be larger than
the geometric mean. The more uncertain the returns, the more divergence exists between
the arithmetic and geometric means. The geometric mean return approximately equals the
arithmetic return minus half the variance of return.50 Zero variance or zero uncertainty in
returns would leave the geometric and arithmetic returns approximately equal, but real-world
uncertainty presents an arithmetic mean return larger than the geometric. For example, Dimson
et al. (2002) reported that from 1900 to 2000, U.S. equities had nominal annual returns
with an arithmetic mean of 12 percent and standard deviation of 19.9 percent. They reported
the geometric mean as 10.1 percent. We can see the geometric mean is approximately the
arithmetic mean minus half of the variance of returns: RG ≈ 0.12 − (1/2)(0.1992) = 0.10.

50See Bodie, Kane, and Marcus (2001).



CHAPTER 4
PROBABILITY CONCEPTS

1. INTRODUCTION

All investment decisions are made in an environment of risk. The tools that allow us to make
decisions with consistency and logic in this setting come under the heading of probability. This
chapter presents the essential probability tools needed to frame and address many real-world
problems involving risk. We illustrate how these tools apply to such issues as predicting
investment manager performance, forecasting financial variables, and pricing bonds so that
they fairly compensate bondholders for default risk. Our focus is practical. We explore in detail
the concepts that are most important to investment research and practice. One such concept
is independence, as it relates to the predictability of returns and financial variables. Another is
expectation, as analysts continually look to the future in their analyses and decisions. Analysts
and investors must also cope with variability. We present variance, or dispersion around
expectation, as a risk concept important in investments. The reader will acquire specific skills
in using portfolio expected return and variance.

The basic tools of probability, including expected value and variance, are set out in
Section 2 of this chapter. Section 3 introduces covariance and correlation (measures of
relatedness between random quantities) and the principles for calculating portfolio expected
return and variance. Two topics end the chapter: Bayes’ formula and outcome counting. Bayes’
formula is a procedure for updating beliefs based on new information. In several areas, including
a widely used option-pricing model, the calculation of probabilities involves defining and
counting outcomes. The chapter ends with a discussion of principles and shortcuts for counting.

2. PROBABILITY, EXPECTED VALUE,
AND VARIANCE

The probability concepts and tools necessary for most of an analyst’s work are relatively few and
simple but require thought to apply. This section presents the essentials for working with prob-
ability, expectation, and variance, drawing on examples from equity and fixed income analysis.

An investor’s concerns center on returns. The return on a risky asset is an example of a
random variable, a quantity whose outcomes (possible values) are uncertain. For example, a
portfolio may have a return objective of 10 percent a year. The portfolio manager’s focus at
the moment may be on the likelihood of earning a return that is less than 10 percent over
the next year. Ten percent is a particular value or outcome of the random variable ‘‘portfolio
return.’’ Although we may be concerned about a single outcome, frequently our interest may
be in a set of outcomes: The concept of ‘‘event’’ covers both.

129
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• Definition of Event. An event is a specified set of outcomes.

We may specify an event to be a single outcome—for example, the portfolio earns a return
of 10 percent. (We use italics to highlight statements that define events.) We can capture the
portfolio manager’s concerns by defining the event as the portfolio earns a return below 10
percent. This second event, referring as it does to all possible returns greater than or equal to
−100 percent (the worst possible return) but less than 10 percent, contains an infinite number
of outcomes. To save words, it is common to use a capital letter in italics to represent a defined
event. We could define A = the portfolio earns a return of 10 percent and B = the portfolio earns
a return below 10 percent.

To return to the portfolio manager’s concern, how likely is it that the portfolio will earn
a return below 10 percent?

The answer to this question is a probability: a number between 0 and 1 that measures
the chance that a stated event will occur. If the probability is 0.40 that the portfolio earns a
return below 10 percent, there is a 40 percent chance of that event happening. If an event is
impossible, it has a probability of 0. If an event is certain to happen, it has a probability of 1.
If an event is impossible or a sure thing, it is not random at all. So, 0 and 1 bracket all the
possible values of a probability.

Probability has two properties, which together constitute its definition.

• Definition of Probability. The two defining properties of a probability are as follows:

1. The probability of any event E is a number between 0 and 1: 0 ≤ P(E) ≤ 1.
2. The sum of the probabilities of any set of mutually exclusive and exhaustive events

equals 1.

P followed by parentheses stands for ‘‘the probability of (the event in parentheses),’’ as in P(E)
for ‘‘the probability of event E .’’ We can also think of P as a rule or function that assigns
numerical values to events consistent with Properties 1 and 2.

In the above definition, the term mutually exclusive means that only one event can occur
at a time; exhaustive means that the events cover all possible outcomes. The events A = the
portfolio earns a return of 10 percent and B = the portfolio earns a return below 10 percent are
mutually exclusive because A and B cannot both occur at the same time. For example, a return
of 8.1 percent means that B has occurred and A has not occurred. Although events A and B
are mutually exclusive, they are not exhaustive because they do not cover outcomes such as a
return of 11 percent. Suppose we define a third event: C = the portfolio earns a return above 10
percent. Clearly, A, B, and C are mutually exclusive and exhaustive events. Each of P(A), P(B),
and P(C) is a number between 0 and 1, and P(A) + P(B) + P(C) = 1.

The most basic kind of mutually exclusive and exhaustive events is the set of all the
distinct possible outcomes of the random variable. If we know both that set and the assignment
of probabilities to those outcomes—the probability distribution of the random variable—we
have a complete description of the random variable, and we can assign a probability to any
event that we might describe.1 The probability of any event is the sum of the probabilities of
the distinct outcomes included in the definition of the event. Suppose the event of interest is
D = the portfolio earns a return above the risk-free rate, and we know the probability distribution
of portfolio returns. Assume the risk-free rate is 4 percent. To calculate P(D), the probability

1In the chapter on common probability distributions, we describe some of the probability distributions
most frequently used in investment applications.
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of D, we would sum the probabilities of the outcomes that satisfy the definition of the event;
that is, we would sum the probabilities of portfolio returns greater than 4 percent.

Earlier, to illustrate a concept, we assumed a probability of 0.40 for a portfolio earning less
than 10 percent, without justifying the particular assumption. We also talked about using a
probability distribution of outcomes to calculate the probability of events, without explaining
how a probability distribution might be estimated. Making actual financial decisions using
inaccurate probabilities might have grave consequences. How, in practice, do we estimate
probabilities? This topic is a field of study in itself, but there are three broad approaches to
estimating probabilities. In investments, we often estimate the probability of an event as a
relative frequency of occurrence based on historical data. This method produces an empirical
probability. For example, Amihud and Li (2002) report that of their sample of 16,189
dividend changes for NYSE and Amex stocks during the years 1962 to 2000, 14,911 were
increases and 1,278 were decreases. The empirical probability that a dividend change is a
dividend decrease for U.S. stocks is thus 1,278/16,189 = 0.08, approximately. We will point
out empirical probabilities in several places as they appear in this chapter.

Relationships must be stable through time for empirical probabilities to be accurate.
We cannot calculate an empirical probability of an event not in the historical record or
a reliable empirical probability for a very rare event. There are cases, then, in which we
may adjust an empirical probability to account for perceptions of changing relationships. In
other cases, we have no empirical probability to use at all. We may also make a personal
assessment of probability without reference to any particular data. Each of these three types
of probability is a subjective probability, one drawing on personal or subjective judgment.
Subjective probabilities are of great importance in investments. Investors, in making buy and
sell decisions that determine asset prices, often draw on subjective probabilities. Subjective
probabilities appear in various places in this chapter, notably in our discussion of Bayes’ formula.

In a more narrow range of well-defined problems, we can sometimes deduce probabilities
by reasoning about the problem. The resulting probability is an a priori probability, one
based on logical analysis rather than on observation or personal judgment. We will use this
type of probability in Example 4-6. The counting methods we discuss later are particularly
important in calculating an a priori probability. Because a priori and empirical probabilities
generally do not vary from person to person, they are often grouped as objective probabilities.

In business and elsewhere, we often encounter probabilities stated in terms of odds—for
instance, ‘‘the odds for E ’’ or the ‘‘odds against E .’’ For example, as of mid-2003, analysts’
fiscal year 2004 EPS forecasts for one Toronto Stock Exchange—listed company ranged from
C$3.98 to C$4.25. Nevertheless, one analyst asserts that the odds for the company beating
the highest estimate, C$4.25, are 1 to 7. A second analyst argues that the odds against that
happening are 15 to 1. What do those statements imply about the probability of the company’s
EPS beating the highest estimate? We interpret probabilities stated in terms of odds as follows:

• Probability Stated as Odds. Given a probability P(E),

1. Odds for E = P(E)/[1 − P(E)]. The odds for E are the probability of E divided by 1
minus the probability of E . Given odds for E of ‘‘a to b,’’ the implied probability of E
is a/(a + b).

In the example, the statement that the odds for the company’s EPS for FY2004 beating C$4.25 are
1 to 7 means that the speaker believes the probability of the event is 1/(1 + 7) = 1/8 = 0.125.

2. Odds against E = [1 − P(E)]/P(E), the reciprocal of odds for E . Given odds against E
of ‘‘a to b,’’ the implied probability of E is b/(a + b).
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The statement that the odds against the company’s EPS for FY2004 beating C$4.25 are 15 to 1
is consistent with a belief that the probability of the event is 1/(1 + 15) = 1/16 = 0.0625.

To further explain odds for an event, if P(E) = 1/8, the odds for E are (1/8)/(7/8) =
(1/8)(8/7) = 1/7, or ‘‘1 to 7.’’ For each occurrence of E , we expect seven cases of nonoccur-
rence; out of eight cases in total, therefore, we expect E to happen once, and the probability
of E is 1/8. In wagering, it is common to speak in terms of the odds against something, as in
Statement 2. For odds of ‘‘15 to 1’’ against E (an implied probability of E of 1/16), a $1 wager
on E , if successful, returns $15 in profits plus the $1 staked in the wager. We can calculate the
bet’s anticipated profit as follows:

Win: Probability = 1/16; Profit = $15

Loss: Probability = 15/16; Profit = −$1

Anticipated profit = (1/16)($15) + (15/16)(−$1) = $0

Weighting each of the wager’s two outcomes by the respective probability of the outcome, if
the odds (probabilities) are accurate, the anticipated profit of the bet is $0.

EXAMPLE 4-1 Profiting from Inconsistent Probabilities

You are examining the common stock of two companies in the same industry in which an
important antitrust decision will be announced next week. The first company, SmithCo
Corporation, will benefit from a governmental decision that there is no antitrust obstacle
related to a merger in which it is involved. You believe that SmithCo’s share price reflects
a 0.85 probability of such a decision. A second company, Selbert Corporation, will
equally benefit from a ‘‘go ahead’’ ruling. Surprisingly, you believe Selbert stock reflects
only a 0.50 probability of a favorable decision. Assuming your analysis is correct, what
investment strategy would profit from this pricing discrepancy?

Consider the logical possibilities. One is that the probability of 0.50 reflected in
Selbert’s share price is accurate. In that case, Selbert is fairly valued but SmithCo is
overvalued, as its current share price overestimates the probability of a ‘‘go ahead’’
decision. The second possibility is that the probability of 0.85 is accurate. In that case,
SmithCo shares are fairly valued, but Selbert shares, which build in a lower probability of
a favorable decision, are undervalued. You diagram the situation as shown in Table 4-1.

TABLE 4-1 Worksheet for Investment Problem

True Probability of a ‘‘Go Ahead’’ Decision

0.50 0.85

SmithCo Shares Overvalued Shares Fairly Valued
Selbert Shares Fairly Valued Shares Undervalued

The 0.50 probability column shows that Selbert shares are a better value than SmithCo
shares. Selbert shares are also a better value if a 0.85 probability is accurate. Thus
SmithCo shares are overvalued relative to Selbert shares.
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Your investment actions depend on your confidence in your analysis and on
any investment constraints you face (such as constraints on selling stock short).2 A
conservative strategy would be to buy Selbert shares and reduce or eliminate any current
position in SmithCo. The most aggressive strategy is to short SmithCo stock (relatively
overvalued) and simultaneously buy the stock of Selbert (relatively undervalued). This
strategy is known as a pairs arbitrage trade: a trade in two closely related stocks
involving the short sale of one and the purchase of the other.

The prices of SmithCo and Selbert shares reflect probabilities that are not consistent.
According to one of the most important probability results for investments, the Dutch
Book Theorem,3inconsistent probabilities create profit opportunities. In our example,
investors, by their buy and sell decisions to exploit the inconsistent probabilities, should
eliminate the profit opportunity and inconsistency.

To understand the meaning of a probability in investment contexts, we need to distinguish
between two types of probability: unconditional and conditional. Both unconditional and
conditional probabilities satisfy the definition of probability stated earlier, but they are
calculated or estimated differently and have different interpretations. They provide answers to
different questions.

The probability in answer to the straightforward question ‘‘What is the probability of this
event A?’’ is an unconditional probability, denoted P(A). Unconditional probabilities are
also frequently referred to as marginal probabilities.4

Suppose the question is ‘‘What is the probability that the stock earns a return above the
risk-free rate (event A)?’’ The answer is an unconditional probability that can be viewed as the
ratio of two quantities. The numerator is the sum of the probabilities of stock returns above
the risk-free rate. Suppose that sum is 0.70. The denominator is 1, the sum of the probabilities
of all possible returns. The answer to the question is P(A) = 0.70.

Contrast the question ‘‘What is the probability of A?’’ with the question ‘‘What is the
probability of A, given that B has occurred?’’ The probability in answer to this last question is
a conditional probability, denoted P(A | B) (read: ‘‘the probability of A given B’’).

Suppose we want to know the probability that the stock earns a return above the risk-free
rate (event A), given that the stock earns a positive return (event B). With the words ‘‘given
that,’’ we are restricting returns to those larger than 0 percent—a new element in contrast to
the question that brought forth an unconditional probability. The conditional probability is
calculated as the ratio of two quantities. The numerator is the sum of the probabilities of stock

2Selling short or shorting stock means selling borrowed shares in the hope of repurchasing them later at a
lower price.
3The theorem’s name comes from the terminology of wagering. Suppose someone places a $100 bet on
X at odds of 10 to 1 against X , and later he is able to place a $600 bet against X at odds of 1 to 1 against
X . Whatever the outcome of X , that person makes a riskless profit (equal to $400 if X occurs or $500
if X does not occur) because the implied probabilities are inconsistent. He is said to have made a Dutch
book in X . Ramsey (1931) presented the problem of inconsistent probabilities. See also Lo (1999).
4In analyses of probabilities presented in tables, unconditional probabilities usually appear at the ends
or margins of the table, hence the term marginal probability. Because of possible confusion with the way
marginal is used in economics (roughly meaning incremental), we use the term unconditional probability
throughout this discussion.
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returns above the risk-free rate; in this particular case, the numerator is the same as it was in
the unconditional case, which we gave as 0.70. The denominator, however, changes from 1 to
the sum of the probabilities for all outcomes (returns) above 0 percent. Suppose that number
is 0.80, a larger number than 0.70 because returns between 0 and the risk-free rate have some
positive probability of occurring. Then P(A | B) = 0.70/0.80 = 0.875. If we observe that the
stock earns a positive return, the probability of a return above the risk-free rate is greater than
the unconditional probability, which is the probability of the event given no other information.
The result is intuitive.5 To review, an unconditional probability is the probability of an event
without any restriction; it might even be thought of as a stand-alone probability. A conditional
probability, in contrast, is a probability of an event given that another event has occurred.

In discussing approaches to calculating probability, we gave one empirical estimate of
the probability that a change in dividends is a dividend decrease. That probability was an
unconditional probability. Given additional information on company characteristics, could
an investor refine that estimate? Investors continually seek an information edge that will help
improve their forecasts. In mathematical terms, they are attempting to frame their view of
the future using probabilities conditioned on relevant information or events. Investors do not
ignore useful information; they adjust their probabilities to reflect it. Thus, the concepts of
conditional probability (which we analyze in more detail below), as well as related concepts
discussed further on, are extremely important in investment analysis and financial markets.

To state an exact definition of conditional probability, we first need to introduce the con-
cept of joint probability. Suppose we ask the question ‘‘What is the probability of both A and
B happening?’’ The answer to this question is a joint probability, denoted P(AB) (read: ‘‘the
probability of A and B’’). If we think of the probability of A and the probability of B as sets built
of the outcomes of one or more random variables, the joint probability of A and B is the sum of
the probabilities of the outcomes they have in common. For example, consider two events: the
stock earns a return above the risk-free rate (A) and the stock earns a positive return (B). The out-
comes of A are contained within (a subset of) the outcomes of B, so P(AB) equals P(A). We can
now state a formal definition of conditional probability that provides a formula for calculating it.

• Definition of Conditional Probability. The conditional probability of A given that B
has occurred is equal to the joint probability of A and B divided by the probability of B
(assumed not to equal 0).

P(A | B) = P(AB)/P(B), P(B) �= 0 (4-1)

Sometimes we know the conditional probability P(A | B) and we want to know the joint
probability P(AB). We can obtain the joint probability from the following multiplication
rule for probabilities, which is Equation 4-1 rearranged.

• Multiplication Rule for Probability. The joint probability of A and B can be expressed as

P(AB) = P(A | B)P(B) (4-2)

5In this example, the conditional probability is greater than the unconditional probability. The conditional
probability of an event may, however, be greater than, equal to, or less than the unconditional probability,
depending on the facts. For instance, the probability that the stock earns a return above the risk-free rate
given that the stock earns a negative return is 0.
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Equation 4-2 states that the joint probability of A and B equals the probability of A given B times
the probability of B. Because P(AB) = P(BA), the expression P(AB) = P(BA) = P(B | A)P(A)
is equivalent to Equation 4-2.

EXAMPLE 4-2 Conditional Probabilities and Predictability
of Mutual Fund Performance (1)

Kahn and Rudd (1995) examined whether historical performance predicts future
performance for a sample of mutual funds that included 300 actively managed U.S.
domestic equity funds. One approach they used involved calculating each fund’s exposure
to a set of style indexes (the term ‘‘style’’ captures the distinctions of growth/value and
large-capitalization/mid-capitalization/small-capitalization). After establishing a style
benchmark (a comparison portfolio matched to the fund’s style) for each fund, Kahn
and Rudd computed the fund’s selection return for two periods. They defined selection
return as fund return minus the fund’s style-benchmark return. The first period was
October 1990 to March 1992. The top 50 percent of funds by selection return for
that period were labeled winners; the bottom 50 percent were labeled losers. Based on
selection return in the next period, April 1992 to September 1993, the top 50 percent
of funds were tagged as winners and the bottom 50 percent as losers for that period. An
excerpt from their results is given in Table 4-2. The winner–winner entry, for example,
shows that 79 of the 150 first-period winner funds were also winners in the second
period (52.7% = 79/150). Note that the four entries in parentheses in the table can be
viewed as conditional probabilities.

TABLE 4-2 Equity Selection Returns
Period 1: October 1990 to March 1992
Period 2: April 1992 to September 1993
Entries are number of funds (percent of row total in parentheses)

Period 2 Winner Period 2 Loser

Period 1 Winner 79 (52.7%) 71 (47.3%)
Period 1 Loser 71 (47.3%) 79 (52.7%)

Source: Kahn and Rudd (1995), Table 3.

Based on the data in Table 4-2, answer the following questions:

1. State the four events needed to define the four conditional probabilities.
2. State the four entries of the table as conditional probabilities using the form

P(this event | that event) = number.
3. Are the conditional probabilities in Part 2 empirical, a priori, or subjective

probabilities?
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4. Using information in the table, calculate the probability of the event a fund is a
loser in both Period 1 and Period 2. (Note that because 50 percent of funds are
categorized as losers in each period, the unconditional probability that a fund is
labeled a loser in either period is 0.5.)

Solution to 1: The four events needed to define the conditional probabilities are as
follows:

Fund is a Period 1 winner

Fund is a Period 1 loser

Fund is a Period 2 loser

Fund is a Period 2 winner

Solution to 2:
From Row 1:

P(fund is a Period 2 winner | fund is a Period 1 winner) = 0.527

P(fund is a Period 2 loser | fund is a Period 1 winner) = 0.473

From Row 2:

P(fund is a Period 2 winner | fund is a Period 1 loser) = 0.473

P(fund is a Period 2 loser | fund is a Period 1 loser) = 0.527

Solution to 3: These probabilities are calculated from data, so they are empirical
probabilities.

Solution to 4 : The estimated probability is 0.264. With A the event that a fund is a
Period 2 loser and B the event that a fund is a Period 1 loser, AB is the event that a
fund is a loser in both Period 1 and Period 2. From Table 4-2, P(A | B) = 0.527 and
P(B) = 0.50. Thus, using Equation 4-2, we find that

P(AB) = P(A | B)P(B) = 0.527(0.50) = 0.2635

or a probability of approximately 0.264.

When we have two events, A and B, that we are interested in, we often want to know
the probability that either A or B occurs. Here the word ‘‘or’’ is inclusive, meaning that either
A or B occurs or that both A and B occur. Put another way, the probability of A or B is the
probability that at least one of the two events occurs. Such probabilities are calculated using
the addition rule for probabilities.

• Addition Rule for Probabilities. Given events A and B, the probability that A or B
occurs, or both occur, is equal to the probability that A occurs, plus the probability that B
occurs, minus the probability that both A and B occur.
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FIGURE 4-1 Addition Rule for Probabilities

P(A or B) = P(A) + P(B) − P(AB) (4-3)

If we think of the individual probabilities of A and B as sets built of outcomes of one or
more random variables, the first step in calculating the probability of A or B is to sum the
probabilities of the outcomes in A to obtain P(A). If A and B share any outcomes, then if we
now added P(B) to P(A), we would count twice the probabilities of those shared outcomes.
So we add to P(A) the quantity [P(B) − P(AB)], which is the probability of outcomes in B
net of the probability of any outcomes already counted when we computed P(A). Figure 4-1
illustrates this process; we avoid double-counting the outcomes in the intersection of A and
B by subtracting P(AB). As an example of the calculation, if P(A) = 0.50, P(B) = 0.40,
and P(AB) = 0.20, then P(A or B) = 0.50 + 0.40 − 0.20 = 0.70. Only if the two events
A and B were mutually exclusive, so that P(AB) = 0, would it be correct to state that
P(A or B) = P(A) + P(B).

The next example shows how much useful information can be obtained using the few
probability rules presented to this point.

EXAMPLE 4-3 Probability of a Limit Order Executing

You have two buy limit orders outstanding on the same stock. A limit order to buy stock
at a stated price is an order to buy at that price or lower. A number of vendors, including
an Internet service that you use, supply the estimated probability that a limit order will be
filled within a stated time horizon, given the current stock price and the price limit. One
buy order (Order 1) was placed at a price limit of $10. The probability that it will execute
within one hour is 0.35. The second buy order (Order 2) was placed at a price limit of
$9.75; it has a 0.25 probability of executing within the same one-hour time frame.

1. What is the probability that either Order 1 or Order 2 will execute?
2. What is the probability that Order 2 executes, given that Order 1 executes?
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Solution to 1: The probability is 0.35. The two probabilities that are given are
P(Order 1 executes) = 0.35 and P(Order 2 executes) = 0.25. Note that if Order 2
executes, it is certain that Order 1 also executes because the price must pass through $10
to reach $9.75. Thus,

P(Order 1 executes | Order 2 executes) = 1

and

P(Order 1 executes and Order 2 executes) = P(Order 1 executes | Order 2
executes)P(Order 2 executes) = 1(0.25) = 0.25

To answer the question, we use the addition rule for probabilities:

P(Order 1 executes or Order 2 executes) = P(Order 1 executes) + P(Order 2
executes) − P(Order 1 executes and Order 2 executes) = 0.35 + 0.25
− 0.25 = 0.35

Note that the outcomes for which Order 2 executes are a subset of the outcomes for
which Order 1 executes. After you count the probability that Order 1 executes, you have
counted the probability of the outcomes for which Order 2 also executes. Therefore, the
answer to the question is the probability that Order 1 executes, 0.35.

Solution to 2: If the first order executes, the probability that the second order executes is
0.714. In the solution to Part 1, you found that P(Order 1 executes and Order 2 executes) =
P(Order 1 executes | Order 2 executes)P(Order 2 executes) = 1(0.25) = 0.25. An equiv-
alent way to state this joint probability is useful here:

P(Order 1 executes and Order 2 executes) = 0.25 =
P(Order 2 executes | Order 1 executes)P(Order 1 executes)

Because P(Order 1 executes) = 0.35 was a given, you have one equation with one
unknown:

0.25 = P(Order 2 executes | Order 1 executes)(0.35)

You conclude that P(Order 2 executes | Order 1 executes) = 0.25/0.35 = 5/7, or about
0.714. You can also use Equation 4-1 to obtain this answer.

Of great interest to investment analysts are the concepts of independence and dependence.
These concepts bear on such basic investment questions as which financial variables are useful
for investment analysis, whether asset returns can be predicted, and whether superior investment
managers can be selected based on their past records.

Two events are independent if the occurrence of one event does not affect the probability
of occurrence of the other event.
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• Definition of Independent Events. Two events A and B are independent if and only if
P(A | B) = P(A) or, equivalently, P(B | A) = P(B).

When two events are not independent, they are dependent: The probability of occurrence of
one is related to the occurrence of the other. If we are trying to forecast one event, information
about a dependent event may be useful, but information about an independent event will not
be useful.

When two events are independent, the multiplication rule for probabilities, Equation 4-2,
simplifies because P(A | B) in that equation then equals P(A).

• Multiplication Rule for Independent Events. When two events are independent, the
joint probability of A and B equals the product of the individual probabilities of A and B.

P(AB) = P(A)P(B) (4-4)

Therefore, if we are interested in two independent events with probabilities of 0.75 and 0.50,
respectively, the probability that both will occur is 0.375 = 0.75(0.50). The multiplication
rule for independent events generalizes to more than two events; for example, if A, B, and C
are independent events, then P(ABC) = P(A)P(B)P(C).

EXAMPLE 4-4 BankCorp’s Earnings per Share (1)

As part of your work as a banking industry analyst, you build models for forecasting
earnings per share of the banks you cover. Today you are studying BankCorp. The
historical record shows that in 55 percent of recent quarters BankCorp’s EPS has
increased sequentially, and in 45 percent of quarters EPS has decreased or remained
unchanged sequentially.6 At this point in your analysis, you are assuming that changes
in sequential EPS are independent.

Earnings per share for 2Q:2004 (that is, EPS for the second quarter of 2004) were
larger than EPS for 1Q:2004.

1. What is the probability that 3Q:2004 EPS will be larger than 2Q:2004 EPS (a
positive change in sequential EPS)?

2. What is the probability that EPS decreases or remains unchanged in the next two
quarters?

Solution to 1: Under the assumption of independence, the probability that 3Q:2004
EPS will be larger than 2Q:2004 EPS is the unconditional probability of positive
change, 0.55. The fact that 2Q:2004 EPS was larger than 1Q:2004 EPS is not useful
information, as the next change in EPS is independent of the prior change.

Solution to 2: The probability is 0.2025 = 0.45(0.45).

6Sequential comparisons of quarterly EPS are with the immediate prior quarter. A sequential comparison
stands in contrast to a comparison with the same quarter one year ago (another frequent type of
comparison).
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The following example illustrates how difficult it is to satisfy a set of independent criteria
even when each criterion by itself is not necessarily stringent.

EXAMPLE 4-5 Screening Stocks for Investment

You have developed a stock screen—a set of criteria for selecting stocks. Your investment
universe (the set of securities from which you make your choices) is the Russell 1000
Index, an index of 1,000 large-capitalization U.S. equities. Your criteria capture different
aspects of the selection problem; you believe that the criteria are independent of each
other, to a close approximation.

Fraction of Russell 1000 Stocks
Criterion Meeting Criterion

First valuation criterion 0.50
Second valuation criterion 0.50
Analyst coverage criterion 0.25
Profitability criterion for company 0.55
Financial strength criterion for company 0.67

How many stocks do you expect to pass your screen?
Only 23 stocks out of 1,000 pass through your screen. If you define five events— the

stock passes the first valuation criterion, the stock passes the second valuation criterion, the stock
passes the analyst coverage criterion, the company passes the profitability criterion, the company
passes the financial strength criterion (say events A, B, C, D, and E , respectively)—then
the probability that a stock will pass all five criteria, under independence, is

P(ABCDE) = P(A)P(B)P(C)P(D)P(E) = (0.50)(0.50)(0.25)(0.55)(0.67)

= 0.023031

Although only one of the five criteria is even moderately strict (the strictest lets 25 percent
of stocks through), the probability that a stock can pass all five is only 0.023031, or about
2 percent. The size of the list of candidate investments is 0.023031(1, 000) = 23.031,
or 23 stocks.

An area of intense interest to investment managers and their clients is whether records of
past performance are useful in identifying repeat winners and losers. The following example
shows how this issue relates to the concept of independence.
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EXAMPLE 4-6 Conditional Probabilities and Predictability
of Mutual Fund Performance (2)

The purpose of the Kahn and Rudd (1995) study, introduced in Example 4-2, was to
address the question of repeat mutual fund winners and losers. If the status of a fund
as a winner or a loser in one period is independent of whether it is a winner in the
next period, the practical value of performance ranking is questionable. Using the four
events defined in Example 4-2 as building blocks, we can define the following events to
address the issue of predictability of mutual fund performance:

Fund is a Period 1 winner and fund is a Period 2 winner

Fund is a Period 1 winner and fund is a Period 2 loser

Fund is a Period 1 loser and fund is a Period 2 winner

Fund is a Period 1 loser and fund is a Period 2 loser

In Part 4 of Example 4-2, you calculated that

P(fund is a Period 2 loser and fund is a Period 1 loser) = 0.264

If the ranking in one period is independent of the ranking in the next period, what
will you expect P(fund is a Period 2 loser and fund is a Period 1 loser) to be? Interpret the
empirical probability 0.264.

By the multiplication rule for independent events, P(fund is a Period 2 loser and
fund is a Period 1 loser) = P(fund is a Period 2 loser)P(fund is a Period 1 loser). Because 50
percent of funds are categorized as losers in each period, the unconditional probability
that a fund is labeled a loser in either period is 0.50. Thus P(fund is a Period 2 loser)P(fund
is a Period 1 loser) = 0.50(0.50) = 0.25. If the status of a fund as a loser in one period
is independent of whether it is a loser in the prior period, we conclude that P(fund is a
Period 2 loser and fund is a Period 1 loser) = 0.25. This probability is a priori because
it is obtained from reasoning about the problem. You could also reason that the four
events described above define categories and that if funds are randomly assigned to the
four categories, there is a 1/4 probability of fund is a Period 1 loser and fund is a Period 2
loser. If the classifications in Period 1 and Period 2 were dependent, then the assignment
of funds to categories would not be random. The empirical probability of 0.264 is only
slightly above 0.25. Is this apparent slight amount of predictability the result of chance?
A test conducted by Kahn and Rudd indicated a 35.6 percent chance of observing the
tabled data if the Period 1 and Period 2 rankings were independent.

In investments, the question of whether one event (or characteristic) provides information
about another event (or characteristic) arises in both time-series settings (through time)
and cross-sectional settings (among units at a given point in time). Examples 4-4 and 4-6
illustrated independence in a time-series setting. Example 4-5 illustrated independence in a
cross-sectional setting. Independence/dependence relationships are often also explored in both
settings using regression analysis, a technique we discuss in a later chapter.
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In many practical problems, we logically analyze a problem as follows: We formulate
scenarios that we think affect the likelihood of an event that interests us. We then estimate
the probability of the event, given the scenario. When the scenarios (conditioning events) are
mutually exclusive and exhaustive, no possible outcomes are left out. We can then analyze the
event using the total probability rule. This rule explains the unconditional probability of the
event in terms of probabilities conditional on the scenarios.

The total probability rule is stated below for two cases. Part 1 gives the simplest case, in
which we have two scenarios. One new notation is introduced: If we have an event or scenario
S, the event not-S, called the complement of S, is written SC.7 Note that P(S) + P(SC) = 1,
as either S or not-S must occur. Part 2 states the rule for the general case of n mutually
exclusive and exhaustive events or scenarios.

• The Total Probability Rule.

1. P(A) = P(AS) + P(ASC)

= P(A | S)P(S) + P(A | SC)P(SC) (4-5)

2. P(A) = P(AS1) + P(AS2) + · · · + P(ASn)

= P(A | S1)P(S1) + P(A | S2)P(S2) + · · · + P(A | Sn)P(Sn) (4-6)

where S1, S2, . . . , Sn are mutually exclusive and exhaustive scenarios or events.

Equation 4-6 states the following: The probability of any event [P(A)] can be expressed
as a weighted average of the probabilities of the event, given scenarios [terms such P(A | S1)];
the weights applied to these conditional probabilities are the respective probabilities of the
scenarios [terms such as P(S1) multiplying P(A | S1)], and the scenarios must be mutually
exclusive and exhaustive. Among other applications, this rule is needed to understand Bayes’
formula, which we discuss later in the chapter.

In the next example, we use the total probability rule to develop a consistent set of views
about BankCorp’s earnings per share.

EXAMPLE 4-7 BankCorp’s Earnings per Share (2)

You are continuing your investigation into whether you can predict the direction of
changes in BankCorp’s quarterly EPS. You define four events:

Event Probability

A = change in sequential EPS is positive next quarter 0.55
AC = change in sequential EPS is 0 or negative next quarter 0.45

S = change in sequential EPS is positive in the prior quarter 0.55
SC = change in sequential EPS is 0 or negative in the prior quarter 0.45

7For readers familiar with mathematical treatments of probability, S, a notation usually reserved for a
concept called the sample space, is being appropriated to stand for scenario.
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On inspecting the data, you observe some persistence in EPS changes: Increases tend to
be followed by increases, and decreases by decreases. The first probability estimate you
develop is P(change in sequential EPS is positive next quarter | change in sequential EPS
is 0 or negative in the prior quarter) = P(A | SC) = 0.40. The most recent quarter’s EPS
(2Q:2004) is announced, and the change is a positive sequential change (the event S).
You are interested in forecasting EPS for 3Q:2004.

1. Write this statement in probability notation: ‘‘the probability that the change in
sequential EPS is positive next quarter, given that the change in sequential EPS is
positive the prior quarter.’’

2. Calculate the probability in Part 1. (Calculate the probability that is consistent
with your other probabilities or beliefs.)

Solution to 1: In probability notation, this statement is written P(A | S).

Solution to 2: The probability is 0.673 that the change in sequential EPS is positive
for 3Q:2004, given the positive change in sequential EPS for 2Q:2004, as shown
below.

According to Equation 4-5, P(A) = P(A | S)P(S) + P(A | SC)P(SC). The values of
the probabilities needed to calculate P(A | S) are already known: P(A) = 0.55, P(S) =
0.55, P(SC) = 0.45, and P(A | SC) = 0.40. Substituting into Equation 4-5,

0.55 = P(A | S)(0.55) + 0.40(0.45)

Solving for the unknown, P(A | S) = [0.55 − 0.40(0.45)]/0.55 = 0.672727, or 0.673.
You conclude that P(change in sequential EPS is positive next quarter | change

in sequential EPS is positive the prior quarter) = 0.673. Any other probability is not
consistent with your other estimated probabilities. Reflecting the persistence in EPS
changes, this conditional probability of a positive EPS change, 0.673, is greater than the
unconditional probability of an EPS increase, 0.55.

In the chapter on statistical concepts and market returns, we discussed the concept of
a weighted average or weighted mean. The example highlighted in that chapter was that
portfolio return is a weighted average of the returns on the individual assets in the portfolio,
where the weight applied to each asset’s return is the fraction of the portfolio invested in that
asset. The total probability rule, which is a rule for stating an unconditional probability in
terms of conditional probabilities, is also a weighted average. In that formula, probabilities of
scenarios are used as weights. Part of the definition of weighted average is that the weights sum
to 1. The probabilities of mutually exclusive and exhaustive events do sum to 1 (this is part of
the definition of probability). The next weighted average we discuss, the expected value of a
random variable, also uses probabilities as weights.

The expected value of a random variable is an essential quantitative concept in investments.
Investors continually make use of expected values—in estimating the rewards of alternative
investments, in forecasting EPS and other corporate financial variables and ratios, and in
assessing any other factor that may affect their financial position. The expected value of a
random variable is defined as follows:
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• Definition of Expected Value. The expected value of a random variable is the probability-
weighted average of the possible outcomes of the random variable. For a random variable
X , the expected value of X is denoted E(X ).

Expected value (for example, expected stock return) looks either to the future, as a forecast, or
to the ‘‘true’’ value of the mean (the population mean, discussed in the chapter on statistical
concepts and market returns). We should distinguish expected value from the concepts of
historical or sample mean. The sample mean also summarizes in a single number a central
value. However, the sample mean presents a central value for a particular set of observations
as an equally weighted average of those observations. To summarize, the contrast is forecast
versus historical, or population versus sample.

EXAMPLE 4-8 BankCorp’s Earnings per Share (3)

You continue with your analysis of BankCorp’s EPS. In Table 4-3, you have recorded a
probability distribution for BankCorp’s EPS for the current fiscal year.

TABLE 4-3 Probability Distribution for
BankCorp’s EPS

Probability EPS

0.15 $2.60
0.45 $2.45
0.24 $2.20
0.16 $2.00
1.00

What is the expected value of BankCorp’s EPS for the current fiscal year?
Following the definition of expected value, list each outcome, weight it by its

probability, and sum the terms.

E(EPS) = 0.15($2.60) + 0.45($2.45) + 0.24($2.20) + 0.16($2.00)

= $2.3405

The expected value of EPS is $2.34.

An equation that summarizes your calculation in Example 4-8 is

E(X ) = P(X1)X1 + P(X2)X2 + · · · + P(Xn)Xn =
n∑

i=1

P(Xi)Xi (4-7)

where Xi is one of n possible outcomes of the random variable X .8

8For simplicity, we model all random variables in this chapter as discrete random variables, which have
a countable set of outcomes. For continuous random variables, which are discussed along with discrete
random variables in the chapter on common probability distributions, the operation corresponding to
summation is integration.
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The expected value is our forecast. Because we are discussing random quantities, we
cannot count on an individual forecast being realized (although we hope that, on average,
forecasts will be accurate). It is important, as a result, to measure the risk we face. Variance
and standard deviation measure the dispersion of outcomes around the expected value or
forecast.

• Definition of Variance. The variance of a random variable is the expected value (the
probability-weighted average) of squared deviations from the random variable’s expected
value:

σ2(X ) = E{[X − E(X )]2} (4-8)

The two notations for variance are σ2(X ) and Var(X ).

Variance is a number greater than or equal to 0 because it is the sum of squared terms. If
variance is 0, there is no dispersion or risk. The outcome is certain, and the quantity X is not
random at all. Variance greater than 0 indicates dispersion of outcomes. Increasing variance
indicates increasing dispersion, all else equal. Variance of X is a quantity in the squared units
of X . For example, if the random variable is return in percent, variance of return is in units
of percent squared. Standard deviation is easier to interpret than variance, as it is in the same
units as the random variable. If the random variable is return in percent, standard deviation of
return is also in units of percent.

• Definition of Standard Deviation. Standard deviation is the positive square root of
variance.

The best way to become familiar with these concepts is to work examples.

EXAMPLE 4-9 BankCorp’s Earnings per Share (4)

In Example 4-8, you calculated the expected value of BankCorp’s EPS as $2.34, which
is your forecast. Now you want to measure the dispersion around your forecast.
Table 4-4 shows your view of the probability distribution of EPS for the current fiscal
year.

TABLE 4-4 Probability Distribution for
BankCorp’s EPS

Probability EPS

0.15 $2.60
0.45 $2.45
0.24 $2.20
0.16 $2.00
1.00



146 Quantitative Investment Analysis

What are the variance and standard deviation of BankCorp’s EPS for the current fiscal
year?

The order of calculation is always expected value, then variance, then standard
deviation. Expected value has already been calculated. Following the definition of
variance above, calculate the deviation of each outcome from the mean or expected
value, square each deviation, weight (multiply) each squared deviation by its probability
of occurrence, and then sum these terms.

σ2(EPS) = P($2.60)[$2.60 − E(EPS)]2 + P($2.45)[$2.45 − E(EPS)]2

+ P($2.20)[$2.20 − E(EPS)]2 + P($2.00)[$2.00 − E(EPS)]2

= 0.15(2.60 − 2.34)2 + 0.45(2.45 − 2.34)2

+ 0.24(2.20 − 2.34)2 + 0.16(2.00 − 2.34)2

= 0.01014 + 0.005445 + 0.004704 + $0.018496 = $0.038785

Standard deviation is the positive square root of $0.038785:

σ(EPS) = $0.0387851/2 = $0.196939, or approximately $0.20.

An equation that summarizes your calculation of variance in Example 4-9 is

σ2(X ) = P(X1)[X1 − E(X )]2 + P(X2)[X2 − E(X )]2

+ · · · + P(Xn)[Xn − E(X )]2

=
n∑

i=1

P(Xi)[Xi − E(X )]2 (4-9)

where Xi is one of n possible outcomes of the random variable X .
In investments, we make use of any relevant information available in making our forecasts.

When we refine our expectations or forecasts, we are typically making adjustments based on
new information or events; in these cases we are using conditional expected values. The
expected value of a random variable X given an event or scenario S is denoted E(X | S).
Suppose the random variable X can take on any one of n distinct outcomes X1, X2, . . . , Xn

(these outcomes form a set of mutually exclusive and exhaustive events). The expected value
of X conditional on S is the first outcome, X1, times the probability of the first outcome given
S, P(X1 | S), plus the second outcome, X2, times the probability of the second outcome given
S, P(X2 | S), and so forth.

E(X | S) = P(X1 | S)X1 + P(X2 | S)X2 + · · · + P(Xn | S)Xn (4-10)

We will illustrate this equation shortly.
Parallel to the total probability rule for stating unconditional probabilities in terms of

conditional probabilities, there is a principle for stating (unconditional) expected values in
terms of conditional expected values. This principle is the total probability rule for expected
value.
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• The Total Probability Rule for Expected Value.

1. E(X ) = E(X | S)P(S) + E(X | SC)P(SC) (4-11)

2. E(X ) = E(X | S1)P(S1) + E(X | S2)P(S2) + · · · + E(X | Sn)P(Sn) (4-12)

where S1, S2, . . . , Sn are mutually exclusive and exhaustive scenarios or events.

The general case, Equation 4-12, states that the expected value of X equals the expected value
of X given Scenario 1, E(X | S1), times the probability of Scenario 1, P(S1), plus the expected
value of X given Scenario 2, E(X | S2), times the probability of Scenario 2, P(S2), and so forth.

To use this principle, we formulate mutually exclusive and exhaustive scenarios that are
useful for understanding the outcomes of the random variable. This approach was employed
in developing the probability distribution of BankCorp’s EPS in Examples 4-8 and 4-9, as we
now discuss.

The earnings of BankCorp are interest rate sensitive, benefiting from a declining interest
rate environment. Suppose there is a 0.60 probability that BankCorp will operate in a declining
interest rate environment in the current fiscal year and a 0.40 probability that it will operate in a
stable interest rate environment (assessing the chance of an increasing interest rate environment
as negligible). If a declining interest rate environment occurs, the probability that EPS will be
$2.60 is estimated at 0.25, and the probability that EPS will be $2.45 is estimated at 0.75. Note
that 0.60, the probability of declining interest rate environment, times 0.25, the probability
of $2.60 EPS given a declining interest rate environment, equals 0.15, the (unconditional)
probability of $2.60 given in the table in Examples 4-8 and 4-9 above. The probabilities are
consistent. Also, 0.60(0.75) = 0.45, the probability of $2.45 EPS given in Tables 4-3 and
4-4. The tree diagram in Figure 4-2 shows the rest of the analysis.

A declining interest rate environment points us to the node of the tree that branches off
into outcomes of $2.60 and $2.45. We can find expected EPS given a declining interest rate
environment as follows, using Equation 4-10:

E(EPS | declining interest rate environment) = 0.25($2.60) + 0.75($2.45)

= $2.4875

FIGURE 4-2 BankCorp’s Forecasted EPS
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If interest rates are stable,

E(EPS | stable interest rate environment) = 0.60($2.20) + 0.40($2.00)

= $2.12

Once we have the new piece of information that interest rates are stable, for example, we
revise our original expectation of EPS from $2.34 downward to $2.12. Now using the total
probability rule for expected value,

E(EPS) = E(EPS | declining interest rate environment)

P(declining interest rate environment)

+ E(EPS | stable interest rate environment)

P(stable interest rate environment)

So E(EPS) = $2.4875(0.60) + $2.12(0.40) = $2.3405 or about $2.34.
This amount is identical to the estimate of the expected value of EPS calculated directly

from the probability distribution in Example 4-8. Just as our probabilities must be consistent,
so must our expected values, unconditional and conditional; otherwise our investment actions
may create profit opportunities for other investors at our expense.

To review, we first developed the factors or scenarios that influence the outcome of
the event of interest. After assigning probabilities to these scenarios, we formed expectations
conditioned on the different scenarios. Then we worked backward to formulate an expected
value as of today. In the problem just worked, EPS was the event of interest, and the interest
rate environment was the factor influencing EPS.

We can also calculate the variance of EPS given each scenario:

σ2(EPS | declining interest rate environment)

= P($2.60 | declining interest rate environment)

× [$2.60 |E(EPS | declining interest rate environment)]2

+ P($2.45 | declining interest rate environment)

× [$2.45 − E(EPS | declining interest rate environment)]2

= 0.25($2.60 − $2.4875)2 + 0.75($2.45 − $2.4875)2

= 0.004219

σ2(EPS | stable interest rate environment)

= P($2.20 | stable interest rate environment)

× [$2.20 − E(EPS | stable interest rate environment)]2

+ P($2.00 | stable interest rate environment)

× [$2.00 − E(EPS | stable interest rate environment)]2

= 0.60($2.20 − $2.12)2 + 0.40($2.00 − $2.12)2

= 0.0096

These are conditional variances, the variance of EPS given a declining interest rate
environment and the variance of EPS given a stable interest rate environment. The relationship
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between unconditional variance and conditional variance is a relatively advanced topic.9 The
main points are 1) that variance, like expected value, has a conditional counterpart to the
unconditional concept and 2) that we can use conditional variance to assess risk given a
particular scenario.

EXAMPLE 4-10 BankCorp’s Earnings per Share (5)

Continuing with BankCorp, you focus now on BankCorp’s cost structure. One model
you are researching for BankCorp’s operating costs is

Ŷ = a + bX

where Ŷ is a forecast of operating costs in millions of dollars and X is the number of
branch offices. Ŷ represents the expected value of Y given X , or E(Y | X ). (Ŷ is a
notation used in regression analysis, which we discuss in a later chapter.) You interpret
the intercept a as fixed costs and b as variable costs. You estimate the equation as

Ŷ = 12.5 + 0.65X

BankCorp currently has 66 branch offices, and the equation estimates that 12.5 +
0.65(66) = $55.4 million. You have two scenarios for growth, pictured in the tree
diagram in Figure 4-3.

FIGURE 4-3 BankCorp’s Forecasted Operating Costs

9The unconditional variance of EPS is the sum of two terms: (1) the expected value (probability-
weighted average) of the conditional variances (parallel to the total probability rules) and (2) the
variance of conditional expected values of EPS. The second term arises because the variability in
conditional expected value is a source of risk. Term 1 is σ2(EPS) = P(declining interest rate environment)
σ2(EPS | declining interest rate environment) + P(stable interest rate environment) σ2(EPS | stable
interest rate environment) = 0.60(0.004219) + 0.40(0.0096) = 0.006371. Term 2 is σ2[E(EPS | interest
rate environment)] = 0.60($2.4875 − $2.34)2 + 0.40($2.12 − $2.34)2 = 0.032414. Summing the two
terms, unconditional variance equals 0.006371 + 0.032414 = 0.038785.
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1. Compute the forecasted operating costs given the different levels of operating
costs, using Ŷ = 12.5 + 0.65X . State the probability of each level of the number
of branch offices. These are the answers to the questions in the terminal boxes of
the tree diagram.

2. Compute the expected value of operating costs under the high growth scenario.
Also calculate the expected value of operating costs under the low growth scenario.

3. Answer the question in the initial box of the tree: What are BankCorp’s expected
operating costs?

Solution to 1: Using Ŷ = 12.5 + 0.65X , from top to bottom, we have

Operating Costs Probability

Ŷ = 12.5 + 0.65(125) = $93.75 million 0.80(0.50) = 0.40
Ŷ = 12.5 + 0.65(100) = $77.50 million 0.80(0.50) = 0.40
Ŷ = 12.5 + 0.65(80) = $64.50 million 0.20(0.85) = 0.17
Ŷ = 12.5 + 0.65(70) = $58.00 million 0.20(0.15) = 0.03

Sum = 1.00

Solution to 2: Dollar amounts are in millions.

E(operating costs | high growth) = 0.50($93.75) + 0.50($77.50)

= $85.625

E(operating costs | low growth) = 0.85($64.50) + 0.15($58.00)

= $63.525

Solution to 3: Dollar amounts are in millions.

E(operating costs) = E(operating costs | high growth)P(high growth)

+ E(operating costs | low growth)P(low growth)

= $85.625(0.80) + $63.525(0.20)

= $81.205

BankCorp’s expected operating costs are $81.205 million.

We will see conditional probabilities again when we discuss Bayes’ formula. This section
has introduced a few problems that can be addressed using probability concepts. The following
problem draws on these concepts, as well as on analytical skills.

EXAMPLE 4-11 The Default Risk Premium for a One-Period
Debt Instrument

As the co-manager of a short-term bond portfolio, you are reviewing the pricing of
a speculative-grade, one-year-maturity, zero-coupon bond. For this type of bond, the
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return is the difference between the amount paid and the principal value received at
maturity. Your goal is to estimate an appropriate default risk premium for this bond.
You define the default risk premium as the extra return above the risk-free return
that will compensate investors for default risk. If R is the promised return (yield-to
maturity) on the debt instrument and RF is the risk-free rate, the default risk premium is
R − RF . You assess the probability that the bond defaults as P(the bond defaults) = 0.06.
Looking at current money market yields, you find that one-year U.S. Treasury bills
(T-bills) are offering a return of 5.8 percent, an estimate of RF . As a first step, you
make the simplifying assumption that bondholders will recover nothing in the event
of a default. What is the minimum default risk premium you should require for this
instrument?

The challenge in this type of problem is to find a starting point. In many problems,
including this one, an effective first step is to divide up the possible outcomes into
mutually exclusive and exhaustive events in an economically logical way. Here, from
the viewpoint of a bondholder, the two events that affect returns are the bond defaults
and the bond does not default. These two events cover all outcomes. How do these events
affect a bondholder’s returns? A second step is to compute the value of the bond for the
two events. We have no specifics on bond face value, but we can compute value per $1
or one unit of currency invested.

The Bond Defaults The Bond Does Not Default
Bond value $0 $(1 + R)

The third step is to find the expected value of the bond (per $1 invested).

E(bond) = $0 × P(the bond defaults)

+ $(1 + R)[1 − P(the bond defaults)]

So E(bond) = $(1 + R)[1 − P(the bond defaults)]. The expected value of the T-bill per
$1 invested is (1 + RF ). In fact, this value is certain because the T-bill is risk free.
The next step requires economic reasoning. You want the default premium to be large
enough so that you expect to at least break even compared with investing in the T-bill.
This outcome will occur if the expected value of the bond equals the expected value of
the T-bill per $1 invested.

Expected Value of Bond = Expected Value of T-Bill

$(1 + R)[1 − P(the bond defaults)] = (1 + RF )

Solving for the promised return on the bond, you find R = {(1 + RF )/[1 −
P(the bond defaults)]} − 1. Substituting in the values in the statement of the prob-
lem, R = [1.058/(1 − 0.06)] − 1 = 1.12553 − 1 = 0.12553 or about 12.55 percent,
and default risk premium is R − RF = 12.55% − 5.8% = 6.75%.

You require a default risk premium of at least 675 basis points. You can state the
matter as follows: If the bond is priced to yield 12.55 percent, you will earn a 675
basis-point spread and receive the bond principal with 94 percent probability. If the
bond defaults, however, you will lose everything. With a premium of 675 basis points,
you expect to just break even relative to an investment in T-bills. Because an investment
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in the zero-coupon bond has variability, if you are risk averse, you will demand that the
premium be larger than 675 basis points.

This analysis is a starting point. Bondholders usually recover part of their investment
after a default. A next step would be to incorporate a recovery rate.

In this section, we have treated random variables such as EPS as stand-alone quantities.
We have not explored how descriptors such as expected value and variance of EPS may be
functions of other random variables. Portfolio return is one random variable that is clearly
a function of other random variables, the random returns on the individual securities in the
portfolio. To analyze a portfolio’s expected return and variance of return, we must understand
these quantities are a function of characteristics of the individual securities’ returns. Looking
at the dispersion or variance of portfolio return, we see that the way individual security returns
move together or covary is important. To understand the significance of these movements, we
need to explore some new concepts, covariance and correlation. The next section, which deals
with portfolio expected return and variance of return, introduces these concepts.

3. PORTFOLIO EXPECTED RETURN AND
VARIANCE OF RETURN

Modern portfolio theory makes frequent use of the idea that investment opportunities can be
evaluated using expected return as a measure of reward and variance of return as a measure
of risk. The calculation and interpretation of portfolio expected return and variance of return
are fundamental skills. In this section, we will develop an understanding of portfolio expected
return and variance of return.10 Portfolio return is determined by the returns on the individual
holdings. As a result, the calculation of portfolio variance, as a function of the individual asset
returns, is more complex than the variance calculations illustrated in the previous section.

We work with an example of a portfolio that is 50 percent invested in an S&P 500 Index
fund, 25 percent invested in a U.S. long-term corporate bond fund, and 25 percent invested in
a fund indexed to the MSCI EAFE Index (representing equity markets in Europe, Australasia,
and the Far East). Table 4-5 shows these weights.

TABLE 4-5 Portfolio Weights

Asset Class Weights

S&P 500 0.50
U.S. long-term corporate bonds 0.25
MSCI EAFE 0.25

10Although we outline a number of basic concepts in this section, we do not present mean–variance
analysis per se. For a presentation of mean–variance analysis, see the chapter on portfolio concepts, as well
as the extended treatments in standard investment textbooks such as Bodie, Kane, and Marcus (2001),
Elton, Gruber, Brown, and Goetzmann (2003), Reilly and Brown (2003), and Sharpe, Alexander, and
Bailey (1999).
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We first address the calculation of the expected return on the portfolio. In the previous
section, we defined the expected value of a random variable as the probability-weighted average
of the possible outcomes. Portfolio return, we know, is a weighted average of the returns on the
securities in the portfolio. Similarly, the expected return on a portfolio is a weighted average of
the expected returns on the securities in the portfolio, using exactly the same weights. When
we have estimated the expected returns on the individual securities, we immediately have
portfolio expected return. This convenient fact follows from the properties of expected value.

• Properties of Expected Value. Let wi be any constant and Ri be a random variable.

1. The expected value of a constant times a random variable equals the constant times the
expected value of the random variable.

E(wiRi) = wiE(Ri)

2. The expected value of a weighted sum of random variables equals the weighted sum of
the expected values, using the same weights.

E(w1R1 + w2R2 + · · · + wnRn) = w1E(R1) + w2E(R2) + · · · + wnE(Rn) (4-13)

Suppose we have a random variable with a given expected value. If we multiply each outcome
by 2, for example, the random variable’s expected value is multiplied by 2 as well. That is
the meaning of Part 1. The second statement is the rule that directly leads to the expression
for portfolio expected return. A portfolio with n securities is defined by its portfolio weights,
w1, w2, . . . , wn, which sum to 1. So portfolio return, Rp, is Rp = w1R1 + w2R2 + · · · + wnRn.
We can state the following principle:

• Calculation of Portfolio Expected Return. Given a portfolio with n securities, the
expected return on the portfolio is a weighted average of the expected returns on the
component securities:

E(Rp) = E(w1R1 + w2R2 + · · · + wnRn)

= w1E(R1) + w2E(R2) + · · · + wnE(Rn)

Suppose we have estimated expected returns on the assets in the portfolio, as given in Table 4-6.
We calculate the expected return on the portfolio as 11.75 percent:

E(Rp) = w1E(R1) + w2E(R2) + w3E(R3)

= 0.50(13%) + 0.25(6%) + 0.25(15%) = 11.75%

TABLE 4-6 Weights and Expected Returns

Asset Class Weight Expected Return (%)

S&P 500 0.50 13
U.S. long-term corporate bonds 0.25 6
MSCI EAFE 0.25 15
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In the previous section, we studied variance as a measure of dispersion of outcomes
around the expected value. Here we are interested in portfolio variance of return as a
measure of investment risk. Letting Rp stand for the return on the portfolio, portfolio
variance is σ2(Rp) = E{[Rp − E(Rp)]2} according to Equation 4-8. How do we implement
this definition? In the chapter on statistical concepts and market returns, we learned how to
calculate a historical or sample variance based on a sample of returns. Now we are considering
variance in a forward-looking sense. We will use information about the individual assets in the
portfolio to obtain portfolio variance of return. To avoid clutter in notation, we write ERp for
E(Rp). We need the concept of covariance.

• Definition of Covariance. Given two random variables Ri and Rj , the covariance between
Ri and Rj is

Cov(Ri, Rj) = E[(Ri − ERi)(Rj − ERj)] (4-14)

Alternative notations are σ(Ri , Rj) and σij .

Equation 4-14 states that the covariance between two random variables is the probability-
weighted average of the cross-products of each random variable’s deviation from its own
expected value. We will return to discuss covariance after we establish the need for the concept.
Working from the definition of variance, we find

σ2(Rp) = E[(Rp − ERp)2]

= E{[w1R1 + w2R2 + w3R3 − E(w1R1 + w2R2 + w3R3)]2}
= E{[w1R1 + w2R2 + w3R3 − w1ER1 − w2ER2 − w3ER3]2}

(using Equation 4−13)

= E{[w1(R1 − ER1) + w2(R2 − ER2) + w3(R3 − ER3)]2} (rearranging)

= E{[w1(R1 − ER1) + w2(R2 − ER2) + w3(R3 − ER3)]

×[w1(R1 − ER1) + w2(R2 − ER2) + w3(R3 − ER3)]}
(what squaring means)

= E[w1w1(R1 − ER1)(R1 − ER1) + w1w2(R1 − ER1)(R2 − ER2)

+w1w3(R1 − ER1)(R3 − ER3) + w2w1(R2 − ER2)(R1 − ER1)

+w2w2(R2 − ER2)(R2 − ER2) + w2w3(R2 − ER2)(R3 − ER3)

+w3w1(R3 − ER3)(R1 − ER1) + w3w2(R3 − ER3)(R2 − ER2)

+w3w3(R3 − ER3)(R3 − ER3)] (doing the multiplication)

= w2
1E[(R1 − ER1)2] + w1w2E[(R1 − ER1)(R2 − ER2)]

+w1w3E[(R1 − ER1)(R3 − ER3)] + w2w1E[(R2 − ER2)(R1 − ER1)]

+w2
2E[(R2 − ER2)2] + w2w3E[(R2 − ER2)(R3 − ER3)]

+w3w1E[(R3 − ER3)(R1 − ER1)] + w3w2E[(R3 − ER3)(R2 − ER2)]
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+w2
3E[(R3 − ER3)2] (recalling that the wi terms are constants)

= w2
1σ

2(R1) + w1w2Cov(R1, R2) + w1w3Cov(R1, R3)

+w1w2Cov(R1, R2) + w2
2σ

2(R2) + w2w3Cov(R2, R3)

+w1w3Cov(R1, R3) + w2w3Cov(R2, R3) + w2
3σ

2(R3) (4-15)

The last step follows from the definitions of variance and covariance.11 For the italicized
covariance terms in Equation 4-15, we used the fact that the order of variables in covariance
does not matter: Cov(R2, R1) = Cov(R1, R2), for example. As we will show, the diagonal
variance terms σ2(R1), σ2(R2), and σ2(R3) can be expressed as Cov(R1, R1), Cov(R2, R2), and
Cov(R3, R3), respectively. Using this fact, the most compact way to state Equation 4-15 is

σ2(RP) =
3∑

i=1

3∑
j=1

wiwjCov(Ri , Rj). The double summation signs say: ‘‘Set i = 1 and let j run

from 1 to 3; then set i = 2 and let j run from 1 to 3; next set i = 3 and let j run from 1 to 3;
finally, add the nine terms.’’ This expression generalizes for a portfolio of any size n to

σ2(Rp) =
n∑

i=1

n∑
j=1

wiwjCov(Ri , Rj) (4-16)

We see from Equation 4-15 that individual variances of return (the bolded diagonal
terms) constitute part, but not all, of portfolio variance. The three variances are actually
outnumbered by the six covariance terms off the diagonal. For three assets, the ratio is 1 to
2, or 50 percent. If there are 20 assets, there are 20 variance terms and 20(20) − 20 = 380
off-diagonal covariance terms. The ratio of variance terms to off-diagonal covariance terms is
less than 6 to 100, or 6 percent. A first observation, then, is that as the number of holdings
increases, covariance12 becomes increasingly important, all else equal.

What exactly is the effect of covariance on portfolio variance? The covariance terms
capture how the co-movements of returns affect portfolio variance. For example, consider
two stocks: One tends to have high returns (relative to its expected return) when the other
has low returns (relative to its expected return). The returns on one stock tend to offset the
returns on the other stock, lowering the variability or variance of returns on the portfolio. Like
variance, the units of covariance are hard to interpret, and we will introduce a more intuitive
concept shortly. Meanwhile, from the definition of covariance, we can establish two essential
observations about covariance.

1. We can interpret the sign of covariance as follows:
Covariance of returns is negative if, when the return on one asset is above its expected
value, the return on the other asset tends to be below its expected value (an average
inverse relationship between returns).
Covariance of returns is 0 if returns on the assets are unrelated.

11Useful facts about variance and covariance include: 1) The variance of a constant times a random
variable equals the constant squared times the variance of the random variable, or σ2(wR) = w2σ2(R);
2) The variance of a constant plus a random variable equals the variance of the random variable, or
σ2(w + R) = σ2(R) because a constant has zero variance; 3) The covariance between a constant and a
random variable is zero.
12When the meaning of covariance as ‘‘off-diagonal covariance’’ is obvious, as it is here, we omit the
qualifying words. Covariance is usually used in this sense.
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TABLE 4-7 Inputs to Portfolio Expected Return and Variance

A. Inputs to Portfolio Expected Return

Asset A B C
E(RA) E(RB) E(RC )

B. Covariance Matrix: The Inputs to Portfolio Variance of Return

Asset A B C

A Cov(RA , RA) Cov(RA, RB) Cov(RA, RC)
B Cov(RB, RA) Cov(RB, RB) Cov(RB, RC)
C Cov(RC, RA) Cov(RC, RB) Cov(RC, RC)

Covariance of returns is positive when the returns on both assets tend to be on the
same side (above or below) their expected values at the same time (an average positive
relationship between returns).

2. The covariance of a random variable with itself (own covariance) is its own variance:
Cov(R, R) = E{[R − E(R)][R − E(R)]} = E{[R − E(R)]2} = σ2(R).

A complete list of the covariances constitutes all the statistical data needed to compute portfolio
variance of return. Covariances are often presented in a square format called a covariance
matrix. Table 4-7 summarizes the inputs for portfolio expected return and variance of return.

With three assets, the covariance matrix has 32 = 3 × 3 = 9 entries, but it is customary
to treat the diagonal terms, the variances, separately from the off-diagonal terms. These
diagonal terms are bolded in Table 4-7. This distinction is natural, as security variance
is a single-variable concept. So there are 9 − 3 = 6 covariances, excluding variances. But
Cov(RB, RA) = Cov(RA, RB), Cov(RC, RA) = Cov(RA, RC), and Cov(RC, RB) = Cov(RB, RC).
The covariance matrix below the diagonal is the mirror image of the covariance matrix above
the diagonal. As a result, there are only 6/2 = 3 distinct covariance terms to estimate. In
general, for n securities, there are n(n − 1)/2 distinct covariances to estimate and n variances
to estimate.

Suppose we have the covariance matrix shown in Table 4-8. Taking Equation 4-15 and
grouping variance terms together produces the following:

σ2(Rp) = w2
1σ

2(R1) + w2
2σ

2(R2) + w2
3σ

2(R3) + 2w1w2Cov(R1, R2)

+2w1w3Cov(R1, R3) + 2w2w3Cov(R2, R3) (4-17)

= (0.50)2(400) + (0.25)2(81) + (0.25)2(441) + 2(0.50)(0.25)(45)

+2(0.50)(0.25)(189) + 2(0.25)(0.25)(38)

= 100 + 5.0625 + 27.5625 + 11.25 + 47.25 + 4.75 = 195.875

The variance is 195.875. Standard deviation of return is 195.8751/2 = 14 percent. To
summarize, the portfolio has an expected annual return of 11.75 percent and a standard
deviation of return of 14 percent.

Let us look at the first three terms in the calculation above. Their sum, 100 + 5.0625 +
27.5625 = 132.625, is the contribution of the individual variances to portfolio variance. If
the returns on the three assets were independent, covariances would be 0 and the standard
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TABLE 4-8 Covariance Matrix

U.S. Long-Term MSCI
S&P 500 Corporate Bonds EAFE

S&P 500 400 45 189
U.S. long-term corporate bonds 45 81 38
MSCI EAFE 189 38 441

deviation of portfolio return would be 132.6251/2 = 11.52 percent as compared to 14 percent
before. The portfolio would have less risk. Suppose the covariance terms were negative. Then
a negative number would be added to 132.625, so portfolio variance and risk would be even
smaller. At the same time, we have not changed expected return. For the same expected
portfolio return, the portfolio has less risk. This risk reduction is a diversification benefit,
meaning a risk-reduction benefit from holding a portfolio of assets. The diversification benefit
increases with decreasing covariance. This observation is a key insight of modern portfolio
theory. It is even more intuitively stated when we can use the concept of correlation. Then we
can say that as long as security returns are not perfectly positively correlated, diversification
benefits are possible. Furthermore, the smaller the correlation between security returns, the
greater the cost of not diversifying (in terms of risk-reduction benefits forgone), all else
equal.

• Definition of Correlation. The correlation between two random variables, Ri and Rj ,
is defined as ρ(Ri, Rj) = Cov(Ri , Rj)/σ(Ri)σ(Rj). Alternative notations are Corr(Ri , Rj)
and ρij .

Frequently, covariance is substituted out using the relationship Cov(Ri , Rj) = ρ(Ri , Rj)σ(Ri)
σ(Rj). The division indicated in the definition makes correlation a pure number (one without
a unit of measurement) and places bounds on its largest and smallest possible values. Using the
above definition, we can state a correlation matrix from data in the covariance matrix alone.
Table 4-9 shows the correlation matrix.

For example, the covariance between long-term bonds and MSCI EAFE is 38, from
Table 4-8. The standard deviation of long-term bond returns is 811/2 = 9 percent, that
of MSCI EAFE returns is 4411/2 = 21 percent, from diagonal terms in Table 4-8. The
correlation ρ(Return on long-term bonds, Return on EAFE) is 38/(9%)(21%) = 0.201,
rounded to 0.20. The correlation of the S&P 500 with itself equals 1: The calculation is own
covariance divided by its standard deviation squared.

TABLE 4-9 Correlation Matrix of Returns

U.S. Long-Term MSCI
S&P 500 Corporate Bonds EAFE

S&P 500 1.00 0.25 0.45
U.S. long-term corporate bonds 0.25 1.00 0.20
MSCI EAFE 0.45 0.20 1.00
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• Properties of Correlation.

1. Correlation is a number between −1 and +1 for two random variables, X and Y :

−1 ≤ ρ(X , Y ) ≤ +1

2. A correlation of 0 (uncorrelated variables) indicates an absence of any linear (straight-
line) relationship between the variables.13 Increasingly positive correlation indicates
an increasingly strong positive linear relationship (up to 1, which indicates a perfect
linear relationship). Increasingly negative correlation indicates an increasingly strong
negative (inverse) linear relationship (down to −1, which indicates a perfect inverse
linear relationship).14

EXAMPLE 4-12 Portfolio Expected Return and
Variance of Return

You have a portfolio of two mutual funds, A and B, 75 percent invested in A, as shown
in Table 4-10.

TABLE 4-10 Mutual Fund Expected Returns,
Return Variances, and Covariances

Fund A B
E(RA) = 20% E(RB) = 12%

Covariance Matrix

Fund A B
A 625 120
B 120 196

1. Calculate the expected return of the portfolio.
2. Calculate the correlation matrix for this problem. Carry out the answer to two

decimal places.
3. Compute portfolio standard deviation of return.

Solution to 1: E(Rp) = wAE(RA) + (1 − wA)E(RB) = 0.75(20%) + 0.25(12%) = 18%.
Portfolio weights must sum to 1: wB = 1 − wA.

Solution to 2: σ(RA) = 6251/2 = 25 percent σ(RB) = 1961/2 = 14 percent. There is
one distinct covariance and thus one distinct correlation:

ρ(RA, RB) = Cov(RA, RB)/σ(RA)σ(RB) = 120/25(14) = 0.342857, or 0.34

13If the correlation is 0, R1 = a + bR2 + error, with b = 0.
14If the correlation is positive, R1 = a + bR2 + error, with b > 0. If the correlation is negative, b < 0.
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Table 4-11 shows the correlation matrix.

TABLE 4-11 Correlation Matrix

A B

A 1.00 0.34
B 0.34 1.00

Diagonal terms are always equal to 1 in a correlation matrix.

Solution to 3:

σ2(Rp) = w2
Aσ2(RA) + w2

Bσ2(RB) + 2wAwBCov(RA, RB)

= (0.75)2(625) + (0.25)2(196) + 2(0.75)(0.25)(120)

= 351.5625 + 12.25 + 45 = 408.8125

σ(Rp) = 408.81251/2 = 20.22 percent

How do we estimate return covariance and correlation? Frequently, we make forecasts on
the basis of historical covariance or use other methods based on historical return data, such
as a market model regression.15 We can also calculate covariance using the joint probability
function of the random variables, if that can be estimated. The joint probability function of
two random variables X and Y , denoted P(X , Y ), gives the probability of joint occurrences of
values of X and Y . For example, P(3, 2), is the probability that X equals 3 and Y equals 2.

Suppose that the joint probability function of the returns on BankCorp stock (RA) and
the returns on NewBank stock (RB) has the simple structure given in Table 4-12.

TABLE 4-12 Joint Probability Function of BankCorp and
NewBank Returns (Entries are joint probabilities)

RB = 20% RB = 16% RB = 10%

RA = 25% 0.20 0 0
RA = 12% 0 0.50 0
RA = 10% 0 0 0.30

The expected return on BankCorp stock is 0.20(25%) + 0.50(12%) + 0.30(10%) =
14%. The expected return on NewBank stock is 0.20(20%) + 0.50(16%) + 0.30(10%) =
15%. The joint probability function above might reflect an analysis based on whether
banking industry conditions are good, average, or poor. Table 4-13 presents the calculation of
covariance.

15See any of the textbooks mentioned in Footnote 10.
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TABLE 4-13 Covariance Calculations

Banking Deviations Deviations Product of Probability of Probability-Weighted
Industry Condition BankCorp NewBank Deviations Condition Product

Good 25–14 20–15 55 0.20 11
Average 12–14 16–15 −2 0.50 −1
Poor 10–14 10–15 20 0.30 6

Cov(RA, RB) = 16

Note: Expected return for BankCorp is 14% and for NewBank, 15%.

The first and second columns of numbers show, respectively, the deviations of BankCorp and
NewBank returns from their mean or expected value. The next column shows the product of
the deviations. For example, for good industry conditions, (25 − 14)(20 − 15) = 11(5) = 55.
Then 55 is multiplied or weighted by 0.20, the probability that banking industry conditions are
good: 55(0.20) = 11. The calculations for average and poor banking conditions follow the same
pattern. Summing up these probability-weighted products, we find that Cov(RA, RB) = 16.

A formula for computing the covariance between random variables RA and RB is

Cov(RA, RB) =
∑

i

∑
j

P(RA,i , RB,j)(RA,i − ERA)(RB,j − ERB) (4-18)

The formula tells us to sum all possible deviation cross-products weighted by the appropriate
joint probability. In the example we just worked, as Table 4-12 shows, only three joint
probabilities are nonzero. Therefore, in computing the covariance of returns in this case, we
need to consider only three cross-products:

Cov(RA, RB) = P(25, 20)[(25 − 14)(20 − 15)] + P(12, 16)[(12 − 14)(16 − 15)]

+ P(10, 10)[(10 − 14)(10 − 15)]

= 0.20(11)(5) + 0.50(−2)(1) + 0.30(−4)(−5)

= 11 − 1 + 6 = 16

One theme of this chapter has been independence. Two random variables are independent
when every possible pair of events—one event corresponding to a value of X and another
event corresponding to a value of Y —are independent events. When two random variables
are independent, their joint probability function simplifies.

• Definition of Independence for Random Variables. Two random variables X and Y
are independent if and only if P(X , Y ) = P(X )P(Y ).

For example, given independence, P(3, 2) = P(3)P(2). We multiply the individual probabil-
ities to get the joint probabilities. Independence is a stronger property than uncorrelatedness
because correlation addresses only linear relationships. The following condition holds for
independent random variables and, therefore, also holds for uncorrelated random variables.
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• Multiplication Rule for Expected Value of the Product of Uncorrelated Random
Variables. The expected value of the product of uncorrelated random variables is the
product of their expected values.

E(XY ) = E(X )E(Y ) if X and Y are uncorrelated.

Many financial variables, such as revenue (price times quantity), are the product of random
quantities. When applicable, the above rule simplifies calculating expected value of a product
of random variables.16

4. TOPICS IN PROBABILITY

In the remainder of the chapter we discuss two topics that can be important in solving
investment problems. We start with Bayes’ formula: what probability theory has to say about
learning from experience. Then we move to a discussion of shortcuts and principles for
counting.

4.1. Bayes’ Formula

When we make decisions involving investments, we often start with viewpoints based on our
experience and knowledge. These viewpoints may be changed or confirmed by new knowledge
and observations. Bayes’ formula is a rational method for adjusting our viewpoints as we
confront new information.17 Bayes’ formula and related concepts have been applied in many
business and investment decision-making contexts, including the evaluation of mutual fund
performance.18

Bayes’ formula makes use of Equation 4-6, the total probability rule. To review, that
rule expressed the probability of an event as a weighted average of the probabilities of the
event, given a set of scenarios. Bayes’ formula works in reverse; more precisely, it reverses
the ‘‘given that’’ information. Bayes’ formula uses the occurrence of the event to infer the
probability of the scenario generating it. For that reason, Bayes’ formula is sometimes called an
inverse probability. In many applications, including the one illustrating its use in this section,
an individual is updating his beliefs concerning the causes that may have produced a new
observation.

• Bayes’ Formula. Given a set of prior probabilities for an event of interest, if you receive
new information, the rule for updating your probability of the event is

Updated probability of event given the new information =
Probability of the new information given event

Unconditional probability of the new information
× Prior probability of event

16Otherwise, the calculation depends on conditional expected value; the calculation can be expressed as
E(XY ) = E(X )E(Y | X ).
17Named after the Reverend Thomas Bayes (1702–61).
18See Baks, Metrick, and Wachter (2001).
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In probability notation, this formula can be written concisely as:

P(Event | Information) = P(Information | Event)

P(Information)
P(Event)

To illustrate Bayes’ formula, we work through an investment example that can be adapted
to any actual problem. Suppose you are an investor in the stock of DriveMed, Inc. Positive
earnings surprises relative to consensus EPS estimates often result in positive stock returns, and
negative surprises often have the opposite effect. DriveMed is preparing to release last quarter’s
EPS result, and you are interested in which of these three events happened: last quarter’s EPS
exceeded the consensus EPS estimate, or last quarter’s EPS exactly met the consensus EPS estimate,
or last quarter’s EPS fell short of the consensus EPS estimate. This list of the alternatives is
mutually exclusive and exhaustive.

On the basis of your own research, you write down the following prior probabilities (or
priors, for short) concerning these three events:

• P(EPS exceeded consensus) = 0.45
• P(EPS met consensus) = 0.30
• P(EPS fell short of consensus) = 0.25

These probabilities are ‘‘prior’’ in the sense that they reflect only what you know now, before
the arrival of any new information.

The next day, DriveMed announces that it is expanding factory capacity in Singapore
and Ireland to meet increased sales demand. You assess this new information. The decision to
expand capacity relates not only to current demand but probably also to the prior quarter’s
sales demand. You know that sales demand is positively related to EPS. So now it appears
more likely that last quarter’s EPS will exceed the consensus.

The question you have is, ‘‘In light of the new information, what is the updated probability
that the prior quarter’s EPS exceeded the consensus estimate?’’

Bayes’ formula provides a rational method for accomplishing this updating. We can
abbreviate the new information as DriveMed expands. The first step in applying Bayes’ formula
is to calculate the probability of the new information (here: DriveMed expands), given a list of
events or scenarios that may have generated it. The list of events should cover all possibilities,
as it does here. Formulating these conditional probabilities is the key step in the updating
process. Suppose your view is

P(DriveMed expands | EPS exceeded consensus) = 0.75

P(DriveMed expands | EPS met consensus) = 0.20

P(DriveMed expands | EPS fell short of consensus) = 0.05

Conditional probabilities of an observation (here: DriveMed expands) are sometimes referred
to as likelihoods. Again, likelihoods are required for updating the probability.

Next, you combine these conditional probabilities or likelihoods with your prior proba-
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bilities to get the unconditional probability for DriveMed expanding, P(DriveMed expands),
as follows:

P(DriveMed expands) = P(DriveMed expands | EPS exceeded consensus)

× P(EPS exceeded consensus)

+ P(DriveMed expands | EPS met consensus)

× P(EPS met consensus)

+ P(DriveMed expands | EPS fell short of consensus)

× P(EPS fell short of consensus)

= 0.75(0.45) + 0.20(0.30) + 0.05(0.25) = 0.41, or 41%

This is Equation 4-6, the total probability rule, in action. Now you can answer your question
by applying Bayes’ formula:

P(EPS exceeded consensus | DriveMed expands)

= P(DriveMed expands | EPS exceeded consensus)
P(DriveMed expands)

P(EPS exceeded consensus)

= (0.75/0.41)(0.45) = 1.829268(0.45) = 0.823171

Prior to DriveMed’s announcement, you thought the probability that DriveMed would
beat consensus expectations was 45 percent. On the basis of your interpretation of the
announcement, you update that probability to 82.3 percent. This updated probability is called
your posterior probability because it reflects or comes after the new information.

The Bayes’ calculation takes the prior probability, which was 45 percent, and multiplies
it by a ratio—the first term on the right-hand side of the equal sign. The denominator
of the ratio is the probability that DriveMed expands, as you view it without considering
(conditioning on) anything else. Therefore, this probability is unconditional. The numerator
is the probability that DriveMed expands, if last quarter’s EPS actually exceeded the consensus
estimate. This last probability is larger than unconditional probability in the denominator, so
the ratio (1.83 roughly) is greater than 1. As a result, your updated or posterior probability is
larger than your prior probability. Thus, the ratio reflects the impact of the new information
on your prior beliefs.

EXAMPLE 4-13 Inferring Whether DriveMed’s EPS Met
Consensus EPS

You are still an investor in DriveMed stock. To review the givens, your prior prob-
abilities are P(EPS exceeded consensus) = 0.45, P(EPS met consensus) = 0.30, and
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P(EPS fell short of consensus) = 0.25. You also have the following conditional proba-
bilities:

P(DriveMed expands | EPS exceeded consensus) = 0.75

P(DriveMed expands | EPS met consensus) = 0.20

P(DriveMed expands | EPS fell short of consensus) = 0.05

Recall that you updated your probability that last quarter’s EPS exceeded the consensus
estimate from 45 percent to 82.3 percent after DriveMed announced it would expand.
Now you want to update your other priors.

1. Update your prior probability that DriveMed’s EPS met consensus.
2. Update your prior probability that DriveMed’s EPS fell short of consensus.
3. Show that the three updated probabilities sum to 1. (Carry each probability to

four decimal places.)
4. Suppose, because of lack of prior beliefs about whether DriveMed would meet

consensus, you updated on the basis of prior probabilities that all three possi-
bilities were equally likely: P(EPS exceeded consensus) = P(EPS met consensus) =
P(EPS fell short of consensus) = 1/3. What is your estimate of the probability
P(EPS exceeded consensus | DriveMed expands)?

Solution to 1: The probability is

P(EPS met consensus | DriveMed expands)

= P(DriveMed expands | EPS met consensus)
P(DriveMed expands)

P(EPS met consensus)

The probability P(DriveMed expands) is found by taking each of the three condi-
tional probabilities in the statement of the problem, such as P(DriveMed expands
| EPS exceeded consensus); multiplying each one by the prior probability of the
conditioning event, such as P(EPS exceeded consensus); then adding the three
products. The calculation is unchanged from the problem in the text above:
P(DriveMed expands) = 0.75(0.45) + 0.20(0.30) + 0.05(0.25) = 0.41, or 41 percent.
The other probabilities needed, P(DriveMed expands | EPS met consensus) = 0.20 and
P(EPS met consensus) = 0.30, are givens. So

P(EPS met consensus | DriveMed expands)

= [P(DriveMed expands | EPS met consensus)/

P(DriveMed expands)]P(EPS met consensus)

= (0.20/0.41)(0.30) = 0.487805(0.30) = 0.146341

After taking account of the announcement on expansion, your updated probability that
last quarter’s EPS for DriveMed just met consensus is 14.6 percent compared with your
prior probability of 30 percent.
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Solution to 2: P(DriveMed expands) was already calculated as 41 percent. Recall that
P(DriveMed expands | EPS fell short of consensus) = 0.05 and P(EPS fell short of consensus)
= 0.25 are givens.

P(EPS fell short of consensus | DriveMed expands)

= [P(DriveMed expands | EPS fell short of consensus)/

P(DriveMed expands)]P(EPS fell short of consensus)

= (0.05/0.41)(0.25) = 0.121951(0.25) = 0.030488

As a result of the announcement, you have revised your probability that DriveMed’s
EPS fell short of consensus from 25 percent (your prior probability) to 3 percent.

Solution to 3: The sum of the three updated probabilities is

P(EPS exceeded consensus | DriveMed expands) + P(EPS met consensus |
DriveMed expands) + P(EPS fell short of consensus | DriveMed expands)

= 0.8232 + 0.1463 + 0.0305 = 1.0000

The three events (EPS exceeded consensus, EPS met consensus, EPS fell short of consensus)
are mutually exclusive and exhaustive: One of these events or statements must be true, so
the conditional probabilities must sum to 1. Whether we are talking about conditional
or unconditional probabilities, whenever we have a complete set of the distinct possible
events or outcomes, the probabilities must sum to 1. This calculation serves as a check
on your work.

Solution to 4 : Using the probabilities given in the question,

P(DriveMed expands) =
P(DriveMed expands | EPS exceeded consensus)

P(EPS exceeded consensus) + P(DriveMed expands |
EPS met consensus) P(EPS met consensus) + P(DriveMed expands |
EPS fell short of consensus) P(EPS fell short of consensus)

= 0.75(1/3) + 0.20(1/3) + 0.05(1/3) = 1/3

Not surprisingly, the probability of DriveMed expanding is 1/3 because the decision
maker has no prior beliefs or views regarding how well EPS performed relative to the
consensus estimate. Now we can use Bayes’ formula to find P(EPS exceeded consensus
| DriveMed expands) = [P(DriveMed expands | EPS exceeded consensus)/P(DriveMed
expands)]P(EPS exceeded consensus) = [(0.75/(1/3)](1/3) = 0.75 or 75 percent. This
probability is identical to your estimate of P(DriveMed expands | EPS exceeded consensus).
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When the prior probabilities are equal, the probability of information given an
event equals the probability of the event given the information. When a decision-maker
has equal prior probabilities (called diffuse priors), the probability of an event is
determined by the information.

4.2. Principles of Counting

The first step in addressing a question often involves determining the different logical
possibilities. We may also want to know the number of ways that each of these possibilities
can happen. In the back of our mind is often a question about probability. How likely is it
that I will observe this particular possibility? Records of success and failure are an example.
When we evaluate a market timer’s record, one well-known evaluation method uses counting
methods presented in this section.19 An important investment model, the binomial option
pricing model, incorporates the combination formula that we will cover shortly. We can also
use the methods in this section to calculate what we called a priori probabilities in Section 2.
When we can assume that the possible outcomes of a random variable are equally likely, the
probability of an event equals the number of possible outcomes favorable for the event divided
by the total number of outcomes.

In counting, enumeration (counting the outcomes one by one) is of course the most basic
resource. What we discuss in this section are shortcuts and principles. Without these shortcuts
and principles, counting the total number of outcomes can be very difficult and prone to error.
The first and basic principle of counting is the multiplication rule.

• Multiplication Rule of Counting. If one task can be done in n1 ways, and a second task,
given the first, can be done in n2 ways, and a third task, given the first two tasks, can be
done in n3 ways, and so on for k tasks, then the number of ways the k tasks can be done is
(n1)(n2)(n3) . . . (nk).

Suppose we have three steps in an investment decision process. The first step can be done
in two ways, the second in four ways, and the third in three ways. Following the multiplication
rule, there are (2)(4)(3) = 24 ways in which we can carry out the three steps.

Another illustration is the assignment of members of a group to an equal number of
positions. For example, suppose you want to assign three security analysts to cover three
different industries. In how many ways can the assignments be made? The first analyst may
be assigned in three different ways. Then two industries remain. The second analyst can be
assigned in two different ways. Then one industry remains. The third and last analyst can be
assigned in only one way. The total number of different assignments equals (3)(2)(1) = 6.
The compact notation for the multiplication we have just performed is 3! (read: 3 factorial).
If we had n analysts, the number of ways we could assign them to n tasks would be

n! = n(n − 1)(n − 2)(n − 3) . . . 1

19Henriksson and Merton (1981).
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or n factorial. (By convention, 0! = 1.) To review, in this application we repeatedly carry
out an operation (here, job assignment) until we use up all members of a group (here, three
analysts). With n members in the group, the multiplication formula reduces to n factorial.20

The next type of counting problem can be called labeling problems.21 We want to give
each object in a group a label, to place it in a category. The following example illustrates this
type of problem.

A mutual fund guide ranked 18 bond mutual funds by total returns for the year 2000.
The guide also assigned each fund one of five risk labels: high risk (four funds), above-average
risk (four funds), average risk (three funds), below-average risk (four funds), and low risk (three
funds); as 4 + 4 + 3 + 4 + 3 = 18, all the funds are accounted for. How many different ways
can we take 18 mutual funds and label 4 of them high risk, 4 above-average risk, 3 average
risk, 4 below-average risk, and 3 low risk, so that each fund is labeled?

The answer is close to 13 billion. We can label any of 18 funds high risk (the first
slot), then any of 17 remaining funds, then any of 16 remaining funds, then any of
15 remaining funds (now we have 4 funds in the high risk group); then we can label
any of 14 remaining funds above-average risk, then any of 13 remaining funds, and so
forth. There are 18! possible sequences. However, order of assignment within a category
does not matter. For example, whether a fund occupies the first or third slot of the
four funds labeled high risk, the fund has the same label (high risk). Thus there are 4!
ways to assign a given group of four funds to the four high risk slots. Making the same
argument for the other categories, in total there are (4!)(4!)(3!)(4!)(3!) equivalent sequences.
To eliminate such redundancies from the 18! total, we divide 18! by (4!)(4!)(3!)(4!)(3!).
We have 18!/(4!)(4!)(3!)(4!)(3!) = 18!/(24)(24)(6)(24)(6) = 12,864,852,000. This procedure
generalizes as follows:

• Multinomial Formula (General Formula for Labeling Problems). The number of ways
that n objects can be labeled with k different labels, with n1 of the first type, n2 of the
second type, and so on, with n1 + n2 + · · · + nk = n, is given by

n!

n1!n2! . . . nk !

The multinomial formula with two different labels (k = 2) is especially important. This special
case is called the combination formula. A combination is a listing in which the order of the
listed items does not matter. We state the combination formula in a traditional way, but no
new concepts are involved. Using the notation in the formula below, the number of objects
with the first label is r = n1 and the number with the second label is n − r = n2 (there are
just two categories, so n1 + n2 = n). Here is the formula.

• Combination Formula (Binomial Formula). The number of ways that we can choose r
objects from a total of n objects, when the order in which the r objects are listed does not
matter, is

nCr =
(

n
r

)
= n!

(n − r)!r!

20The shortest explanation of n factorial is that it is the number of ways to order n objects in a row. In
all the problems to which we apply this counting method, we must use up all the members of a group
(sampling without replacement).
21This discussion follows Kemeny, Schleifer, Snell, and Thompson (1972) in terminology and approach.
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Here nCr and

(
n
r

)
are shorthand notations for n!/(n − r)!r! (read: n choose r, or n

combination r).
If we label the r objects as belongs to the group and the remaining objects as does not belong

to the group, whatever the group of interest, the combination formula tells us how many ways
we can select a group of size r. We can illustrate this formula with the binomial option pricing
model. This model describes the movement of the underlying asset as a series of moves, price
up (U) or price down (D). For example, two sequences of five moves containing three up
moves, such as UUUDD and UDUUD, result in the same final stock price. At least for an
option with a payoff dependent on final stock price, the number but not the order of up moves
in a sequence matters. How many sequences of five moves belong to the group with three up
moves? The answer is 10, calculated using the combination formula (‘‘5 choose 3’’):

5C3 = 5!/(5 − 3)!3!

= (5)(4)(3)(2)(1)/(2)(1)(3)(2)(1) = 120/12 = 10 ways

A useful fact can be illustrated as follows: 5C3 = 5!/2!3! equals 5C2 = 5!/3!2!, as 3 + 2 = 5;
5C4 = 5!/1!4! equals 5C1 = 5!/4!1!, as 4 + 1 = 5. This symmetrical relationship can save
work when we need to calculate many possible combinations.

Suppose jurors want to select three companies out of a group of five to receive the first-,
second-, and third-place awards for the best annual report. In how many ways can the jurors
make the three awards? Order does matter if we want to distinguish among the three awards
(the rank within the group of three); clearly the question makes order important. On the other
hand, if the question were ‘‘In how many ways can the jurors choose three winners, without
regard to place of finish?’’ we would use the combination formula.

To address the first question above, we need to count ordered listings such as first place,
New Company; second place, Fir Company; third place, Well Company. An ordered listing is
known as a permutation, and the formula that counts the number of permutations is known
as the permutation formula.22

• Permutation Formula. The number of ways that we can choose r objects from a total of
n objects, when the order in which the r objects are listed does matter, is

nPr = n!

(n − r)!

So the jurors have 5P3 = 5!/(5 − 3)! = (5)(4)(3)(2)(1)/(2)(1) = 120/2 = 60 ways in
which they can make their awards. To see why this formula works, note that
(5)(4)(3)(2)(1)/(2)(1) reduces to (5)(4)(3), after cancellation of terms. This calculation counts
the number of ways to fill three slots choosing from a group of five people, according to the
multiplication rule of counting. This number is naturally larger than it would be if order
did not matter (compare 60 to the value of 10 for ‘‘5 choose 3’’ that we calculated above).
For example, first place, Well Company; second place, Fir Company; third place, New Company
contains the same three companies as first place, New Company; second place, Fir Company;
third place, Well Company. If we were concerned only with award winners (without regard to

22A more formal definition states that a permutation is an ordered subset of n distinct objects.
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place of finish), the two listings would count as one combination. But when we are concerned
with the order of finish, the listings count as two permutations.

Answering the following questions may help you apply the counting methods we have
presented in this section.

1. Does the task that I want to measure have a finite number of possible outcomes? If the
answer is yes, you may be able to use a tool in this section, and you can go to the second
question. If the answer is no, the number of outcomes is infinite, and the tools in this
section do not apply.

2. Do I want to assign every member of a group of size n to one of n slots (or tasks)? If the
answer is yes, use n factorial. If the answer is no, go to the third question.

3. Do I want to count the number of ways to apply one of three or more labels to each
member of a group? If the answer is yes, use the multinomial formula. If the answer is
no, go to the fourth question.

4. Do I want to count the number of ways that I can choose r objects from a total of n,
when the order in which I list the r objects does not matter (can I give the r objects a
label)? If the answer to these questions is yes, the combination formula applies. If the
answer is no, go to the fifth question.

5. Do I want to count the number of ways I can choose r objects from a total of n, when
the order in which I list the r objects is important? If the answer is yes, the permutation
formula applies. If the answer is no, go to question 6.

6. Can the multiplication rule of counting be used? If it cannot, you may have to count the
possibilities one by one, or use more advanced techniques than those presented here.23

23Feller (1957) contains a very full treatment of counting problems and solution methods.





CHAPTER 5
COMMON PROBABILITY

DISTRIBUTIONS

1. INTRODUCTION

In nearly all investment decisions we work with random variables. The return on a stock and its
earnings per share are familiar examples of random variables. To make probability statements
about a random variable, we need to understand its probability distribution. A probability
distribution specifies the probabilities of the possible outcomes of a random variable.

In this chapter, we present important facts about four probability distributions and
their investment uses. These four distributions—the uniform, binomial, normal, and log-
normal—are used extensively in investment analysis. They are used in such basic valuation
models as the Black–Scholes–Merton option pricing model, the binomial option pricing
model, and the capital asset pricing model. With the working knowledge of probability
distributions provided in this chapter, you will also be better prepared to study and use
other quantitative methods such as hypothesis testing, regression analysis, and time-series
analysis.

After discussing probability distributions, we end the chapter with an introduction
to Monte Carlo simulation, a computer-based tool for obtaining information on complex
problems. For example, an investment analyst may want to experiment with an investment
idea without actually implementing it. Or she may need to price a complex option for
which no simple pricing formula exists. In these cases and many others, Monte Carlo
simulation is an important resource. To conduct a Monte Carlo simulation, the analyst must
identify risk factors associated with the problem and specify probability distributions for
them. Hence, Monte Carlo simulation is a tool that requires an understanding of probability
distributions.

Before we discuss specific probability distributions, we define basic concepts and terms. We
then illustrate the operation of these concepts through the simplest distribution, the uniform
distribution. That done, we address probability distributions that have more applications in
investment work but also greater complexity.

2. DISCRETE RANDOM VARIABLES

A random variable is a quantity whose future outcomes are uncertain. The two basic types of
random variables are discrete random variables and continuous random variables. A discrete
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random variable can take on at most a countable number of possible values. For example, a
discrete random variable X can take on a limited number of outcomes x1, x2, . . . , xn (n possible
outcomes), or a discrete random variable Y can take on an unlimited number of outcomes
y1, y2, . . . (without end).1 Because we can count all the possible outcomes of X and Y (even if
we go on forever in the case of Y ), both X and Y satisfy the definition of a discrete random
variable. By contrast, we cannot count the outcomes of a continuous random variable. We
cannot describe the possible outcomes of a continuous random variable Z with a list z1, z2, . . .
because the outcome (z1 + z2)/2, not in the list, would always be possible. Rate of return is
an example of a continuous random variable.

In working with a random variable, we need to understand its possible outcomes.
For example, stocks traded on the New York Stock Exchange and Nasdaq are quoted
in ticks of $0.01. Quoted stock price is thus a discrete random variable with possible
values $0, $0.01, $0.02, . . . But we can also model stock price as a continuous random
variable (as a lognormal random variable, to look ahead). In many applications, we have
a choice between using a discrete or a continuous distribution. We are usually guided by
which distribution is most efficient for the task we face. This opportunity for choice is not
surprising, as many discrete distributions can be approximated with a continuous distribution,
and vice versa. In most practical cases, a probability distribution is only a mathematical
idealization, or approximate model, of the relative frequencies of a random variable’s possible
outcomes.

EXAMPLE 5-1 The Distribution of Bond Price

You are researching a probability model for bond price, and you begin by thinking
about the characteristics of bonds that affect price. What are the lowest and the highest
possible values for bond price? Why? What are some other characteristics of bonds that
may affect the distribution of bond price?

The lowest possible value of bond price is 0, when the bond is worthless. Identifying
the highest possible value for bond price is more challenging. The promised payments
on a coupon bond are the coupons (interest payments) plus the face amount (principal).
The price of a bond is the present discounted value of these promised payments. Because
investors require a return on their investments, 0 percent is the lower limit on the
discount rate that investors would use to discount a bond’s promised payments. At a
discount rate of 0 percent, the price of a bond is the sum of the face value and the
remaining coupons without any discounting. The discount rate thus places the upper
limit on bond price. Suppose, for example, that face value is $1,000 and two $40
coupons remain; the interval $0 to $1,080 captures all possible values of the bond’s
price. This upper limit decreases through time as the number of remaining payments
decreases.

1We follow the convention that an uppercase letter represents a random variable and a lowercase letter
represents an outcome or specific value of the random variable. Thus X refers to the random variable,
and x refers to an outcome of X . We subscript outcomes, as in x1 and x2, when we need to distinguish
among different outcomes in a list of outcomes of a random variable.
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Other characteristics of a bond also affect its price distribution. Pull to par value is
one such characteristic: As the maturity date approaches, the standard deviation of bond
price tends to grow smaller as bond price converges to par value. Embedded options also
affect bond price. For example, with bonds that are currently callable, the issuer may
retire the bonds at a prespecified premium above par; this option of the issuer cuts off
part of the bond’s upside. Modeling bond price distribution is a challenging problem.

Every random variable is associated with a probability distribution that describes the
variable completely. We can view a probability distribution in two ways. The basic view is
the probability function, which specifies the probability that the random variable takes on
a specific value: P(X = x) is the probability that a random variable X takes on the value
x. (Note that capital X represents the random variable and lowercase x represents a specific
value that the random variable may take.) For a discrete random variable, the shorthand
notation for the probability function is p(x) = P(X = x). For continuous random variables,
the probability function is denoted f (x) and called the probability density function (pdf), or
just the density.2

A probability function has two key properties (which we state, without loss of generality,
using the notation for a discrete random variable):

• 0 ≤ p(x) ≤ 1, because probability is a number between 0 and 1.
• The sum of the probabilities p(x) over all values of X equals 1. If we add up the probabilities

of all the distinct possible outcomes of a random variable, that sum must equal 1.

We are often interested in finding the probability of a range of outcomes rather than a
specific outcome. In these cases, we take the second view of a probability distribution, the
cumulative distribution function (cdf). The cumulative distribution function, or distribution
function for short, gives the probability that a random variable X is less than or equal to
a particular value x, P(X ≤ x). For both discrete and continuous random variables, the
shorthand notation is F (x) = P(X ≤ x). How does the cumulative distribution function relate
to the probability function? The word ‘‘cumulative’’ tells the story. To find F (x), we sum up,
or cumulate, values of the probability function for all outcomes less than or equal to x. The
function of the cdf is parallel to that of cumulative relative frequency, which we discussed in
the chapter on statistical concepts and market returns.

Next, we illustrate these concepts with examples and show how we use discrete and
continuous distributions. We start with the simplest distribution, the discrete uniform.

2.1. The Discrete Uniform Distribution

The simplest of all probability distributions is the discrete uniform distribution. Suppose that
the possible outcomes are the integers (whole numbers) 1 to 8, inclusive, and the probability
that the random variable takes on any of these possible values is the same for all outcomes (that

2The technical term for the probability function of a discrete random variable, probability mass function
(pmf), is used less frequently.
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TABLE 5-1 Probability Function and Cumulative
Distribution Function for a Discrete Uniform Random Variable

Cumulative Distribution
Probability Function Function

X = x p(x) = P(X = x) F (x) = P(X ≤ x)

1 0.125 0.125
2 0.125 0.250
3 0.125 0.375
4 0.125 0.500
5 0.125 0.625
6 0.125 0.750
7 0.125 0.875
8 0.125 1.000

is, it is uniform). With eight outcomes, p(x) = 1/8, or 0.125, for all value of X (X = 1, 2, 3, 4,
5, 6, 7, 8); the statement just made is a complete description of this discrete uniform random
variable. The distribution has a finite number of specified outcomes, and each outcome is
equally likely. Table 5-1 summarizes the two views of this random variable, the probability
function and the cumulative distribution function.

We can use Table 5-1 to find three probabilities: P(X ≤ 7), P(4 ≤ X ≤ 6), and P(4 <

X ≤ 6). The following examples illustrate how to use the cdf to find the probability that a
random variable will fall in any interval (for any random variable, not only the uniform).

• The probability that X is less than or equal to 7, P(X ≤ 7), is the next-to-last entry in the
third column, 0.875 or 87.5 percent.

• To find P(4 ≤ X ≤ 6), we need to find the sum of three probabilities: p(4), p(5), and
p(6). We can find this sum in two ways. We can add p(4), p(5), and p(6) from the second
column. Or we can calculate the probability as the difference between two values of the
cumulative distribution function:

F (6) = P(X ≤ 6) = p(6) + p(5) + p(4) + p(3) + p(2) + p(1)

F (3) = P(X ≤ 3) = p(3) + p(2) + p(1)

so

P(4 ≤ X ≤ 6) = F (6) − F (3) = p(6) + p(5) + p(4) = 3/8

So we calculate the second probability as F (6) − F (3) = 3/8.
• The third probability, P(4 < X ≤ 6), the probability that X is less than or equal to 6 but

greater than 4, is p(5) + p(6). We compute it as follows, using the cdf:

P(4 < X ≤ 6) = P(X ≤ 6) − P(X ≤ 4) = F (6) − F (4) = p(6) + p(5) = 2/8

So we calculate the third probability as F (6) − F (4) = 2/8.
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Suppose we want to check that the discrete uniform probability function satisfies the
general properties of a probability function given earlier. The first property is 0 ≤ p(x) ≤ 1.
We see that p(x) = 1/8 for all x in the first column of the table. (Note that p(x) equals 0 for
numbers x such as −14 or 12.215 that are not in that column.) The first property is satisfied.
The second property is that the probabilities sum to 1. The entries in the second column of
Table 5-1 do sum to 1.

The cdf has two other characteristic properties:

• The cdf lies between 0 and 1 for any x : 0 ≤ F (x) ≤ 1
• As we increase x, the cdf either increases or remains constant.

Check these statements by looking at the third column in Table 5-1.
We now have some experience working with probability functions and cdfs for discrete

random variables. Later in this chapter, we will discuss Monte Carlo simulation, a methodology
driven by random numbers. As we will see, the uniform distribution has an important technical
use: It is the basis for generating random numbers, which in turn produce random observations
for all other probability distributions.3

2.2. The Binomial Distribution

In many investment contexts, we view a result as either a success or a failure, or as binary
(twofold) in some other way. When we make probability statements about a record of successes
and failures, or about anything with binary outcomes, we often use the binomial distribution.
What is a good model for how a stock price moves through time? Different models are
appropriate for different uses. Cox, Ross, and Rubinstein (1979) developed an option pricing
model based on binary moves, price up or price down, for the asset underlying the option.
Their binomial option pricing model was the first of a class of related option pricing models
that have played an important role in the development of the derivatives industry. That fact
alone would be sufficient reason for studying the binomial distribution, but the binomial
distribution has uses in decision-making as well.

The building block of the binomial distribution is the Bernoulli random variable,
named after the Swiss probabilist Jakob Bernoulli (1654–1704). Suppose we have a trial (an
event that may repeat) that produces one of two outcomes. Such a trial is a Bernoulli trial. If
we let Y equal 1 when the outcome is success and Y equal 0 when the outcome is failure, then
the probability function of the Bernoulli random variable Y is

p(1) = P(Y = 1) = p

p(0) = P(Y = 0) = 1 − p

where p is the probability that the trial is a success. Our next example is the very first step on
the road to understanding the binomial option pricing model.

3See Hillier and Lieberman (2000). Random numbers initially generated by computers are usually
random positive integer numbers that are converted to approximate continuous uniform random
numbers between 0 and 1. Then the continuous uniform random numbers are used to produce random
observations on other distributions, such as the normal, using various techniques. We will discuss random
observation generation further in the section on Monte Carlo simulation.
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EXAMPLE 5-2 One-Period Stock Price Movement as a
Bernoulli Random Variable

Suppose we describe stock price movement in the following way. Stock price today is
S. Next period stock price can move up or down. The probability of an up move is p,
and the probability of a down move is 1 − p. Thus, stock price is a Bernoulli random
variable with probability of success (an up move) equal to p. When the stock moves up,
ending price is uS, with u equal to 1 plus the rate of return if the stock moves up. For
example, if the stock earns 0.01 or 1 percent on an up move, u = 1.01. When the stock
moves down, ending price is dS, with d equal to 1 plus the rate of return if the stock
moves down. For example, if the stock earns −0.01 or −1 percent on a down move,
d = 0.99. Figure 5-1 shows a diagram of this model of stock price dynamics.

End-of-Period Stock Price

Probability = p
Stock Price Moves Up:
Stock Price Equals uS

Stock Price
Today, S

Probability = 1 − p
Stock Price Moves Down:

Stock Price Equals dS

FIGURE 5-1 One-Period Stock Price as a Bernoulli Random Variable

We will continue with the above example later. In the model of stock price movement
in Example 5-2, success and failure at a given trial relate to up moves and down moves,
respectively. In the following example, success is a profitable trade and failure is an unprofitable
one.

EXAMPLE 5-3 A Trading Desk Evaluates Block Brokers (1)

You work in equities trading at an institutional money manager that regularly trades
with a number of block brokers. Blocks are orders to sell or buy that are too large for
the liquidity ordinarily available in dealer networks or stock exchanges. Your firm has
known interests in certain kinds of stock. Block brokers call your trading desk when
they want to sell blocks of stocks that they think your firm may be interested in buying.
You know that these transactions have definite risks. For example, if the broker’s client
(the seller of the shares) has unfavorable information on the stock, or if the total amount
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he is selling through all channels is not truthfully communicated to you, you may see
an immediate loss on the trade. From time to time, your firm audits the performance of
block brokers. Your firm calculates the post-trade, market-risk-adjusted dollar returns
on stocks purchased from block brokers. On that basis, you classify each trade as
unprofitable or profitable. You have summarized the performance of the brokers in a
spreadsheet, excerpted in Table 5-2 for November 2003. (The broker names are coded
BB001 and BB002.)

TABLE 5-2 Block Trading Gains and Losses

November 2003

Profitable Trades Losing Trades

BB001 3 9
BB002 5 3

View each trade as a Bernoulli trial. Calculate the percentage of profitable trades
with the two block brokers for November 2003. These are estimates of p, the underlying
probability of a successful (profitable) trade with each broker.

Your firm has logged 3 + 9 = 12 trades (the row total) with block broker BB001.
Because 3 of the 12 trades were profitable, the percentage of profitable trades was 3/12
or 25 percent. With broker BB002, the percentage of profitable trades was 5/8 or
62.5 percent. A trade is a Bernoulli trial, and the above calculations provide estimates of
the underlying probability of a profitable trade (success) with the two brokers. For broker
BB001, your estimate is p̂ = 0.25; for broker BB002, your estimate is p̂ = 0.625.4

In n Bernoulli trials, we can have 0 to n successes. If the outcome of an individual trial is
random, the total number of successes in n trials is also random. A binomial random variable
X is defined as the number of successes in n Bernoulli trials. A binomial random variable is
the sum of Bernoulli random variables Yi, i = 1, 2, . . . , n:

X = Y1 + Y2 + · · · + Yn

where Yi is the outcome on the ith trial (1 if a success, 0 if a failure). We know that a Bernoulli
random variable is defined by the parameter p. The number of trials, n, is the second parameter
of a binomial random variable. The binomial distribution makes these assumptions:

• The probability, p, of success is constant for all trials.
• The trials are independent.

4The ‘‘hat’’ over p indicates that it is an estimate of p, the underlying probability of a profitable trade
with the broker.
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The second assumption has great simplifying force. If individual trials were correlated,
calculating the probability of a given number of successes in n trials would be much more
complicated.

Under the above two assumptions, a binomial random variable is completely described
by two parameters, n and p. We write

X ∼ B(n, p)

which we read as ‘‘X has a binomial distribution with parameters n and p.’’ You can see that a
Bernoulli random variable is a binomial random variable with n = 1: Y ∼ B(1, p).

Now we can find the general expression for the probability that a binomial random
variable shows x successes in n trials. We can think in terms of a model of stock price dynamics
that can be generalized to allow any possible stock price movements if the periods are made
extremely small. Each period is a Bernoulli trial: With probability p, the stock price moves
up; with probability 1 − p, the price moves down. A success is an up move, and x is the
number of up moves or successes in n periods (trials). With each period’s moves independent
and p constant, the number of up moves in n periods is a binomial random variable. We now
develop an expression for P(X = x), the probability function for a binomial random variable.

Any sequence of n periods that shows exactly x up moves must show n − x down moves.
We have many different ways to order the up moves and down moves to get a total of x
up moves, but given independent trials, any sequence with x up moves must occur with
probability px(1 − p)n−x . Now we need to multiply this probability by the number of different
ways we can get a sequence with x up moves. Using a basic result in counting from the chapter
on probability concepts, there are

n!

(n − x)!x!

different sequences in n trials that result in x up moves (or successes) and n − x down moves
(or failures). Recall from the chapter on probability concepts that n factorial (n!) is defined as
n(n − 1)(n − 2) . . . 1 (and 0! = 1 by convention). For example, 5! = (5)(4)(3)(2)(1) = 120.
The combination formula n!/[(n − x)!x!] is denoted by

(
n
x

)

(read ‘‘n combination x’’ or ‘‘n choose x’’). For example, over three periods, exactly three
different sequences have two up moves: UUD, UDU, and DUU. We confirm this by

(
3
2

)
= 3!

(3 − 2)!2!
= (3)(2)(1)

(1)(2)(1)
= 3

If, hypothetically, each sequence with two up moves had a probability of 0.15, then the total
probability of two up moves in three periods would be 3 × 0.15 = 0.45. This example should
persuade you that for X distributed B(n, p), the probability of x successes in n trials is given by

p(x) = P(X = x) =
(

n
x

)
px(1 − p)n−x = n!

(n − x)!x!
px(1 − p)n−x (5-1)
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TABLE 5-3 Binomial Probabilities, p = 0.50 and n = 5

Number of
Possible Ways

Number of to Reach x Up Probability Probability
Up Moves, x Moves for Each Way for x, p(x) F (x) = P(X ≤ x)

(1) (2) (3) (4) = (2) × (3) (5)

0 1 0.500(1 − 0.50)5 = 0.03125 0.03125 0.03125
1 5 0.501(1 − 0.50)4 = 0.03125 0.15625 0.18750
2 10 0.502(1 − 0.50)3 = 0.03125 0.31250 0.50000
3 10 0.503(1 − 0.50)2 = 0.03125 0.31250 0.81250
4 5 0.504(1 − 0.50)1 = 0.03125 0.15625 0.96875
5 1 0.505(1 − 0.50)0 = 0.03125 0.03125 1.00000

Some distributions are always symmetric, such as the normal, and others are always asymmetric
or skewed, such as the lognormal. The binomial distribution is symmetric when the probability
of success on a trial is 0.50, but it is asymmetric or skewed otherwise.

We illustrate Equation 5-1 (the probability function) and the cdf through the symmetrical
case. Consider a random variable distributed B(n = 5, p = 0.50). Table 5-3 contains a
complete description of this random variable. The fourth column of Table 5-3 is Column 2, n
combination x, times Column 3, px(1 − p)n−x ; Column 4 gives the probability for each value
of the number of up moves from the first column. The fifth column, cumulating the entries
in the fourth column, is the cumulative distribution function.

What would happen if we kept n = 5 but sharply lowered the probability of success
on a trial to 10 percent? ‘‘Probability for Each Way’’ for X = 0 (no up moves) would
then be about 59 percent: 0.100(1 − 0.10)5 = 0.59049. Because zero successes could still
happen one way (Column 2), p(0) = 59 percent. You may want to check that given
p = 0.10, P(X ≤ 2) = 99.14 percent: The probability of two or fewer up moves would be
more than 99 percent. The random variable’s probability would be massed on 0, 1, and 2 up
moves, and the probability of larger outcomes would be minute. The outcomes of 3 and larger
would be the long right tail, and the distribution would be right skewed. On the other hand,
if we set p = 0.90, we would have the mirror image of the distribution with p = 0.10. The
distribution would be left skewed.

With an understanding of the binomial probability function in hand, we can continue
with our example of block brokers.

EXAMPLE 5-4 A Trading Desk Evaluates Block Brokers (2)

You now want to evaluate the performance of the block brokers in Example 5-3. You
begin with two questions:

1. If you are paying a fair price on average in your trades with a broker, what should
be the probability of a profitable trade?
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2. Did each broker meet or miss that expectation on probability?

You also realize that the brokers’ performance has to be evaluated in light of the sample’s
size, and for that you need to use the binomial probability function (Equation 5-1). You
thus address the following (referring to the data in Example 5-3):

3. Under the assumption that the prices of trades were fair,

(a) calculate the probability of three or fewer profitable trades with broker
BB001.

(b) calculate the probability of five or more profitable trades with broker
BB002.

Solutions to 1 and 2: If the price you trade at is fair, 50 percent of the trades you do
with a broker should be profitable.5 The rate of profitable trades with broker BB001
was 25 percent. Therefore, broker BB001 missed your performance expectation. Broker
BB002, at 62.5 percent profitable trades, exceeded your expectation.

Solution to 3:
A. For broker BB001, the number of trades (the trials) was n = 12, and 3 were

profitable. You are asked to calculate the probability of three or fewer profitable trades,
F (3) = p(3) + p(2) + p(1) + p(0).

Suppose the underlying probability of a profitable trade with BB001 is p = 0.50.
With n = 12 and p = 0.50, according to Equation 5-1 the probability of three profitable
trades is

p(3) =
(

n
x

)
px(1 − p)n−x =

(
12
3

)
(0.503)(0.509)

= 12!

(12 − 3)!3!
0.5012 = 220(0.000244) = 0.053711

The probability of exactly 3 profitable trades out of 12 is 5.4 percent if broker BB001
were giving you fair prices. Now you need to calculate the other probabilities:

p(2) = [12!/(12 − 2)!2!](0.502)(0.5010) = 66(0.000244) = 0.016113

p(1) = [12!/(12 − 1)!1!](0.501)(0.5011) = 12(0.000244) = 0.00293

p(0) = [12!/(12 − 0)!0!](0.500)(0.5012) = 1(0.000244) = 0.000244

Adding all the probabilities, F (3) = 0.053711 + 0.016113 + 0.00293 + 0.000244 =
0.072998 or 7.3 percent. The probability of doing 3 or fewer profitable trades out of 12
would be 7.3 percent if your trading desk were getting fair prices from broker BB001.

B. For broker BB002, you are assessing the probability that the underlying
probability of a profitable trade with this broker was 50 percent, despite the good results.
The question was framed as the probability of doing five or more profitable trades if the

5Of course, you need to adjust for the direction of the overall market after the trade (any broker’s record
will be helped by a bull market) and perhaps make other risk adjustments. Assume that these adjustments
have been made.
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underlying probability is 50 percent: 1 − F (4) = p(5) + p(6) + p(7) + p(8). You could
calculate F (4) and subtract it from 1, but you can also calculate p(5) + p(6) + p(7) +
p(8) directly.

You begin by calculating the probability that exactly 5 out of 8 trades would be
profitable if BB002 were giving you fair prices:

p(5) =
(

8
5

)
(0.505)(0.503)

= 56(0.003906) = 0.21875

The probability is about 21.9 percent. The other probabilities are

p(6) = 28(0.003906) = 0.109375

p(7) = 8(0.003906) = 0.03125

p(8) = 1(0.003906) = 0.003906

So p(5) + p(6) + p(7) + p(8) = 0.21875 + 0.109375 + 0.03125 + 0.003906 =
0.363281 or 36.3 percent.6 A 36.3 percent probability is substantial; the underlying
probability of executing a fair trade with BB002 might well have been 0.50 despite
your success with BB002 in November 2003. If one of the trades with BB002 had been
reclassified from profitable to unprofitable, exactly half the trades would have been
profitable. In summary, your trading desk is getting at least fair prices from BB002; you
will probably want to accumulate additional evidence before concluding that you are
trading at better-than-fair prices.

The magnitude of the profits and losses in these trades is another important
consideration. If all profitable trades had small profits but all unprofitable trades had
large losses, for example, you might lose money on your trades even if the majority of
them were profitable.

In the next example, the binomial distribution helps in evaluating the performance of an
investment manager.

EXAMPLE 5-5 Meeting a Tracking Error Objective

You work for a pension fund sponsor. You have assigned a new money manager to
manage a $500 million portfolio indexed on the MSCI EAFE (Europe, Australasia, and
Far East) Index, which is designed to measure developed-market equity performance

6In this example all calculations were worked through by hand, but binomial probability and cdf
functions are also available in computer spreadsheet programs.
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excluding the United States and Canada. After research, you believe it is reasonable to
expect that the manager will keep tracking error within a band of 75 basis points (bps)
of the benchmark’s return, on a quarterly basis.7 Tracking error is the total return on
the portfolio (gross of fees) minus the total return on the benchmark index—here, the
EAFE.8 To quantify this expectation further, you will be satisfied if tracking error is
within the 75 bps band 90 percent of the time. The manager meets the objective in six
out of eight quarters. Of course, six out of eight quarters is a 75 percent success rate.
But how does the manager’s record precisely relate to your expectation of a 90 percent
success rate and the sample size, 8 observations? To answer this question, you must find
the probability that, given an assumed true or underlying success rate of 90 percent,
performance could be as bad as or worse than that delivered. Calculate the probability
(by hand or with a spreadsheet).

Specifically, you want to find the probability that tracking error is within the 75 bps
band in six or fewer quarters out of the eight in the sample. With n = 8 and p = 0.90,
this probability is F (6) = p(6) + p(5) + p(4) + p(3) + p(2) + p(1) + p(0). Start with

p(6) = (8!/6!2!)(0.906)(0.102) = 28(0.005314) = 0.148803

and work through the other probabilities:

p(5) = (8!/5!3!)(0.905)(0.103) = 56(0.00059) = 0.033067

p(4) = (8!/4!4!)(0.904)(0.104) = 70(0.000066) = 0.004593

p(3) = (8!/3!5!)(0.903)(0.105) = 56(0.000007) = 0.000408

p(2) = (8!/2!6!)(0.902)(0.106) = 28(0.000001) = 0.000023

p(1) = (8!/1!7!)(0.901)(0.107) = 8(0.00000009) = 0.00000072

p(0) = (8!/0!8!)(0.900)(0.108) = 1(0.00000001) = 0.00000001

Summing all these probabilities, you conclude that F (6) = 0.148803 + 0.033067 +
0.004593+ 0.000408+ 0.000023 + 0.00000072 + 0.00000001 = 0.186895 or 18.7
percent. There is a moderate 18.7 percent probability that the manager would show the
record he did (or a worse record) if he had the skill to meet your expectations 90 percent
of the time.

You can use other evaluation concepts such as tracking risk, defined as the standard
deviation of tracking error, to assess the manager’s performance. The calculation above
would be only one input into any conclusions that you reach concerning the manager’s
performance. But to answer problems involving success rates, you need to be skilled in
using the binomial distribution.

7A basis point is one-hundredth of 1 percent (0.01 percent).
8Some practitioners use tracking error to describe what we later call tracking risk, the standard deviation
of the differences between the portfolio’s and benchmark’s returns.
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TABLE 5-4 Mean and Variance of
Binomial Random Variables

Mean Variance

Bernoulli, B(1, p) p p(1 − p)
Binomial, B(n, p) np np(1 − p)

Two descriptors of a distribution that are often used in investments are the mean and the
variance (or the standard deviation, the positive square root of variance).9 Table 5-4 gives the
expressions for the mean and variance of binomial random variables.

Because a single Bernoulli random variable, Y ∼ B(1, p), takes on the value 1 with
probability p and the value 0 with probability 1 − p, its mean or weighted-average outcome
is p. Its variance is p(1 − p).10 A general binomial random variable, B(n, p), is the sum of n
Bernoulli random variables, and so the mean of a B(n, p) random variable is np. Given that a
B(1, p) variable has variance p(1 − p), the variance of a B(n, p) random variable is n times that
value, or np(1 − p), assuming that all the trials (Bernoulli random variables) are independent.
We can illustrate the calculation for two binomial random variables with differing probabilities
as follows:

Random Variable Mean Variance

B(n = 5, p = 0.50) 2.50 = 5(0.50) 1.25 = 5(0.50)(0.50)
B(n = 5, p = 0.10) 0.50 = 5(0.10) 0.45 = 5(0.10)(0.90)

For a B(n = 5, p = 0.50) random variable, the expected number of successes is 2.5 with
a standard deviation of 1.118 = (1.25)1/2; for a B(n = 5, p = 0.10) random variable, the
expected number of successes is 0.50 with a standard deviation of 0.67 = (0.45)1/2.

EXAMPLE 5-6 The Expected Number of Defaults
in a Bond Portfolio

Suppose as a bond analyst you are asked to estimate the number of bond issues expected
to default over the next year in an unmanaged high-yield bond portfolio with 25
U.S. issues from distinct issuers. The credit ratings of the bonds in the portfolio are
tightly clustered around Moody’s B2/Standard & Poor’s B, meaning that the bonds

9The mean (or arithmetic mean) is the sum of all values in a distribution or dataset, divided by the
number of values summed. The variance is a measure of dispersion about the mean. See the chapters on
statistical concepts and market returns for further details on these concepts.
10We can show that p(1 − p) is the variance of a Bernoulli random variable as follows, noting that
a Bernoulli random variable can take on only one of two values, 1 or 0: σ2(Y ) = E[(Y − EY )2] =
E[(Y − p)2] = (1 − p)2p + (0 − p)2(1 − p) = (1 − p)[(1 − p)p + p2] = p(1 − p).
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are speculative with respect to the capacity to pay interest and repay principal. The
estimated annual default rate for B2/B rated bonds is 10.7 percent.

1. Over the next year, what is the expected number of defaults in the portfolio,
assuming a binomial model for defaults?

2. Estimate the standard deviation of the number of defaults over the coming year.
3. Critique the use of the binomial probability model in this context.

Solution to 1: For each bond, we can define a Bernoulli random variable equal to 1 if the
bond defaults during the year and zero otherwise. With 25 bonds, the expected number
of defaults over the year is np = 25(0.107) = 2.675 or approximately 3.

Solution to 2: The variance is np(1 − p) = 25(0.107)(0.893) = 2.388775. The standard
deviation is (2.388775)1/2 = 1.55. Thus a two-standard-deviation confidence interval
about the expected number of defaults would run from approximately 0 to approximately
6, for example.

Solution to 3: An assumption of the binomial model is that the trials are independent.
In this context, a trial relates to whether an individual bond issue will default over the
next year. Because the issuing companies probably share exposure to common economic
factors, the trials may not be independent. Nevertheless, for a quick estimate of the
expected number of defaults, the binomial model may be adequate.

Earlier, we looked at a simple one-period model for stock price movement. Now we
extend the model to describe stock price movement on three consecutive days. Each day is
an independent trial. The stock moves up with constant probability p (the up transition
probability); if it moves up, u is 1 plus the rate of return for an up move. The stock moves
down with constant probability 1 − p (the down transition probability); if it moves down,
d is 1 plus the rate of return for a down move. We graph stock price movement in Figure 5-2,
where we now associate each of the n = 3 stock price moves with time indexed by t. The
shape of the graph suggests why it is called a binomial tree. Each boxed value from which
successive moves or outcomes branch in the tree is called a node; in this example, a node is
potential value for the stock price at a specified time.

We see from the tree that the stock price at t = 3 has four possible values: uuuS, uudS,
uddS, and dddS. The probability that the stock price equals any one of these four values is
given by the binomial distribution. For example, three sequences of moves result in a final
stock price of uudS: These are uud, udu, and duu. These sequences have two up moves out of
three moves in total; the combination formula confirms that the number of ways to get two
up moves (successes) in three periods (trials) is 3!/(3 − 2)!2! = 3. Next note that each of these
sequences, uud, udu, and duu, has probability p2(1 − p). So P(S3 = uudS) = 3p2(1 − p),
where S3 indicates the stock’s price after three moves.

The binomial random variable in this application is the number of up moves. Final stock
price distribution is a function of the initial stock price, the number of up moves, and the size
of the up moves and down moves. We cannot say that stock price itself is a binomial random
variable; rather, it is a function of a binomial random variable, as well as of u and d , and initial
price. This richness is actually one key to why this way of modeling stock price is useful: It
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FIGURE 5-2 A Binomial Model of Stock Price Movement

allows us to choose values of these parameters to approximate various distributions for stock
price (using a large number of time periods).11 One distribution that can be approximated is
the lognormal, an important continuous distribution model for stock price that we will discuss
later. The flexibility extends further. In the tree shown above, the transition probabilities are
the same at each node: p for an up move and 1 − p for a down move. That standard formula
describes a process in which stock return volatility is constant through time. Option experts,
however, sometimes model changing volatility through time using a binomial tree in which
the probabilities for up and down moves differ at different nodes.

The binomial tree also supplies the possibility of testing a condition or contingency at
any node. This flexibility is useful in investment applications such as option pricing. Consider
an American call option on a dividend-paying stock. (Recall that an American option can be
exercised at any time before expiration, at any node on the tree.) Just before an ex-dividend
date, it may be optimal to exercise an American call option on stock to buy the stock and
receive the dividend.12 If we model stock price with a binomial tree, we can test, at each node,
whether exercising the option is optimal. Also, if we know the value of the call at the four
terminal nodes at t = 3 and we have a model for discounting values by one period, we can
step backward one period to t = 2 to find the call’s value at the three nodes there. Continuing
back recursively, we can find the call’s value today. This type of recursive operation is easily
programmed on a computer. As a result, binomial trees can value options even more complex
than American calls on stock.13

3. CONTINUOUS RANDOM VARIABLES

In the previous section, we considered discrete random variables (i.e., random variables whose
set of possible outcomes is countable). In contrast, the possible outcomes of continuous
random variables are never countable. If 1.250 is one possible value of a continuous random
variable, for example, we cannot name the next higher or lower possible value. Technically, the

11For example, we can split 20 days into 100 subperiods, taking care to use compatible values for u
and d .
12Cash dividends represent a reduction of a company’s assets. Early exercise may be optimal because the
exercise price of options is typically not reduced by the amount of cash dividends, so cash dividends
negatively affect the position of an American call option holder.
13See Chance (2003) for more information on option pricing models.
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range of possible outcomes of a continuous random variable is the real line (all real numbers
between −∞ and +∞) or some subset of the real line.

In this section, we focus on the two most important continuous distributions in investment
work, the normal and lognormal. As we did with discrete distributions, we introduce the topic
through the uniform distribution.

3.1. Continuous Uniform Distribution

The continuous uniform distribution is the simplest continuous probability distribution. The
uniform distribution has two main uses. As the basis of techniques for generating random
numbers, the uniform distribution plays a role in Monte Carlo simulation. As the probability
distribution that describes equally likely outcomes, the uniform distribution is an appropriate
probability model to represent a particular kind of uncertainty in beliefs in which all outcomes
appear equally likely.

The pdf for a uniform random variable is

f (x) =



1

b − a
for a < x < b

0 otherwise

For example, with a = 0 and b = 8, f (x) = 1/8 or 0.125. We graph this density in Figure 5-3.
The graph of the density function plots as a horizontal line with a value of 0.125.

What is the probability that a uniform random variable with limits a = 0 and b = 8 is less
than or equal to 3, or F (3) = P(X ≤ 3)? When we were working with the discrete uniform
random variable with possible outcomes 1, 2, . . . , 8, we summed individual probabilities:
p(1) + p(2) + p(3) = 0.375. In contrast, the probability that a continuous uniform random
variable, or any continuous random variable, assumes any given fixed value is 0. To illustrate
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FIGURE 5-3 Continuous Uniform Distribution
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this point, consider the narrow interval 2.510 to 2.511. Because that interval holds an infinity
of possible values, the sum of the probabilities of values in that interval alone would be infinite
if each individual value in it had a positive probability. To find the probability F (3), we find
the area under the curve graphing the pdf, between 0 to 3 on the x axis. In calculus, this
operation is called integrating the probability function f (x) from 0 to 3. This area under the
curve is a rectangle with base 3 − 0 = 3 and height 1/8. The area of this rectangle equals base
times height: 3(1/8) = 3/8 or 0.375. So F (3) = 3/8 or 0.375.

The interval from 0 to 3 is three-eighths of the total length between the limits of 0 and
8, and F (3) is three-eighths of the total probability of 1. The middle line of the expression for
the cdf captures this relationship.

F (x) =




0 for x ≤ a

x − a
b − a

for a < x < b

1 for x ≥ b

For our problem, F (x) = 0 for x ≤ 0, F (x) = x/8 for 0 < x < 8, and F (x) = 1 for x ≥ 8.
We graph this cdf in Figure 5-4.

The mathematical operation that corresponds to finding the area under the curve of a pdf
f (x) from a to b is the integral of f (x) from a to b:

P(a ≤ X ≤ b) =
∫ b

a
f (x) dx (5-2)

where
∫

dx is the symbol for summing
∫

over small changes dx, and the limits of integration
(a and b) can be any real numbers or −∞ and +∞. All probabilities of continuous
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random variables can be computed using Equation 5-2. For the uniform distribution example
considered above, F (7) is Equation 5-2 with lower limit a = 0 and upper limit b = 7. The
integral corresponding to the cdf of a uniform distribution reduces to the three-line expression
given previously. To evaluate Equation 5-2 for nearly all other continuous distributions,
including the normal and lognormal, we rely on spreadsheet functions, computer programs,
or tables of values to calculate probabilities. Those tools use various numerical methods to
evaluate the integral in Equation 5-2.

Recall that the probability of a continuous random variable equaling any fixed point is 0.
This fact has an important consequence for working with the cumulative distribution function
of a continuous random variable: For any continuous random variable X , P(a ≤ X ≤ b) =
P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b), because the probabilities at the endpoints
a and b are 0. For discrete random variables, these relations of equality are not true, because
probability accumulates at points.

EXAMPLE 5-7 Probability That a Lending Facility Covenant
Is Breached

You are evaluating the bonds of a below-investment-grade borrower at a low point in its
business cycle. You have many factors to consider, including the terms of the company’s
bank lending facilities. The contract creating a bank lending facility such as an unsecured
line of credit typically has clauses known as covenants. These covenants place restrictions
on what the borrower can do. The company will be in breach of a covenant in the
lending facility if the interest coverage ratio, EBITDA/interest, calculated on EBITDA
over the four trailing quarters, falls below 2.0. EBITDA is earnings before interest,
taxes, depreciation, and amortization.14 Compliance with the covenants will be checked
at the end of the current quarter. If the covenant is breached, the bank can demand
immediate repayment of all borrowings on the facility. That action would probably
trigger a liquidity crisis for the company. With a high degree of confidence, you forecast
interest charges of $25 million. Your estimate of EBITDA runs from $40 million on
the low end to $60 million on the high end.

Address two questions (treating projected interest charges as a constant):

1. If the outcomes for EBITDA are equally likely, what is the probability that
EBITDA/interest will fall below 2.0, breaching the covenant?

2. Estimate the mean and standard deviation of EBITDA/interest. For a continuous
uniform random variable, the mean is given by µ = (a + b)/2 and the variance
is given by σ2 = (b − a)2/12.

Solution to 1: EBITDA/interest is a continuous uniform random variable because
all outcomes are equally likely. The ratio can take on values between 1.6 = ($40
million)/($25 million) on the low end and 2.4 = ($60 million/$25 million) on the high
end. The range of possible values is 2.4 − 1.6=0.8. What fraction of the possible values

14For a detailed discussion on the use and misuse of EBITDA, see Moody’s Investors Service Global
Credit Research, Putting EBITDA in Perspective (June 2000).
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falls below 2.0, the level that triggers default? The distance between 2.0 and 1.6 is 0.40;
the value 0.40 is one-half the total length of 0.8, or 0.4/0.8 = 0.50. So the probability
that the covenant will be breached is 50 percent.

Solution to 2: In Solution 1, we found that the lower limit of EBITDA/interest is 1.6.
This lower limit is a. We found that the upper limit is 2.4. This upper limit is b. Using
the formula given above,

µ = (a + b)/2 = (1.6 + 2.4)/2 = 2.0

The variance of the interest coverage ratio is

σ2 = (b − a)2/12 = (2.4 − 1.6)2/12 = 0.053333

The standard deviation is the positive square root of the variance, 0.230940 =
(0.053333)1/2. The standard deviation is not particularly useful as a risk measure
for a uniform distribution, however. The probability that lies within various stan-
dard deviation bands around the mean is sensitive to different specifications of the
upper and lower limits (although Chebyshev’s inequality is always satisfied).15 Here,
a one-standard-deviation interval around the mean of 2.0 runs from 1.769 to 2.231
and captures 0.462/0.80 = 0.5775 or 57.8 percent of the probability. A two-standard-
deviation interval runs from 1.538 to 2.462, which extends past both the lower and
upper limits of the random variable.

3.2. The Normal Distribution

The normal distribution may be the most extensively used probability distribution in
quantitative work. It plays key roles in modern portfolio theory and in a number of risk
management technologies. Because it has so many uses, the normal distribution must be
thoroughly understood by investment professionals.

The role of the normal distribution in statistical inference and regression analysis is
vastly extended by a crucial result known as the central limit theorem. The central limit
theorem states that the sum (and mean) of a large number of independent random variables is
approximately normally distributed.16

The French mathematician Abraham de Moivre (1667–1754) introduced the normal
distribution in 1733 in developing a version of the central limit theorem. As Figure 5-5 shows,
the normal distribution is symmetrical and bell-shaped.

The range of possible outcomes of the normal distribution is the entire real line: all real
numbers lying between −∞ and +∞. The tails of the bell curve extend without limit to the
left and to the right.

The defining characteristics of a normal distribution are as follows:

15Chebyshev’s inequality is discussed in the chapter on statistical concepts and market returns.
16The central limit theorem is discussed further in the chapter on sampling.
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FIGURE 5-5 Two Normal Distributions

• The normal distribution is completely described by two parameters—its mean, µ, and
variance, σ2. We indicate this as X ∼ N (µ, σ2) (read ‘‘X follows a normal distribution
with mean µ and variance σ2’’). We can also define a normal distribution in terms of the
mean and the standard deviation, σ (this is often convenient because σ is measured in the
same units as X and µ). As a consequence, we can answer any probability question about a
normal random variable if we know its mean and variance (or standard deviation).

• The normal distribution has a skewness of 0 (it is symmetric). The normal distribution has
a kurtosis (measure of peakedness) of 3; its excess kurtosis (kurtosis −3.0) equals 0.17 As a
consequence of symmetry, the mean, the median, and the mode are all equal for a normal
random variable.

• A linear combination of two or more normal random variables is also normally distributed.

These bullet points concern a single variable or univariate normal distribution: the
distribution of one normal random variable. A univariate distribution describes a single
random variable. A multivariate distribution specifies the probabilities for a group of related
random variables. You will encounter the multivariate normal distribution in investment
work and reading and should know the following about it.

When we have a group of assets, we can model the distribution of returns on each asset
individually, or the distribution of returns on the assets as a group. ‘‘As a group’’ means
that we take account of all the statistical interrelationships among the return series. One
model that has often been used for security returns is the multivariate normal distribution. A
multivariate normal distribution for the returns on n stocks is completely defined by three lists
of parameters:

17If we have a sample of size n from a normal distribution, we may want to know the possible variation in
sample skewness and kurtosis. For a normal random variable, the standard deviation of sample skewness
is 6/n and the standard deviation of sample kurtosis is 24/n.
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• the list of the mean returns on the individual securities (n means in total);
• the list of the securities’ variances of return (n variances in total); and
• the list of all the distinct pairwise return correlations: n(n − 1)/2 distinct correlations in

total.18

The need to specify correlations is a distinguishing feature of the multivariate normal
distribution in contrast to the univariate normal distribution.

The statement ‘‘assume returns are normally distributed’’ is sometimes used to mean a joint
normal distribution. For a portfolio of 30 securities, for example, portfolio return is a weighted
average of the returns on the 30 securities. A weighted average is a linear combination. Thus,
portfolio return is normally distributed if the individual security returns are (joint) normally
distributed. To review, in order to specify the normal distribution for portfolio return, we need
the means, the variances, and the distinct pairwise correlations of the component securities.

With these concepts in mind, we can return to the normal distribution for one random
variable. The curves graphed in Figure 5-5 are the normal density function:

f (x) = 1

σ
√

2π
exp

(−(x − µ)2

2σ2

)
for − ∞ < x < +∞ (5-3)

The two densities graphed in Figure 5-5 correspond to a mean of µ = 0 and standard
deviations of σ = 1 and σ = 2. The normal density with µ = 0 and σ = 1 is called
the standard normal distribution (or unit normal distribution). Plotting two normal
distributions with the same mean and different standard deviations helps us appreciate why
standard deviation is a good measure of dispersion for the normal distribution: Observations
are much more concentrated around the mean for the normal distribution with σ = 1 than
for the normal distribution with σ = 2.

Although not literally accurate, the normal distribution can be considered an approximate
model for returns. Nearly all the probability of a normal random variable is contained within
three standard deviations of the mean. For realistic values of mean return and return standard
deviation for many assets, the normal probability of outcomes below −100 percent is very
small. Whether the approximation is useful in a given application is an empirical question. For
example, the normal distribution is a closer fit for quarterly and yearly holding period returns
on a diversified equity portfolio than it is for daily or weekly returns.19 A persistent departure
from normality in most equity return series is kurtosis greater than 3, the fat-tails problem. So
when we approximate equity return distributions with the normal distribution, we should be
aware that the normal distribution tends to underestimate the probability of extreme returns.20

Option returns are skewed. Because the normal is a symmetrical distribution, we should be
cautious in using the normal distribution to model the returns on portfolios containing
significant positions in options.

18For example, a distribution with two stocks (a bivariate normal distribution) has two means, two
variances, and one correlation: 2(2 − 1)/2. A distribution with 30 stocks has 30 means, 30 variances,
and 435 distinct correlations: 30(30 − 1)/2. The return correlation of Dow Chemical with American
Express stock is the same as the correlation of American Express with Dow Chemical stock, so these are
counted as one distinct correlation.
19See Fama (1976) and Campbell, Lo, and MacKinlay (1997).
20Fat tails can be modeled by a mixture of normal random variables or by a Student’s t-distribution with
a relatively small number of degrees of freedom. See Kon (1984) and Campbell, Lo, and MacKinlay
(1997). We discuss the Student’s t-distribution in the chapter on sampling and estimation.
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FIGURE 5-6 Units of Standard Deviation

The normal distribution, however, is less suitable as a model for asset prices than as a
model for returns. A normal random variable has no lower limit. This characteristic has several
implications for investment applications. An asset price can drop only to 0, at which point the
asset becomes worthless. As a result, practitioners generally do not use the normal distribution
to model the distribution of asset prices. Also note that moving from any level of asset price
to 0 translates into a return of −100 percent. Because the normal distribution extends below
0 without limit, it cannot be literally accurate as a model for asset returns.

Having established that the normal distribution is the appropriate model for a variable of
interest, we can use it to make the following probability statements:

• Approximately 50 percent of all observations fall in the interval µ ± (2/3)σ.
• Approximately 68 percent of all observations fall in the interval µ ± σ.
• Approximately 95 percent of all observations fall in the interval µ ± 2σ.
• Approximately 99 percent of all observations fall in the interval µ ± 3σ.

One, two, and three standard deviation intervals are illustrated in Figure 5-6. The intervals
indicated are easy to remember but are only approximate for the stated probabilities. More-
precise intervals are µ ± 1.96σ for 95 percent of the observations and µ ± 2.58σ for 99
percent of the observations.

In general, we do not observe the population mean or the population standard deviation
of a distribution, so we need to estimate them.21 We estimate the population mean, µ,
using the sample mean, X (sometimes denoted as µ̂), and estimate the population standard
deviation, σ, using the sample standard deviation, s (sometimes denoted as σ̂). Using sample
mean and the sample standard deviation to estimate the population mean and population
standard deviation, respectively, we can make the following probability statements about
a normally distributed random variable X , in which we use the more-precise numbers for
standard deviation in stating intervals.

21A population is all members of a specified group, and the population mean is the arithmetic mean
computed for the population. A sample is a subset of a population, and the sample mean is the arithmetic
mean computed for the sample. For more information on these concepts, see the chapter on statistical
concepts and market returns.
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Confidence Intervals for Values of a Normal Random Variable X

• We expect 90 percent of the values of X to lie within the interval from X − 1.65s to
X + 1.65s. We call this interval a 90 percent confidence interval for X .

• We expect 95 percent of the values of X to lie within the interval from X − 1.96s to
X + 1.96s. We call this interval a 95 percent confidence interval for X .

• We expect 99 percent of the values of X to lie within the interval from X − 2.58s to
X + 2.58s. We call this interval a 99 percent confidence interval for X .

EXAMPLE 5-8 Probabilities for a Common Stock
Portfolio (1)

You manage a U.S. core equity portfolio that is sector-neutral to the S&P 500 Index
(its industry sector weights approximately match the S&P 500’s). Taking a weighted
average of the projected mean returns on the holdings, you forecast a portfolio return
of 12 percent. You estimate a standard deviation of annual return of 22 percent, close
to the long-run figure for the S&P 500. For the year-ahead return on the portfolio, you
are asked to do the following:

1. Calculate and interpret a one-standard-deviation confidence interval for portfolio
return, with a normality assumption for returns.

2. Calculate and interpret a 90 percent confidence interval for portfolio return, with
a normality assumption for returns.

3. Calculate and interpret a 95 percent confidence interval for portfolio return, with
a normality assumption for returns.

Solution to 1: A one-standard-deviation confidence interval is X ± s. With X = 12
percent and s = 22 percent, the lower end of a one-standard-deviation interval is
−10% = 12% − 22%, and the upper end is 34% = 12% + 22%. The interval thus
runs from −10 percent to 34 percent, and you expect approximately 68 percent
of portfolio returns to lie within it, under normality. A compact notation for this
one-standard-deviation confidence interval is [−10%, 34%].

Solution to 2: A 90 percent confidence interval, with a normality assumption for
returns, runs from X − 1.65s to X + 1.65s. So the lower limit is −24.3% = 12% −
1.65(22%), and the upper limit is 48.3% = 12% + 1.65(22%). Compactly, this
interval is [−24.3%, 48.3%].

Solution to 3: A 95 percent confidence interval, with a normality assumption for
returns, goes from X − 1.96s to X + 1.96s. So the lower limit is −31.12% = 12% −
1.96(22%), and the upper limit is 55.12% = 12% + 1.96(22%). Compactly, this
interval is [−31.12%, 55.12%].

The 95 percent and 99 percent confidence intervals are probably the two most
frequently used in practice. An approximate 95 percent confidence interval using 2
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rather than 1.96 standard deviations as the multiplier gives a quick answer and thus is
frequently used.

The calculation of the lower limit of −31.12 percent in Solution 3 illustrates an
earlier point: For many realistic values of mean and standard deviation, the fact that
the normal distribution extends to −∞ on the left may not be critical. For a normal
distribution, only 2.5 percent of the total probability lies to the left of the mean minus
1.96 standard deviations (and 2.5 percent lies to the right of the mean plus 1.96 standard
deviations). Figure 5-7 illustrates these probabilities by showing that 47.5 percent of the
total probability lies between the mean and the mean plus (or minus) 1.96 standard
deviations.

2.5% 2.5%95%

47.5% 47.5%

FIGURE 5-7 Tail Probabilities for a 95 Percent Confidence Interval

In working with confidence intervals, we specify the desired level of confidence and find
the endpoints. We have given the formulas for important conventional intervals, but we may
also have questions on other intervals, such as ‘‘How wide do I have to make the confidence
interval to capture 75 percent of the returns on this portfolio?’’ We may also be interested in
other probabilities. For example, we may ask, ‘‘What is the probability that the annual return
on this equity index will be less than the one-year T-bill return?’’

There are as many different normal distributions as there are choices for mean (µ) and
variance (σ2). We can answer all of the above questions in terms of any normal distribution.
Spreadsheets, for example, have functions for the normal cdf for any specification of mean and
variance. For the sake of efficiency, however, we would like to refer all probability statements
to a single normal distribution. The standard normal distribution (the normal distribution
with µ = 0 and σ = 1) fills that role.

There are two steps in standardizing a random variable X : Subtract the mean of X from
X , then divide that result by the standard deviation of X . If we have a list of observations
on a normal random variable, X , we subtract the mean from each observation to get a list of
deviations from the mean, then divide each deviation by the standard deviation. The result is
the standard normal random variable, Z . (Z is the conventional symbol for a standard normal



Chapter 5 Common Probability Distributions 195

TABLE 5-5 P(Z ≤ x) = N (x) for x ≥ 0 or P(Z ≤ z) = N (z) for z ≥ 0

x or z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.10 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.20 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.30 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.40 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.50 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

random variable.) If we have X ∼ N (µ, σ2) (read ‘‘X follows the normal distribution with
parameters µ and σ2’’), we standardize it using the formula

Z = (X − µ)/σ (5-4)

Suppose we have a normal random variable, X , with µ = 5 and σ = 1.5. We standardize
X with Z = (X − 5)/1.5. For example, a value X = 9.5 corresponds to a standardized value
of 3, calculated as Z = (9.5 − 5)/1.5 = 3. The probability that we will observe a value as
small as or smaller than 9.5 for X ∼ N (5, 1.5) is exactly the same as the probability that we will
observe a value as small as or smaller than 3 for Z ∼ N (0, 1). We can answer all probability
questions about X using standardized values and probability tables for Z . We generally do not
know the population mean and standard deviation, so we often use the sample mean X for µ

and the sample standard deviation s for σ.
Standard normal probabilities can also be computed with spreadsheets, statistical and

econometric software, and programming languages. Tables of the cumulative distribution
function for the standard normal random variable are in the back of this book. Table 5-5
shows an excerpt from those tables. N (x) is a conventional notation for the cdf of a standard
normal variable.22

To find the probability that a standard normal variable is less than or equal to 0.24,
for example, locate the row that contains 0.20, look at the 0.04 column, and find the entry
0.5948. Thus, P(Z ≤ 0.24) = 0.5948 or 59.48 percent.

The following are some of the most frequently referenced values in the standard normal
table:

• The 90th percentile point is 1.282: P(Z ≤ 1.282) = N (1.282) = 0.90 or 90 percent, and
10 percent of values remain in the right tail.

• The 95th percentile point is 1.65: P(Z ≤ 1.65) = N (1.65) = 0.95 or 95 percent, and
5 percent of values remain in the right tail. Note the difference between the use of a
percentile point when dealing with one tail rather than two tails. Earlier, we used 1.65
standard deviations for the 90 percent confidence interval, where 5 percent of values lie
outside that interval on each of the two sides. Here we use 1.65 because we are concerned
with the 5 percent of values that lie only on one side, the right tail.

• The 99th percentile point is 2.327: P(Z ≤ 2.327) = N (2.327) = 0.99 or 99 percent, and
1 percent of values remain in the right tail.

22Another often-seen notation for the cdf of a standard normal variable is �(x).
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The tables that we give for the normal cdf include probabilities for x ≤ 0. Many sources,
however, give tables only for x ≥ 0. How would one use such tables to find a normal
probability? Because of the symmetry of the normal distribution, we can find all probabilities
using tables of the cdf of the standard normal random variable, P(Z ≤ x) = N (x), for x ≥ 0.
The relations below are helpful for using tables for x ≥ 0, as well as in other uses:

• For a non-negative number x, use N (x) from the table. Note that for the probability to the
right of x, we have P(Z ≥ x) = 1.0 − N (x).

• For a negative number −x, N (−x) = 1.0 − N (x): Find N (x) and subtract it from 1. All
the area under the normal curve to the left of x is N (x). The balance, 1.0 − N (x), is the area
and probability to the right of x. By the symmetry of the normal distribution around its
mean, the area and the probability to the right of x are equal to the area and the probability
to the left of −x, N (−x).

• For the probability to the right of −x, P(Z ≥ −x) = N (x).

EXAMPLE 5-9 Probabilities for a Common Stock
Portfolio (2)

Recall that in Example 5-8, the portfolio mean return estimate was 12 percent and the
standard deviation of return estimate was 22 percent per year.

Using these estimates, you want to calculate the following probabilities, assuming
that a normal distribution describes returns. (You can use the excerpt from the table of
normal probabilities to answer these questions.)

1. What is the probability that portfolio return will exceed 20 percent?
2. What is the probability that portfolio return will be between 12 percent and 20

percent? In other words, what is P(12% ≤ Portfolio return ≤ 20%)?
3. You can buy a one-year T-bill that yields 5.5 percent. This yield is effectively a

one-year risk-free interest rate. What is the probability that your portfolio’s return
will be equal to or less than the risk-free rate?

If X is portfolio return, standardized portfolio return is Z = (X − X )/s = (X −
12%)/22%. We use this expression throughout the solutions.

Solution to 1: For X = 20%, Z = (20% − 12%)/22% = 0.363636. You want to
find P(Z > 0.363636). First note that P(Z > x) = P(Z ≥ x) because the normal
is a continuous distribution. Recall that P(Z ≥ x) = 1.0 − P(Z ≤ x) or 1 − N (x).
Rounding 0.363636 to 0.36, according to the table, N (0.36) = 0.6406. Thus, 1 −
0.6406 = 0.3594. The probability that portfolio return will exceed 20 percent is about
36 percent if your normality assumption is accurate.

Solution to 2: P(12% ≤ Portfolio return ≤ 20%) = N (Z corresponding to 20%) −
N (Z corresponding to 12%). For the first term, Z = (20% − 12%)/22% = 0.36
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approximately, and N (0.36) = 0.6406 (as in Solution 1). To get the second term imme-
diately, note that 12 percent is the mean, and for the normal distribution 50 percent of the
probability lies on either side of the mean. Therefore, N (Z corresponding to 12%) must
equal 50 percent. So P(12% ≤ Portfolio return ≤ 20%) = 0.6406 − 0.50 = 0.1406
or approximately 14 percent.

Solution to 3: If X is portfolio return, then we want to find P(Portfolio return ≤ 5.5%).
This question is more challenging than Parts 1 or 2, but when you have studied the
solution below, you will have a useful pattern for calculating other shortfall probabilities.

There are three steps, which involve standardizing the portfolio return: First,
subtract the portfolio mean return from each side of the inequality: P(Portfolio
return − 12% ≤ 5.5% − 12%). Second, divide each side of the inequality by the
standard deviation of portfolio return: P[(Portfolio return − 12%)/22% ≤ (5.5% −
12%)/22%] = P(Z ≤ −0.295455) = N (−0.295455). Third, recognize that on the
left-hand side we have a standard normal variable, denoted by Z . As we pointed out
above, N (−x) = 1 − N (x). Rounding −0.29545 to −0.30 for use with the excerpted
table, we have N (−0.30) = 1 − N (0.30) = 1 − 0.6179 = 0.3821, roughly 38 percent.
The probability that your portfolio will underperform the one-year risk-free rate is about
38 percent.

We can get the answer above quickly by subtracting the mean portfolio return from
5.5 percent, dividing by the standard deviation of portfolio return, and evaluating the
result (−0.295455) with the standard normal cdf.

3.3. Applications of the Normal Distribution

Modern portfolio theory (MPT) makes wide use of the idea that the value of investment
opportunities can be meaningfully measured in terms of mean return and variance of return.
In economic theory, mean–variance analysis holds exactly when investors are risk averse;
when they choose investments so as to maximize expected utility, or satisfaction; and when
either (1) returns are normally distributed or (2) investors have quadratic utility functions.23

Mean–variance analysis can still be useful, however—that is, it can hold approximately—when
either assumption (1) or (2) is violated. Because practitioners prefer to work with observables
such as returns, the proposition that returns are at least approximately normally distributed
has played a key role in much of MPT.

Mean–variance analysis generally considers risk symmetrically in the sense that standard
deviation captures variability both above and below the mean.24 An alternative approach
evaluates only downside risk. We discuss one such approach, safety-first rules, as it provides an
excellent illustration of the application of normal distribution theory to practical investment
problems. Safety-first rules focus on shortfall risk, the risk that portfolio value will fall below
some minimum acceptable level over some time horizon. The risk that the assets in a defined
benefit plan will fall below plan liabilities is an example of a shortfall risk.

Suppose an investor views any return below a level of RL as unacceptable. Roy’s safety-first
criterion states that the optimal portfolio minimizes the probability that portfolio return, RP ,

23Utility functions are mathematical representations of attitudes toward risk and return.
24We shall discuss mean–variance analysis in detail in the chapter on portfolio concepts.
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falls below the threshold level, RL.25 In symbols, the investor’s objective is to choose a portfolio
that minimizes P(RP < RL). When portfolio returns are normally distributed, we can calculate
P(RP < RL) using the number of standard deviations that RL lies below the expected portfolio
return, E(RP ). The portfolio for which E(RP ) − RL is largest relative to standard deviation
minimizes P(RP < RL). Therefore, if returns are normally distributed, the safety-first optimal
portfolio maximizes the safety-first ratio (SFRatio):

SFRatio = [E(RP ) − RL]/σP

The quantity E(RP ) − RL is the distance from the mean return to the shortfall level. Dividing
this distance by σP gives the distance in units of standard deviation. There are two steps in
choosing among portfolios using Roy’s criterion (assuming normality):26

1. Calculate each portfolio’s SFRatio.
2. Choose the portfolio with the highest SFRatio.

For a portfolio with a given safety-first ratio, the probability that its return will be less than
RL is N (−SFRatio), and the safety-first optimal portfolio has the lowest such probability.
For example, suppose an investor’s threshold return, RL, is 2 percent. He is presented with
two portfolios. Portfolio 1 has an expected return of 12 percent with a standard deviation
of 15 percent. Portfolio 2 has an expected return of 14 percent with a standard deviation of
16 percent. The SFRatios are 0.667 = (12 − 2)/15 and 0.75 = (14 − 2)/16 for Portfolios 1
and 2, respectively. For the superior Portfolio 2, the probability that portfolio return will be
less than 2 percent is N (−0.75) = 1 − N (0.75) = 1 − 0.7734 = 0.227 or about 23 percent,
assuming that portfolio returns are normally distributed.

You may have noticed the similarity of SFRatio to the Sharpe ratio. If we substitute
the risk-free rate, RF , for the critical level RL, the SFRatio becomes the Sharpe ratio. The
safety-first approach provides a new perspective on the Sharpe ratio: When we evaluate
portfolios using the Sharpe ratio, the portfolio with the highest Sharpe ratio is the one that
minimizes the probability that portfolio return will be less than the risk-free rate (given a
normality assumption).

EXAMPLE 5-10 The Safety-First Optimal Portfolio
for a Client

You are researching asset allocations for a client with an $800,000 portfolio. Although
her investment objective is long-term growth, at the end of a year she may want to
liquidate $30,000 of the portfolio to fund educational expenses. If that need arises, she

25A.D. Roy (1952) introduced this criterion.
26If there is an asset offering a risk-free return over the time horizon being considered, and if RL is less
than or equal to that risk-free rate, then it is optimal to be fully invested in the risk-free asset. Holding
the risk-free asset in this case eliminates the chance that the threshold return is not met.
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would like to be able to take out the $30,000 without invading the initial capital of
$800,000. Table 5-6 shows three alternative allocations.

TABLE 5-6 Mean and Standard Deviation for
Three Allocations (in percent)

A B C

Expected annual return 25 11 14
Standard deviation of return 27 8 20

Address these questions (assume normality for Parts 2 and 3):

1. Given the client’s desire not to invade the $800,000 principal, what is the shortfall
level, RL? Use this shortfall level to answer Part 2.

2. According to the safety-first criterion, which of the three allocations is the best?
3. What is the probability that the return on the safety-first optimal portfolio will

be less than the shortfall level?

Solution to 1: Because $30,000/$800,000 is 3.75 percent, for any return less than
3.75 percent the client will need to invade principal if she takes out $30,000. So
RL = 3.75 percent.

Solution to 2: To decide which of the three allocations is safety-first optimal, select the
alternative with the highest ratio [E(RP ) − RL]/σP :

Allocation A: 0.787037 = (25 − 3.75)/27

Allocation B: 0.90625 = (11 − 3.75)/8

Allocation C: 0.5125 = (14 − 3.75)/20

Allocation B, with the largest ratio (0.90625), is the best alternative according to the
safety-first criterion.

Solution to 3: To answer this question, note that P(RB < 3.75) = N (−0.90625). We
can round 0.90625 to 0.91 for use with tables of the standard normal cdf. First, we
calculate N (−0.91) = 1 − N (0.91) = 1 − 0.8186 = 0.1814 or about 18.1 percent.
Using a spreadsheet function for the standard normal cdf on −0.90625 without
rounding, we get 18.24 percent or about 18.2 percent. The safety-first optimal portfolio
has a roughly 18 percent chance of not meeting a 3.75 percent return threshold.

Several points are worth noting. First, if the inputs were even slightly different,
we could get a different ranking. For example, if the mean return on B were 10 rather
than 11 percent, A would be superior to B. Second, if meeting the 3.75 percent return
threshold were a necessity rather than a wish, $830,000 in one year could be modeled
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as a liability. Fixed income strategies such as cash flow matching could be used to offset
or immunize the $830,000 quasi-liability.

Roy’s safety-first rule was the earliest approach to addressing shortfall risk. The
standard mean–variance portfolio selection process can also accommodate a shortfall
risk constraint.27

In many investment contexts besides Roy’s safety-first criterion, we use the normal
distribution to estimate a probability. For example, Kolb, Gay, and Hunter (1985) developed
an expression based on the standard normal distribution for the probability that a futures
trader will exhaust his liquidity because of losses in a futures contract. Another arena in
which the normal distribution plays an important role is financial risk management. Financial
institutions such as investment banks, security dealers, and commercial banks have formal
systems to measure and control financial risk at various levels, from trading positions to the
overall risk for the firm.28 Two mainstays in managing financial risk are Value at Risk (VAR)
and stress testing/scenario analysis. Stress testing/scenario analysis, a complement to VAR,
refers to a set of techniques for estimating losses in extremely unfavorable combinations of
events or scenarios. Value at Risk (VAR) is a money measure of the minimum value of losses
expected over a specified time period (for example, a day, a quarter, or a year) at a given level
of probability (often 0.05 or 0.01). Suppose we specify a one-day time horizon and a level of
probability of 0.05, which would be called a 95 percent one-day VAR.29 If this VAR equaled
¤5 million for a portfolio, there would be a 0.05 probability that the portfolio would lose ¤5
million or more in a single day (assuming our assumptions were correct). One of the basic
approaches to estimating VAR, the variance–covariance or analytical method, assumes that
returns follow a normal distribution. For more information on VAR, see Chance (2003).

3.4. The Lognormal Distribution

Closely related to the normal distribution, the lognormal distribution is widely used for mod-
eling the probability distribution of share and other asset prices. For example, the lognormal
appears in the Black–Scholes–Merton option pricing model. The Black–Scholes–Merton
model assumes that the price of the asset underlying the option is lognormally distributed.

A random variable Y follows a lognormal distribution if its natural logarithm, ln Y , is
normally distributed. The reverse is also true: If the natural logarithm of random variable
Y , ln Y , is normally distributed, then Y follows a lognormal distribution. If you think of the
term lognormal as ‘‘the log is normal,’’ you will have no trouble remembering this relationship.

The two most noteworthy observations about the lognormal distribution are that it is
bounded below by 0 and it is skewed to the right (it has a long right tail). Note these two
properties in the graphs of the pdfs of two lognormal distributions in Figure 5-8. Asset prices
are bounded from below by 0. In practice, the lognormal distribution has been found to be

27See Leibowitz and Henriksson (1989), for example.
28Financial risk is risk relating to asset prices and other financial variables. The contrast is to other,
nonfinancial risks (for example, relating to operations and technology), which require different tools to
manage.
29In 95 percent one-day VAR, the 95 percent refers to the confidence in the value of VAR and is equal
to 1 − 0.05; this is a traditional way to state VAR.
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FIGURE 5-8 Two Lognormal Distributions

a usefully accurate description of the distribution of prices for many financial assets. On the
other hand, the normal distribution is often a good approximation for returns. For this reason,
both distributions are very important for finance professionals.

Like the normal distribution, the lognormal distribution is completely described by
two parameters. Unlike the other distributions we have considered, a lognormal distribution
is defined in terms of the parameters of a different distribution. The two parameters of a
lognormal distribution are the mean and standard deviation (or variance) of its associated
normal distribution: the mean and variance of ln Y , given that Y is lognormal. Remember,
we must keep track of two sets of means and standard deviations (or variances): the mean and
standard deviation (or variance) of the associated normal distribution (these are the parameters),
and the mean and standard deviation (or variance) of the lognormal variable itself.

The expressions for the mean and variance of the lognormal variable itself are challenging.
Suppose a normal random variable X has expected value µ and variance σ2. Define Y = exp(X ).
Remember that the operation indicated by exp(X ) or eX is the opposite operation from taking
logs.30 Because ln Y = ln[exp(X )] = X is normal (we assume X is normal), Y is lognormal.
What is the expected value of Y = exp(X )? A guess might be that the expected value of Y
is exp(µ). The expected value is actually exp(µ + 0.50σ2), which is larger than exp(µ) by a
factor of exp(0.50σ2) > 1.31 To get some insight into this concept, think of what happens
if we increase σ2. The distribution spreads out; it can spread upward, but it cannot spread
downward past 0. As a result, the center of its distribution is pushed to the right—the
distribution’s mean increases.32

The expressions for the mean and variance of a lognormal variable are summarized below,
where µ and σ2 are the mean and variance of the associated normal distribution (refer to these
expressions as needed, rather than memorizing them):

30The quantity e ≈ 2.7182818.
31Note that exp(0.50σ2) > 1 because σ2 > 0.
32Luenberger (1998) is the source of this explanation.
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• Mean (µL) of a lognormal random variable = exp(µ + 0.50σ2)
• Variance (σL

2) of a lognormal random variable = exp(2µ + σ2) × [exp(σ2) − 1]

We now explore the relationship between the distribution of stock return and stock
price. In the following we show that if a stock’s continuously compounded return is normally
distributed, then future stock price is necessarily lognormally distributed.33 Furthermore,
we show that stock price may be well described by the lognormal distribution even when
continuously compounded returns do not follow a normal distribution. These results provide
the theoretical foundation for using the lognormal distribution to model prices.

To outline the presentation that follows, we first show that the stock price at some
future time T , ST , equals the current stock price, S0, multiplied by e raised to power
r0,T , the continuously compounded return from 0 to T ; this relationship is expressed
as ST = S0 exp(r0,T ). We then show that we can write r0,T as the sum of shorter-term
continuously compounded returns and that if these shorter-period returns are normally
distributed, then r0,T is normally distributed (given certain assumptions) or approximately
normally distributed (not making those assumptions). As ST is proportional to the log of a
normal random variable, ST is lognormal.

To supply a framework for our discussion, suppose we have a series of equally spaced
observations on stock price: S0, S1, S2, . . . , ST . Current stock price, S0, is a known quantity
and so is nonrandom. The future prices (such as S1), however, are random variables. The
price relative, S1/S0, is an ending price, S1, over a beginning price, S0; it is equal to 1 plus
the holding period return on the stock from t = 0 to t = 1:

S1/S0 = 1 + R0,1

For example, if S0 = $30 and S1 = $34.50, then S1/S0 = $34.50/$30 = 1.15. Therefore,
R0,1 = 0.15 or 15 percent. In general, price relatives have the form

St+1/St = 1 + Rt,t+1

where Rt,t+1 is the rate of return from t to t + 1.
An important concept is the continuously compounded return associated with a holding

period return such as R0,1. The continuously compounded return associated with a holding
period is the natural logarithm of 1 plus that holding period return, or equivalently, the natural
logarithm of the ending price over the beginning price (the price relative).34 For example, if we
observe a one-week holding period return of 0.04, the equivalent continuously compounded
return, called the one-week continuously compounded return, is ln(1.04) = 0.039221; ¤1.00
invested for one week at 0.039221 continuously compounded gives ¤1.04, equivalent to a
4 percent one-week holding period return. The continuously compounded return from t to
t + 1 is

rt,t+1 = ln(St+1/St ) = ln(1 + Rt,t+1) (5-5)

33Continuous compounding treats time as essentially continuous or unbroken, in contrast to discrete com-
pounding, which treats time as advancing in discrete finite intervals. Continuously compounded returns
are the model for returns in so-called continuous time finance models such as the Black–Scholes–Merton
option pricing model. See the chapter on the time value of money for more information on compounding.
34In this chapter only, we use lowercase r to refer specifically to continuously compounded returns.
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For our example, r0,1= ln(S1/S0) = ln(1+R0,1) = ln($34.50/$30) = ln(1.15) = 0.139762.
Thus, 13.98 percent is the continuously compounded return from t = 0 to t = 1. The
continuously compounded return is smaller than the associated holding period return. If our
investment horizon extends from t = 0 to t = T , then the continuously compounded return
to T is

r0,T = ln (ST /S0)

Applying the function exp to both sides of the equation, we have exp(r0,T ) = exp[ln(ST /S0)] =
ST /S0, so

ST = S0 exp(r0,T )

We can also express ST /S0 as the product of price relatives:

ST /S0 = (ST /ST−1)(ST−1/ST−2) . . . (S1/S0)

Taking logs of both sides of this equation, we find that continuously compounded return to
time T is the sum of the one-period continuously compounded returns:

r0,T = rT−1,T + rT−2,T−1 + · · · + r0,1 (5-6)

Using holding period returns to find the ending value of a $1 investment involves the
multiplication of quantities (1 + holding period return). Using continuously compounded
returns involves addition.

A key assumption in many investment applications is that returns are independently
and identically distributed (IID). Independence captures the proposition that investors
cannot predict future returns using past returns (i.e., weak-form market efficiency). Identical
distribution captures the assumption of stationarity, to which we will return in the chapter on
time-series analysis.35

Assume that the one-period continuously compounded returns (such as r0,1) are IID
random variables with mean µ and variance σ2 (but making no normality or other distributional
assumption). Then

E(r0,T ) = E(rT−1,T ) + E(rT−2,T−1) + · · · + E(r0,1) = µT (5-7)

(we add up µ for a total of T times) and

σ2(r0,T ) = σ2T (5-8)

(as a consequence of the independence assumption). The variance of the T holding period
continuously compounded return is T multiplied by the variance of the one-period continu-
ously compounded return; also, σ(r0,T ) = σ

√
T . If the one-period continuously compounded

returns on the right-hand side of Equation 5-6 are normally distributed, then the T holding

35Stationarity implies that the mean and variance of return do not change from period to period.
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period continuously compounded return, r0,T , is also normally distributed with mean µT and
variance σ2T . This relationship is so because a linear combination of normal random variables
is also normal. But even if the one-period continuously compounded returns are not normal,
their sum, r0,T , is approximately normal according to a result in statistics known as the central
limit theorem.36 Now compare ST = S0 exp(r0,T ) to Y = exp(X ), where X is normal and Y is
lognormal (as we discussed above). Clearly, we can model future stock price ST as a lognormal
random variable because r0,T should be at least approximately normal. This assumption of
normally distributed returns is the basis in theory for the lognormal distribution as a model
for the distribution of prices of shares and other assets.

Continuously compounded returns play a role in many option pricing models, as
mentioned earlier. An estimate of volatility is crucial for using option pricing models such
as the Black–Scholes–Merton model. Volatility measures the standard deviation of the
continuously compounded returns on the underlying asset.37 In practice, we very often
estimate volatility using a historical series of continuously compounded daily returns. We
gather a set of daily holding period returns and then use Equation 5-5 to convert them into
continuously compounded daily returns. We then compute the standard deviation of the
continuously compounded daily returns and annualize that number using Equation 5-8.38

(By convention, volatility is stated as an annualized measure.)39 Example 5-11 illustrates the
estimation of volatility for the shares of Michelin.

EXAMPLE 5-11 Volatility as Used in Option Pricing Models

Suppose you are researching Michelin (Euronext: MICP.PA) and are interested in
Michelin’s price action in a week in which a number of international events affected
stock markets. You decide to use volatility as a measure of the variability of Michelin
shares during that week. Table 5-7 shows closing prices during that week.

36We mentioned the central limit theorem earlier in our discussion of the normal distribution. To give a
somewhat fuller statement of it, according to the central limit theorem the sum (as well as the mean) of a
set of independent, identically distributed random variables with finite variances is normally distributed,
whatever distribution the random variables follow. We discuss the central limit theorem in the chapter
on sampling.
37Volatility is also called the instantaneous standard deviation, and as such is denoted σ. The underlying
asset, or simply the underlying, is the asset underlying the option. For more information on these
concepts, see Chance (2003).
38To compute the standard deviation of a set or sample of n returns, we sum the squared deviation
of each return from the mean return and then divide that sum by n − 1. The result is the sample
variance. Taking the square root of the sample variance gives the sample standard deviation. To review
the calculation of standard deviation, see the chapter on statistical concepts and market returns.
39Annualizing is often done on the basis of 250 days in a year, the approximate number of days
markets are open for trading. The 250-day number may lead to a better estimate of volatility than the
365-day number. Thus if daily volatility were 0.01, we would state volatility (on an annual basis) as
0.01

√
250 = 0.1581.
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TABLE 5-7 Michelin Daily
Closing Prices

Date Closing Price

31 March 2003 ¤25.20
01 April 2003 ¤25.21
02 April 2003 ¤25.52
03 April 2003 ¤26.10
04 April 2003 ¤26.14

Source: http://fr.finance.yahoo.com.

Use the data in Table 5-7 to do the following:

1. Estimate the volatility of Michelin shares. (Annualize volatility based on 250 days
in a year.)

2. Identify the probability distribution for Michelin share prices if continuously
compounded daily returns follow the normal distribution.

Solution to 1: First, use Equation 5-5 to calculate the continuously compounded daily
returns; then find their standard deviation in the usual way. (In the calculation of sample
variance to get sample standard deviation, use a divisor of 1 less than the sample size.)

ln(25.21/25.20) = 0.000397, ln(25.52/25.21) = 0.012222

ln(26.10/25.52) = 0.022473, ln(26.14/26.10) = 0.001531

Sum = 0.036623, Mean = 0.009156, Variance = 0.000107,

Standard Deviation = 0.010354

The standard deviation of continuously compounded daily returns is 0.010354.
Equation 5-8 states that σ̂(r0,T ) = σ̂

√
T . In this example, σ̂ is the sample standard

deviation of one-period continuously compounded returns. Thus, σ̂ refers to 0.010354.
We want to annualize, so the horizon T corresponds to one year. As σ̂ is in days, we set
T equal to the number of trading days in a year (250).

We find that annualized volatility for Michelin stock that week was 16.4 percent,
calculated as 0.010354

√
250 = 0.163711.

Note that the sample mean, 0.009156, is a possible estimate of the mean, µ,
of the continuously compounded one-period or daily returns. The sample mean can
be translated into an estimate of the expected continuously compounded annual
return using Equation 5-7: µ̂T = 0.009156(250) (using 250 to be consistent with the
calculation of volatility). But four observations are far too few to estimate expected
returns. The variability in the daily returns overwhelms any information about expected
return in a series this short.

Solution to 2: Michelin share prices should follow the lognormal distribution if
the continuously compounded daily returns on Michelin shares follow the normal
distribution.
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We have shown that the distribution of stock price is lognormal, given certain assumptions.
What are the mean and variance of ST if ST follows the lognormal distribution? Earlier in this
section, we gave bullet-point expressions for the mean and variance of a lognormal random
variable. In the bullet-point expressions, the µ̂ and σ̂2 would refer, in the context of this
discussion, to the mean and variance of the T horizon (not the one-period) continuously
compounded returns (assumed to follow a normal distribution), compatible with the horizon
of ST .40 Related to the use of mean and variance (or standard deviation), earlier in this chapter
we used those quantities to construct intervals in which we expect to find a certain percentage
of the observations of a normally distributed random variable. Those intervals were symmetric
about the mean. Can we state similar, symmetric intervals for a lognormal random variable?
Unfortunately, we cannot. Because the lognormal distribution is not symmetric, such intervals
are more complicated than for the normal distribution, and we will not discuss this specialist
topic here.41

Finally, we have presented the relation between the mean and variance of continuously
compounded returns associated with different time horizons (see Equations 5-7 and 5-8), but
how are the means and variances of holding period returns and continuously compounded
returns related? As analysts, we typically think in terms of holding period returns rather
than continuously compounded returns, and we may desire to convert means and standard
deviations of holding period returns to means and standard deviations of continuously
compounded returns for an option application, for example. To effect such conversions (and
those in the other direction, from a continuous compounding to a holding period basis), we
can use the expressions in Ferguson (1993).

4. MONTE CARLO SIMULATION

With an understanding of probability distributions, we are now prepared to learn about
a computer-based technique in which probability distributions play an integral role. The
technique is called Monte Carlo simulation. Monte Carlo simulation in finance involves the
use of a computer to represent the operation of a complex financial system. A characteristic
feature of Monte Carlo simulation is the generation of a large number of random samples
from a specified probability distribution or distributions to represent the role of risk in the
system.

Monte Carlo simulation has several quite distinct uses. One use is in planning. Stanford
University researcher Sam Savage provided the following neat picture of that role: ‘‘What is
the last thing you do before you climb on a ladder? You shake it, and that is Monte Carlo
simulation.’’42 Just as shaking a ladder helps us assess the risks in climbing it, Monte Carlo
simulation allows us to experiment with a proposed policy before actually implementing it. For
example, investment performance can be evaluated with reference to a benchmark or a liability.
Defined benefit pension plans often invest assets with reference to plan liabilities. Pension
liabilities are a complex random process. In a Monte Carlo asset–liability financial planning
study, the functioning of pension assets and liabilities is simulated over time, given assumptions

40The expression for the mean is E(ST ) = S0 exp[E(r0,T ) + 0.5σ2(r0,T )], for example.
41See Hull (2003) for a discussion of lognormal confidence intervals.
42Business Week, 22 January 2001.
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about how assets are invested, the work force, and other variables. A key specification in this
and all Monte Carlo simulations is the probability distributions of the various sources of
risk (including interest rates and security market returns, in this case). The implications of
different investment policy decisions on the plan’s funded status can be assessed through
simulated time. The experiment can be repeated for another set of assumptions. We can view
Example 5-12 below as coming under this heading. In that example, market return series are
not long enough to address researchers’ questions on stock market timing, so the researchers
simulate market returns to find answers to their questions.

Monte Carlo simulation is also widely used to develop estimates of VAR. In this
application, we simulate the portfolio’s profit and loss performance for a specified time
horizon. Repeated trials within the simulation (each trial involving a draw of random
observations from a probability distribution) produce a frequency distribution for changes in
portfolio value. The point that defines the cutoff for the least favorable 5 percent of simulated
changes is an estimate of 95 percent VAR, for example.

In an extremely important use, Monte Carlo simulation is a tool for valuing complex
securities, particularly European-style options, for which no analytic pricing formula is
available.43 For other securities, such as mortgage-backed securities with complex embedded
options, Monte Carlo simulation is also an important modeling resource.

Researchers use Monte Carlo simulation to test their models and tools. How critical is
a particular assumption to the performance of a model? Because we control the assumptions
when we do a simulation, we can run the model through a Monte Carlo simulation to examine
a model’s sensitivity to a change in our assumptions.

To understand the technique of Monte Carlo simulation, let us present the process as a
series of steps.44 To illustrate the steps, we take the case of using Monte Carlo simulation to
value a type of option for which no analytic pricing formula is available, an Asian call option
on a stock. An Asian call option is a European-style option with a value at maturity equal to
the difference between the stock price at maturity and the average stock price during the life
of the option, or $0, whichever is greater. For instance, if the final stock price is $34 with an
average value of $31 over the life of the option, the value of the option at maturity is $3 (the
greater of $34 − $31 = $3 and $0). Steps 1 through 3 of the process describe specifying the
simulation; Steps 4 through 7 describe running the simulation.

1. Specify the quantities of interest (option value, for example, or the funded status of
a pension plan) in terms of underlying variables. The underlying variable or variables
could be stock price for an equity option, the market value of pension assets, or other
variables relating to the pension benefit obligation for a pension plan. Specify the
starting values of the underlying variables.

To illustrate the steps, we are using the case of valuing an Asian call option on stock.
We use CiT to represent the value of the option at maturity T . The subscript i in CiT

indicates that CiT is a value resulting from the ith simulation trial, each simulation
trial involving a drawing of random values (an iteration of Step 4 below).

43A European-style option or European option is an option exercisable only at maturity.
44The steps should be viewed as providing an overview of Monte Carlo simulation rather than as a
detailed recipe for implementing a Monte Carlo simulation in its many varied applications.
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2. Specify a time grid. Take the horizon in terms of calendar time and split it into a number
of subperiods, say K in total. Calendar time divided by the number of subperiods, K , is
the time increment, �t.

3. Specify distributional assumptions for the risk factors that drive the underlying variables.
For example, stock price is the underlying variable for the Asian call, so we need a model
for stock price movement. Say we choose the following model for changes in stock price,
where Zk stands for the standard normal random variable:

�(Stock price) = (µ × Prior stock price × �t) + (σ × Prior stock price × Zk)

In the way that we are using the term, Zk is a risk factor in the simulation. Through our
choice of µ and σ, we control the distribution of stock price. Although this example has
one risk factor, a given simulation may have multiple risk factors.

4. Using a computer program or spreadsheet function, draw K random values of each risk
factor. In our example, the spreadsheet function would produce a draw of K values of
the standard normal variable Zk : Z1, Z2, Z3, . . . , ZK .

5. Calculate the underlying variables using the random observations generated in Step 4.
Using the above model of stock price dynamics, the result is K observations on changes
in stock price. An additional calculation is needed to convert those changes into K
stock prices (using initial stock price, which is given). Another calculation produces the
average stock price during the life of the option (the sum of K stock prices divided by K ).

6. Compute the quantities of interest. In our example, the first calculation is the value
of an Asian call at maturity, CiT . A second calculation discounts this terminal value
back to the present to get the call value as of today, Ci0. We have completed one
simulation trial. (The subscript i in Ci0 stands for the ith simulation trial, as it does in
CiT .) In a Monte Carlo simulation, a running tabulation is kept of statistics relating to
the distribution of the quantities of interest, including their mean value and standard
deviation, over the simulation trials to that point.

7. Iteratively go back to Step 4 until a specified number of trials, I , is completed. Finally,
produce statistics for the simulation. The key value for our example is the mean value
of Ci0 for the total number of simulation trials. This mean value is the Monte Carlo
estimate of the value of the Asian call.

How many simulation trials should be specified? In general, we need to increase the
number of trials by a factor of 100 to get each extra digit of accuracy. Depending on the
problem, tens of thousands of trials may be needed to obtain accuracy to two decimal places (as
required for option value, for example). Conducting a large number of trials is not necessarily
a problem, given today’s computing power. The number of trials needed can be reduced using
variance reduction procedures, a topic outside the scope of this book.45

In Step 4 of our example, a computer function produced a set of random observations
on a standard normal random variable. Recall that for a uniform distribution, all possible
numbers are equally likely. The term random number generator refers to an algorithm that
produces uniformly distributed random numbers between 0 and 1. In the context of computer

45For details on this and other technical aspects of Monte Carlo simulation, see Hillier and Lieberman
(2000).
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simulations, the term random number refers to an observation drawn from a uniform
distribution.46 For other distributions, the term ‘‘random observation’’ is used in this context.

It is a remarkable fact that random observations from any distribution can be produced
using the uniform random variable with endpoints 0 and 1. To see why this is so, consider the
inverse transformation method of producing random observations. Suppose we are interested
in obtaining random observations for a random variable, X , with cumulative distribution
function F (x). Recall that F (x) evaluated at x is a number between 0 and 1. Suppose a random
outcome of this random variable is 3.21 and that F (3.21) = 0.25 or 25 percent. Define an
inverse of F , call it F−1, that can do the following: Substitute the probability 0.25 into F−1 and
it returns the random outcome 3.21. In other words, F−1(0.25) = 3.21. To generate random
observations on X , the steps are (1) generate a uniform random number, r, between 0 and 1
using the random number generator and (2) evaluate F−1(r) to obtain a random observation
on X . Random observation generation is a field of study in itself, and we have briefly discussed
the inverse transformation method here just to illustrate a point. As a generalist you do not
need to address the technical details of converting random numbers into random observations,
but you do need to know that random observations from any distribution can be generated
using a uniform random variable.

In Examples 5-12 and 5-13, we give an application of Monte Carlo simulation to a
question of great interest to investment practice: the potential gains from market timing.

EXAMPLE 5-12 Potential Gains from Market Timing:
A Monte Carlo Simulation (1)

All active investors want to achieve superior performance. One possible source of
superior performance is market timing ability. How accurate does an investor need
to be as a bull- and bear-market forecaster for market timing to be profitable? What
size gains compared with a buy-and-hold strategy accrue to a given level of accuracy?
Because of the variability in asset returns, a huge amount of return data is needed to find
statistically reliable answers to these questions. Chua, Woodward, and To (1987) thus
selected Monte Carlo simulation to address the potential gains from market timing.
They were interested in the perspective of a Canadian investor.

To understand their study, suppose that at the beginning of a year, an investor
predicts that the next year will see either a bull market or bear market. If the prediction
is bull market, the investor puts all her money in stocks and earns the market return for
that year. On the other hand, if the prediction is bear market, the investor holds T-bills
and earns the T-bill return. After the fact, a market is categorized as bull market if the
stock market return, RMt , minus T-bill return, RFt , is positive for the year; otherwise,
the market is classed as bear market. The investment results of a market timer can be

46The numbers that random number generators produce depend on a seed or initial value. If the
same seed is fed to the same generator, it will produce the same sequence. All sequences eventually
repeat. Because of this predictability, the technically correct name for the numbers produced by random
number generators is pseudo-random numbers. Pseudo-random numbers have sufficient qualities of
randomness for most practical purposes.
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compared with those of a buy-and-hold investor. A buy-and-hold investor earns the
market return every year. For Chua et al., one quantity of interest was the gain from
market timing. They defined this quantity as the market timer’s average return minus
the average return to a buy-and-hold investor.

To simulate market returns, Chua et al. generated 10,000 random standard normal
observations, Zt . At the time of the study, Canadian stocks had a historical mean
annual return of 12.95 percent with a standard deviation of 18.30 percent. To reflect
these parameters, the simulated market returns are RMt = 0.1830Zt + 0.1295, t =
1, 2, . . . , 10,000. Using a second set of 10,000 random standard normal observations,
historical return parameters for Canadian T-bills, as well as the historical correlation of
T-bill and stock returns, the authors generated 10,000 T-bill returns.

An investor can have different skills in forecasting bull and bear markets. Chua
et al. characterized market timers by accuracy in forecasting bull markets and accuracy
in forecasting bear markets. For example, bull market forecasting accuracy of 50
percent means that when the timer forecasts bull market for the next year, she is
right just half the time, indicating no skill. Suppose an investor has 60 percent
accuracy in forecasting bull market and 80 percent accuracy in forecasting bear market
(a 60–80 timer). We can simulate how an investor would fare. After generating
the first observation on RMt − RFt , we know whether that observation is a bull or
bear market. If the observation is bull market, then 0.60 (forecast accuracy for bull
markets) is compared with a random number (between 0 and 1). If the random
number is less than 0.60, which occurs with a 60 percent probability, then the
market timer is assumed to have correctly predicted bull market and her return for
that first observation is the market return. If the random number is greater than
0.60, then the market timer is assumed to have made an error and predicted bear
market; her return for that observation is the risk-free rate. In a similar fashion, if
that first observation is bear market, the timer has an 80 percent chance of being
right in forecasting bear market based on a random number draw. In either case,
her return is compared with the market return to record her gain versus a buy-
and-hold strategy. That process is one simulation trial. The simulated mean return
earned by the timer is the average return earned by the timer over all trials in the
simulation.

To increase our understanding of the process, consider a hypothetical Monte
Carlo simulation with four trials for the 60–80 timer (who, to reiterate, has 60 percent
accuracy in forecasting bull markets and 80 percent accuracy in forecasting bear markets).
Table 5-8 gives data for the simulation. Let us look at Trials 1 and 2. In Trial 1, the first
random number drawn leads to a market return of 0.121. Because the market return,
0.121, exceeded the T-bill return, 0.050, we have a bull market. We generate a random
number, 0.531, which we then compare with the timer’s bull market accuracy, 0.60.
Because 0.531 is less than 0.60, the timer is assumed to have made a correct bull market
forecast and thus to have invested in stocks. Thus the timer earns the stock market
return, 0.121, for that trial. In the second trial we observe another bull market, but
because the random number 0.725 is greater than 0.60, the timer is assumed to have
made an error and predicted a bear market; therefore, the timer earned the T-bill return,
0.081, rather than the higher stock market return.
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TABLE 5-8 Hypothetical Simulation for a 60–80 Market Timer

After Draws for Zt and Simulation
for the T-bill Return Results

Bull or Timer’s Return
Bear Value Prediction Earned

Trial RMt RFt Market? of X Correct? by Timer

1 0.121 0.050 Bull 0.531 Yes 0.121
2 0.092 0.081 Bull 0.725 No 0.081
3 −0.020 0.034 Bear 0.786 Yes 0.034
4 0.052 0.055 A 0.901 B C

R = D

Note: R is the mean return earned by the timer over the four simulation trials.

Using the data in Table 5-8, determine the values of A, B, C , and D.

Solution: The value of A is Bear because the stock market return was less than the T-bill
return in Trial 4. The value of B is No. Because we observe a bear market, we compare
the random number 0.901 with 0.80, the timer’s bear-market forecasting accuracy.
Because 0.901 is greater than 0.8, the timer is assumed to have made an error. The value
of C is 0.052, the return on the stock market, because the timer made an error and
invested in the stock market and earned 0.052 rather than the higher T-bill return of
0.055. The value of D is R = (0.121 + 0.081 + 0.034 + 0.052) = 0.288/4 = 0.072.
Note that we could calculate other statistics besides the mean, such as the standard
deviation of the returns earned by the timer over the four trials in the simulation.

EXAMPLE 5-13 Potential Gains from Market Timing:
A Monte Carlo Simulation (2)

Having discussed the plan of the Chua et al. study and illustrated the method for a
hypothetical Monte Carlo simulation with four trials, we conclude our presentation of
the study.

The hypothetical simulation in Example 5-12 had four trials, far too few to reach
statistically precise conclusions. The simulation of Chua et al. incorporated 10,000
trials. Chua et al. specified bull- and bear-market prediction skill levels of 50, 60, 70,
80, 90, and 100 percent. Table 5-9 presents a very small excerpt from their simulation
results for the no transaction costs case (transaction costs were also examined). Reading
across the row, the timer with 60 percent bull market and 80 percent bear market
forecasting accuracy had a mean annual gain from market timing of −1.12 percent
per year. On average, the buy-and-hold investor out-earned this skillful timer by 1.12
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percentage points. There was substantial variability in gains across the simulation trials,
however: The standard deviation of the gain was 14.77 percent, so in many trials (but
not on average) the gain was positive. Row 3 (win/loss) is the ratio of profitable switches
between stocks and T-bills to unprofitable switches. This ratio was a favorable 1.2070
for the 60–80 timer. (When transaction costs were considered, however, fewer switches
are profitable: The win/loss ratio was 0.5832 for the 60–80 timer.)

TABLE 5-9 Gains from Stock Market Timing (No Transaction Costs)

Bull Market Bear Market Accuracy (%)
Accuracy

(%) 50 60 70 80 90 100

60 Mean (%) −2.50 −1.99 −1.57 −1.12 −0.68 −0.22
S.D. (%) 13.65 14.11 14.45 14.77 15.08 15.42
Win/Loss 0.7418 0.9062 1.0503 1.2070 1.3496 1.4986

Source: Chua, Woodward, and To (1987), Table II (excerpt).

The authors concluded that the cost of not being invested in the market during
bull market years is high. Because a buy-and-hold investor never misses a bull market
year, she has 100 percent forecast accuracy for bull markets (at the cost of 0 percent
accuracy for bear markets). Given their definitions and assumptions, the authors also
concluded that successful market timing requires a minimum accuracy of 80 percent in
forecasting both bull and bear markets. Market timing is a continuing area of interest
and study, and other perspectives exist. However, this example illustrates how Monte
Carlo simulation is used to address important investment issues.

The analyst chooses the probability distributions in Monte Carlo simulation. By contrast,
historical simulation samples from a historical record of returns (or other underlying
variables) to simulate a process. The concept underlying historical simulation (also called back
simulation) is that the historical record provides the most direct evidence on distributions
(and that the past applies to the future). For example, refer back to Step 2 in the outline of
Monte Carlo simulation above and suppose the time increment is one day. Further, suppose
we base the simulation on the record of daily stock returns over the last five years. In one
type of historical simulation, we randomly draw K returns from that record to generate one
simulation trial. We put back the observations into the sample, and in the next trial we
again randomly sample with replacement. The simulation results directly reflect frequencies
in the data. A drawback of this approach is that any risk not represented in the time period
selected (for example, a stock market crash) will not be reflected in the simulation. Compared
with Monte Carlo simulation, historical simulation does not lend itself to ‘‘what if’’ analyses.
Nevertheless, historic simulation is an established alternative simulation methodology.

Monte Carlo simulation is a complement to analytical methods. It provides only statistical
estimates, not exact results. Analytical methods, where available, provide more insight into
cause-and-effect relationships. For example, the Black–Scholes–Merton option pricing model
for the value of a European call option is an analytical method, expressed as a formula. It
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is a much more efficient method for valuing such a call than is Monte Carlo simulation. As
an analytical expression, the Black–Scholes–Merton model permits the analyst to quickly
gauge the sensitivity of call value to changes in current stock price and the other variables that
determine call value. In contrast, Monte Carlo simulations do not directly provide such precise
insights. However, only some types of options can be priced with analytical expressions. As
financial product innovations proceed, the field of applications for Monte Carlo simulation
continues to grow.





CHAPTER 6
SAMPLING AND

ESTIMATION

1. INTRODUCTION

Each day, we observe the high, low, and close of stock market indexes from around the world.
Indexes such as the S&P 500 Index and the Nikkei–Dow Jones Average are samples of stocks.
Although the S&P 500 and the Nikkei do not represent the populations of U.S. or Japanese
stocks, we view them as valid indicators of the whole population’s behavior. As analysts, we
are accustomed to using this sample information to assess how various markets from around
the world are performing. Any statistics that we compute with sample information, however,
are only estimates of the underlying population parameters. A sample, then, is a subset of the
population—a subset studied to infer conclusions about the population itself.

This chapter explores how we sample and use sample information to estimate population
parameters. In the next section, we discuss sampling—the process of obtaining a sample. In
investments, we continually make use of the mean as a measure of central tendency of random
variables, such as return and earnings per share. Even when the probability distribution of
the random variable is unknown, we can make probability statements about the population
mean using the central limit theorem. In Section 3, we discuss and illustrate this key result.
Following that discussion, we turn to statistical estimation. Estimation seeks precise answers
to the question ‘‘What is this parameter’s value?’’

The central limit theorem and estimation are the core of the body of methods presented
in this chapter. In investments, we apply these and other statistical techniques to financial
data; we often interpret the results for the purpose of deciding what works and what does not
work in investments. We end this chapter with a discussion of the interpretation of statistical
results based on financial data and the possible pitfalls in this process.

2. SAMPLING

In this section, we present the various methods for obtaining information on a population
(all members of a specified group) through samples (part of the population). The information
on a population that we try to obtain usually concerns the value of a parameter, a quantity
computed from or used to describe a population of data. When we use a sample to estimate
a parameter, we make use of sample statistics (statistics, for short). A statistic is a quantity
computed from or used to describe a sample of data.
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We take samples for one of two reasons. In some cases, we cannot possibly examine every
member of the population. In other cases, examining every member of the population would
not be economically efficient. Thus, savings of time and money are two primary factors that
cause an analyst to use sampling to answer a question about a population. In this section,
we discuss two methods of random sampling: simple random sampling and stratified random
sampling. We then define and illustrate the two types of data an analyst uses: cross-sectional
data and time-series data.

2.1. Simple Random Sampling

Suppose a telecommunications equipment analyst wants to know how much major customers
will spend on average for equipment during the coming year. One strategy is to survey the
population of telecom equipment customers and inquire what their purchasing plans are.
In statistical terms, the characteristics of the population of customers’ planned expenditures
would then usually be expressed by descriptive measures such as the mean and variance.
Surveying all companies, however, would be very costly in terms of time and money.

Alternatively, the analyst can collect a representative sample of companies and survey
them about upcoming telecom equipment expenditures. In this case, the analyst will compute
the sample mean expenditure, X , a statistic. This strategy has a substantial advantage over
polling the whole population because it can be accomplished more quickly and at lower cost.

Sampling, however, introduces error. The error arises because not all the companies in
the population are surveyed. The analyst who decides to sample is trading time and money for
sampling error.

When an analyst chooses to sample, he must formulate a sampling plan. A sampling plan
is the set of rules used to select a sample. The basic type of sample from which we can draw
statistically sound conclusions about a population is the simple random sample (random
sample, for short).

• Definition of Simple Random Sample. A simple random sample is a subset of a larger
population created in such a way that each element of the population has an equal
probability of being selected to the subset.

The procedure of drawing a sample to satisfy the definition of a simple random sample is
called simple random sampling. How is simple random sampling carried out? We need a
method that ensures randomness—the lack of any pattern—in the selection of the sample.
For a finite (limited) population, the most common method for obtaining a random sample
involves the use of random numbers (numbers with assured properties of randomness). First,
we number the members of the population in sequence. For example, if the population
contains 500 members, we number them in sequence with three digits, starting with 001 and
ending with 500. Suppose we want a simple random sample of size 50. In that case, using a
computer random-number generator or a table of random numbers, we generate a series of
three-digit random numbers. We then match these random numbers with the number codes
of the population members until we have selected a sample of size 50.

Sometimes we cannot code (or even identify) all the members of a population. We often
use systematic sampling in such cases. With systematic sampling, we select every kth member
until we have a sample of the desired size. The sample that results from this procedure should
be approximately random. Real sampling situations may require that we take an approximately
random sample.
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Suppose the telecommunications equipment analyst polls a random sample of telecom
equipment customers to determine the average equipment expenditure. The sample mean
will provide the analyst with an estimate of the population mean expenditure. Any difference
between the sample mean and the population mean is called sampling error.

• Definition of Sampling Error. Sampling error is the difference between the observed
value of a statistic and the quantity it is intended to estimate.

A random sample reflects the properties of the population in an unbiased way, and sample
statistics, such as the sample mean, computed on the basis of a random sample are valid
estimates of the underlying population parameters.

A sample statistic is a random variable. In other words, not only do the original data from
the population have a distribution but so does the sample statistic. This distribution is the
statistic’s sampling distribution.

• Definition of Sampling Distribution of a Statistic. The sampling distribution of a
statistic is the distribution of all the distinct possible values that the statistic can assume
when computed from samples of the same size randomly drawn from the same population.

In the case of the sample mean, for example, we refer to the ‘‘sampling distribution of
the sample mean’’ or the distribution of the sample mean. We will have more to say about
sampling distributions later in this chapter. Next, however, we look at another sampling
method that is useful in investment analysis.

2.2. Stratified Random Sampling

The simple random sampling method just discussed may not be the best approach in all
situations. One frequently used alternative is stratified random sampling.

• Definition of Stratified Random Sampling. In stratified random sampling, the popu-
lation is divided into subpopulations (strata) based on one or more classification criteria.
Simple random samples are then drawn from each stratum in sizes proportional to the
relative size of each stratum in the population. These samples are then pooled to form a
stratified random sample.

In contrast to simple random sampling, stratified random sampling guarantees that population
subdivisions of interest are represented in the sample. Another advantage is that estimates of
parameters produced from stratified sampling have greater precision—that is, smaller variance
or dispersion—than estimates obtained from simple random sampling.

Bond indexing is one area in which stratified sampling is frequently applied. Indexing is
an investment strategy in which an investor constructs a portfolio to mirror the performance of
a specified index. In pure bond indexing, also called the full-replication approach, the investor
attempts to fully replicate an index by owning all the bonds in the index in proportion to
their market value weights. Many bond indexes consist of thousands of issues, however, so
pure bond indexing is difficult to implement. In addition, transaction costs would be high
because many bonds do not have liquid markets. Although a simple random sample could be
a solution to the cost problem, the sample would probably not match the index’s major risk
factors—interest rate sensitivity, for example. Because the major risk factors of fixed-income
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portfolios are well known and quantifiable, stratified sampling offers a more effective approach.
In this approach, we divide the population of index bonds into groups of similar duration
(interest rate sensitivity), cash flow distribution, sector, credit quality, and call exposure. We
refer to each group as a stratum or cell (a term frequently used in this context).1 Then,
we choose a sample from each stratum proportional to the relative market weighting of the
stratum in the index to be replicated.

EXAMPLE 6-1 Bond Indexes and Stratified Sampling

Suppose you are the manager of a mutual fund indexed to the Lehman Brothers
Government Index. You are exploring several approaches to indexing, including a
stratified sampling approach. You first distinguish agency bonds from U.S. Treasury
bonds. For each of these two groups, you define 10 maturity intervals—1 to 2 years, 2
to 3 years, 3 to 4 years, 4 to 6 years, 6 to 8 years, 8 to 10 years, 10 to 12 years, 12 to 15
years, 15 to 20 years, and 20 to 30 years—and also separate the bonds with coupons
(annual interest rates) of 6 percent or less from the bonds with coupons of more than
6 percent.

1. How many cells or strata does this sampling plan entail?
2. If you use this sampling plan, what is the minimum number of issues the indexed

portfolio can have?
3. Suppose that in selecting among the securities that qualify for selection within

each cell, you apply a criterion concerning the liquidity of the security’s market.
Is the sample obtained random? Explain your answer.

Solution to 1: We have 2 issuer classifications, 10 maturity classifications, and 2 coupon
classifications. So, in total, this plan entails 2(10)(2) = 40 different strata or cells. (This
answer is an application of the multiplication rule of counting discussed in the chapter
on probability concepts.)

Solution to 2: You cannot have fewer than one issue for each cell, so the portfolio must
include at least 40 issues.

Solution to 3: If you apply any additional criteria to the selection of securities for the
cells, not every security that might be included has an equal probability of being selected.
As a result, the sampling is not random. In practice, indexing using stratified sampling
usually does not strictly involve random sampling because the selection of bond issues
within cells is subject to various additional criteria. Because the purpose of sampling in
this application is not to make an inference about a population parameter but rather
to index a portfolio, lack of randomness is not in itself a problem in this application of
stratified sampling.

1See Fabozzi (2004b).
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In the next section, we discuss the kinds of data used by financial analysts in sampling
and practical issues that arise in selecting samples.

2.3. Time-Series and Cross-Sectional Data

Investment analysts commonly work with both time-series and cross-sectional data. A time
series is a sequence of returns collected at discrete and equally spaced intervals of time (such as a
historical series of monthly stock returns). Cross-sectional data are data on some characteristic
of individuals, groups, geographical regions, or companies at a single point in time. The
2003 year-end book value per share for all New York Stock Exchange–listed companies is an
example of cross-sectional data.

Economic or financial theory offers no basis for determining whether a long or short
time period should be selected to collect a sample. As analysts, we might have to look for
subtle clues. For example, combining data from a period of fixed exchange rates with data
from a period of floating exchange rates would be inappropriate. The variance of exchange
rates when exchange rates were fixed would certainly be less than when rates were allowed to
float. As a consequence, we would not be sampling from a population described by a single
set of parameters.2 Tight versus loose monetary policy also influences the distribution of
returns to stocks; thus, combining data from tight-money and loose-money periods would be
inappropriate. Example 6-2 illustrates the problems that can arise when sampling from more
than one distribution.

EXAMPLE 6-2 Calculating Sharpe Ratios: One or Two Years
of Quarterly Data?

Analysts often use the Sharpe ratio to evaluate the performance of a managed portfolio.
The Sharpe ratio is the average return in excess of the risk-free rate divided by the
standard deviation of returns. This ratio measures the excess return earned per unit of
standard deviation of return.

To compute the Sharpe ratio, suppose that an analyst collects eight quarterly excess
returns (i.e., total return in excess of the risk-free rate). During the first year, the
investment manager of the portfolio followed a low-risk strategy, and during the second
year, the manager followed a high-risk strategy. For each of these years, the analyst also
tracks the quarterly excess returns of some benchmark against which the manager will
be evaluated. For each of the two years, the Sharpe ratio for the benchmark is 0.21.
Table 6-1 gives the calculation of the Sharpe ratio of the portfolio.

For the first year, during which the manager followed a low-risk strategy, the average
quarterly return in excess of the risk-free rate was 1 percent with a standard deviation of
4.62 percent. The Sharpe ratio is thus 1/4.62 = 0.22. The second year’s results mirror
the first year except for the higher average return and volatility. The Sharpe ratio for
the second year is 4/18.48 = 0.22. The Sharpe ratio for the benchmark is 0.21 during

2When the mean or variance of a time series is not constant through time, the time series is not stationary.
We discuss stationarity in more detail in the chapter on time-series analysis.
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TABLE 6-1 Calculation of Sharpe Ratios: Low-Risk and High-Risk Strategies

Quarter/Measure
Year 1

Excess Returns
Year 2

Excess Returns

Quarter 1 −3% −12%
Quarter 2 5 20
Quarter 3 −3 −12
Quarter 4 5 20

Quarterly average 1% 4%
Quarterly standard deviation 4.62% 18.48%
Sharpe ratio = 0.22 = 1/4.62 = 4/18.48

the first and second years. Because larger Sharpe ratios are better than smaller ones
(providing more return per unit of risk), the manager appears to have outperformed the
benchmark.

Now, suppose the analyst believes a larger sample to be superior to a small one.
She thus decides to pool the two years together and calculate a Sharpe ratio based on
eight quarterly observations. The average quarterly excess return for the two years is
the average of each year’s average excess return. For the two-year period, the average
excess return is (1 + 4)/2 = 2.5 percent per quarter. The standard deviation for all
eight quarters measured from the sample mean of 2.5 percent is 12.57 percent. The
portfolio’s Sharpe ratio for the two-year period is now 2.5/12.57 = 0.199; the Sharpe
ratio for the benchmark remains 0.21. Thus, when returns for the two-year period are
pooled, the manager appears to have provided less return per unit of risk than the
benchmark and less when compared with the separate yearly results.

The problem with using eight quarters of return data is that the analyst has violated
the assumption that the sampled returns come from the same population. As a result of
the change in the manager’s investment strategy, returns in Year 2 followed a different
distribution than returns in Year 1. Clearly, during Year 1, returns were generated by
an underlying population with lower mean and variance than the population of the
second year. Combining the results for the first and second years yielded a sample
that was representative of no population. Because the larger sample did not satisfy
model assumptions, any conclusions the analyst reached based on the larger sample are
incorrect. For this example, she was better off using a smaller sample than a larger sample
because the smaller sample represented a more homogeneous distribution of returns.

The second basic type of data is cross-sectional data.3 With cross-sectional data, the
observations in the sample represent a characteristic of individuals, groups, geographical

3The reader may also encounter two types of datasets that have both time-series and cross-sectional aspects.
Panel data consist of observations through time on a single characteristic of multiple observational units.
For example, the annual inflation rate of the Eurozone countries over a five-year period would represent
panel data. Longitudinal data consist of observations on characteristic(s) of the same observational unit
through time. Observations on a set of financial ratios for a single company over a 10-year period would
be an example of longitudinal data. Both panel and longitudinal data may be represented by arrays
(matrixes) in which successive rows represent the observations for successive time periods.
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regions, or companies at a single point in time. The telecommunications analyst discussed
previously is essentially collecting a cross-section of planned capital expenditures for the
coming year.

Whenever we sample cross-sectionally, certain assumptions must be met if we wish to
summarize the data in a meaningful way. Again, a useful approach is to think of the observation
of interest as a random variable that comes from some underlying population with a given
mean and variance. As we collect our sample and begin to summarize the data, we must be
sure that all the data do, in fact, come from the same underlying population. For example,
an analyst might be interested in how efficiently companies use their inventory assets. Some
companies, however, turn over their inventory more quickly than others because of differences
in their operating environments (e.g., grocery stores turn over inventory more quickly than
automobile manufacturers, in general). So the distribution of inventory turnover rates may
not be characterized by a single distribution with a given mean and variance. Therefore,
summarizing inventory turnover across all companies might be inappropriate. If random
variables are generated by different underlying distributions, the sample statistics computed
from combined samples are not related to one underlying population parameter. The size of
the sampling error in such cases is unknown.

In instances such as these, analysts often summarize company-level data by industry.
Attempting to summarize by industry partially addresses the problem of differing underlying
distributions, but large corporations are likely to be in more than one industrial sector, so
analysts should be sure they understand how companies are assigned to the industry groups.

Whether we deal with time-series data or cross-sectional data, we must be sure to have a
random sample that is representative of the population we wish to study. With the objective
of inferring information from representative samples, we now turn to the next part of this
chapter, which focuses on the central limit theorem as well as point and interval estimates of
the population mean.

3. DISTRIBUTION OF THE SAMPLE MEAN

Earlier in this chapter, we presented a telecommunications equipment analyst who decided to
sample in order to estimate mean planned capital expenditures by his customers. Supposing
that the sample is representative of the underlying population, how can the analyst assess
the sampling error in estimating the population mean? Viewed as a formula that takes a
function of the random outcomes of a random variable, the sample mean is itself a random
variable with a probability distribution. That probability distribution is called the statistic’s
sampling distribution.4 To estimate how closely the sample mean can be expected to match
the underlying population mean, the analyst needs to understand the sampling distribution of
the mean. Fortunately, we have a result, the central limit theorem, that helps us understand
the sampling distribution of the mean for many of the estimation problems we face.

4Sometimes confusion arises because ‘‘sample mean’’ is also used in another sense. When we calculate
the sample mean for a particular sample, we obtain a definite number, say 8. If we state that ‘‘the sample
mean is 8,’’ we are using ‘‘sample mean’’ in the sense of a particular outcome of sample mean as a
random variable. The number 8 is of course a constant and does not have a probability distribution. In
this discussion, we are not referring to ‘‘sample mean’’ in the sense of a constant number related to a
particular sample.
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3.1. The Central Limit Theorem

One of the most practically useful theorems in probability theory, the central limit theorem
has important implications for how we construct confidence intervals and test hypotheses.
Formally, it is stated as follows:

• The Central Limit Theorem. Given a population described by any probability distribution
having mean µ and finite variance σ2, the sampling distribution of the sample mean X
computed from samples of size n from this population will be approximately normal with
mean µ (the population mean) and variance σ2/n (the population variance divided by n)
when the sample size n is large.

The central limit theorem allows us to make quite precise probability statements about the
population mean by using the sample mean, whatever the distribution of the population, because
the sample mean follows an approximate normal distribution for large-size samples. The
obvious question is, ‘‘When is a sample’s size large enough that we can assume the sample
mean is normally distributed?’’ In general, when sample size n is greater than or equal to 30,
we can assume that the sample mean is approximately normally distributed.5

The central limit theorem states that the variance of the distribution of the sample mean
is σ2/C . The positive square root of variance is standard deviation. The standard deviation
of a sample statistic is known as the standard error of the statistic. The standard error of the
sample mean is an important quantity in applying the central limit theorem in practice.

• Definition of the Standard Error of the Sample Mean. For sample mean X calculated
from a sample generated by a population with standard deviation σ, the standard error of
the sample mean is given by one of two expressions:

σX = σ√
n

(6-1)

when we know σ, the population standard deviation, or by

s X = s√
n

(6-2)

when we do not know the population standard deviation and need to use the sample
standard deviation, s, to estimate it.6

5When the underlying population is very nonnormal, a sample size well in excess of 30 may be required
for the normal distribution to be a good description of the sampling distribution of the mean.
6We need to note a technical point: When we take a sample of size n from a finite population of size N ,
we apply a shrinkage factor to the estimate of the standard error of the sample mean that is called the
finite population correction factor (fpc). The fpc is equal to [(N − n)/(N − 1)]1/2. Thus, if N = 100
and n = 20, [(100 − 20)/(100 − 1)]1/2 = 0.898933. If we have estimated a standard error of, say, 20,
according to Equation 6-1 or Equation 6-2, the new estimate is 20(0.898933) = 17.978663. The fpc
applies only when we sample from a finite population without replacement; most practitioners also do
not apply the fpc if sample size n is very small relative to N (say, less than 5 percent of N ). For more
information on the finite population correction factor, see Daniel and Terrell (1995).
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In practice, we almost always need to use Equation 6-2. The estimate of s is given by the
square root of the sample variance, s2, calculated as follows:

s2 =

n∑
i=1

(Xi − X )2

n − 1
(6-3)

We will soon see how we can use the sample mean and its standard error to make probability
statements about the population mean by using the technique of confidence intervals. First,
however, we provide an illustration of the central limit theorem’s force.

EXAMPLE 6-3 The Central Limit Theorem

It is remarkable that the sample mean for large sample sizes will be distributed
normally regardless of the distribution of the underlying population. To illustrate the
central limit theorem in action, we specify in this example a distinctly nonnormal
distribution and use it to generate a large number of random samples of size 100.
We then calculate the sample mean for each sample. The frequency distribution of
the calculated sample means is an approximation of the sampling distribution of the
sample mean for that sample size. Does that sampling distribution look like a normal
distribution?

We return to the telecommunications analyst studying the capital expenditure
plans of telecom businesses. Suppose that capital expenditures for communications
equipment form a continuous uniform random variable with a lower bound equal to
$0 and an upper bound equal to $100—for short, call this a uniform (0, 100) random
variable. The probability function of this continuous uniform random variable has a
rather simple shape that is anything but normal. It is a horizontal line with a vertical
intercept equal to 1/100. Unlike a normal random variable, for which outcomes close to
the mean are most likely, all possible outcomes are equally likely for a uniform random
variable.

To illustrate the power of the central limit theorem, we conduct a Monte Carlo
simulation to study the capital expenditure plans of telecom businesses.7 In this sim-
ulation, we collect 200 random samples of the capital expenditures of 100 companies
(200 random draws, each consisting of the capital expenditures of 100 companies with
n = 100). In each simulation trial, 100 values for capital expenditure are generated
from the uniform (0, 100) distribution. For each random sample, we then compute
the sample mean. We conduct 200 simulation trials in total. Because we have specified
the distribution generating the samples, we know that the population mean capital
expenditure is equal to ($0 + $100 million)/2 = $50 million; the population variance
of capital expenditures is equal to (100 − 0)2/12 = 833.33; thus, the standard deviation

7Monte Carlo simulation involves the use of a computer to represent the operation of a system subject to
risk. An integral part of Monte Carlo simulation is the generation of a large number of random samples
from a specified probability distribution or distributions.
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is $28.87 million and the standard error is 28.87/
√

100 = 2.887 under the central
limit theorem.8

The results of this Monte Carlo experiment are tabulated in Table 6-2 in the form
of a frequency distribution. This distribution is the estimated sampling distribution of
the sample mean.

The frequency distribution can be described as bell-shaped and centered close to
the population mean of 50. The most frequent, or modal, range, with 41 observations,
is 48.5 to 50. The overall average of the sample means is $49.92, with a standard error
equal to $2.80. The calculated standard error is close to the value of 2.887 given by
the central limit theorem. The discrepancy between calculated and expected values of
the mean and standard deviation under the central limit theorem is a result of random
chance (sampling error).

TABLE 6-2 Frequency Distribution: 200 Random Samples
of a Uniform (0,100) Random Variable

Range of Sample Means ($ million) Absolute Frequency

42.5 ≤ X < 44 1
44 ≤ X < 45.5 6
45.5 ≤ X < 47 22
47 ≤ X < 48.5 39
48.5 ≤ X < 50 41
50 ≤ X < 51.5 39
51.5 ≤ X < 53 23
53 ≤ X < 54.5 12
54.5 ≤ X < 56 12
56 ≤ X < 57.5 5

Note: X is the mean capital expenditure for each sample.

In summary, although the distribution of the underlying population is very
nonnormal, the simulation has shown that a normal distribution well describes the
estimated sampling distribution of the sample mean, with mean and standard error
consistent with the values predicted by the central limit theorem.

To summarize, according to the central limit theorem, when we sample from any
distribution, the distribution of the sample mean will have the following properties as long as
our sample size is large:

• The distribution of the sample mean X will be approximately normal.
• The mean of the distribution of X will be equal to the mean of the population from which

the samples are drawn.

8If a is the lower limit of a uniform random variable and b is the upper limit, then the random variable’s
mean is given by (a + b)/2 and its variance is given by (b − a)2/12. The chapter on common probability
distributions fully describes continuous uniform random variables.



Chapter 6 Sampling and Estimation 225

• The variance of the distribution of X will be equal to the variance of the population divided
by the sample size.

With the central limit theorem in hand, we next discuss the concepts and tools related
to estimating the population parameters, with a special focus on the population mean. We
focus on the population because analysts are more likely to meet interval estimates for the
population mean than any other type of interval estimate.

4. POINT AND INTERVAL ESTIMATES OF THE
POPULATION MEAN

Statistical inference traditionally consists of two branches, hypothesis testing and estimation.
Hypothesis testing addresses the question ‘‘Is the value of this parameter (say, a population
mean) equal to some specific value (0, for example)?’’ In this process, we have a hypothesis
concerning the value of a parameter, and we seek to determine whether the evidence from a
sample supports or does not support that hypothesis. We discuss hypothesis testing in detail
in the chapter on hypothesis testing.

The second branch of statistical inference, and the focus of this chapter, is estimation.
Estimation seeks an answer to the question ‘‘What is this parameter’s (for example, the
population mean’s) value?’’ In estimating, unlike in hypothesis testing, we do not start with a
hypothesis about a parameter’s value and seek to test it. Rather, we try to make the best use of
the information in a sample to form one of several types of estimates of the parameter’s value.
With estimation, we are interested in arriving at a rule for best calculating a single number
to estimate the unknown population parameter (a point estimate). Together with calculating
a point estimate, we may also be interested in calculating a range of values that brackets
the unknown population parameter with some specified level of probability (a confidence
interval). In Section 4.1, we discuss point estimates of parameters and then, in Section 4.2,
the formulation of confidence intervals for the population mean.

4.1. Point Estimators

An important concept introduced in this chapter is that sample statistics viewed as formulas
involving random outcomes are random variables. The formulas that we use to compute
the sample mean and all the other sample statistics are examples of estimation formulas or
estimators. The particular value that we calculate from sample observations using an estimator
is called an estimate. An estimator has a sampling distribution; an estimate is a fixed number
pertaining to a given sample and thus has no sampling distribution. To take the example of
the mean, the calculated value of the sample mean in a given sample, used as an estimate of
the population mean, is called a point estimate of the population mean. As Example 6-3
illustrated, the formula for the sample mean can and will yield different results in repeated
samples as different samples are drawn from the population.

In many applications, we have a choice among a number of possible estimators for
estimating a given parameter. How do we make our choice? We often select estimators because
they have one or more desirable statistical properties. Following is a brief description of three
desirable properties of estimators: unbiasedness (lack of bias), efficiency, and consistency.9

9See Daniel and Terrell (1995) or Greene (2003) for a thorough treatment of the properties of estimators.
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• Definition of Unbiasedness. An unbiased estimator is one whose expected value (the
mean of its sampling distribution) equals the parameter it is intended to estimate.

For example, the expected value of the sample mean, X , equals µ, the population mean,
so we say that the sample mean is an unbiased estimator (of the population mean). The
sample variance, s2, which is calculated using a divisor of n − 1 (Equation 6-3), is an unbiased
estimator of the population variance, σ2. If we were to calculate the sample variance using
a divisor of n, the estimator would be biased: Its expected value would be smaller than the
population variance. We would say that sample variance calculated with a divisor of n is a
biased estimator of the population variance.

Whenever one unbiased estimator of a parameter can be found, we can usually find a
large number of other unbiased estimators. How do we choose among alternative unbiased
estimators? The criterion of efficiency provides a way to select from among unbiased estimators
of a parameter.

• Definition of Efficiency. An unbiased estimator is efficient if no other unbiased estimator
of the same parameter has a sampling distribution with smaller variance.

To explain the definition, in repeated samples we expect the estimates from an efficient
estimator to be more tightly grouped around the mean than estimates from other unbiased
estimators. Efficiency is an important property of an estimator.10 Sample mean X is an efficient
estimator of the population mean; sample variance s2 is an efficient estimator of σ2.

Recall that a statistic’s sampling distribution is defined for a given sample size. Different
sample sizes define different sampling distributions. For example, the variance of sampling
distribution of the sample mean is smaller for larger sample sizes. Unbiasedness and efficiency
are properties of an estimator’s sampling distribution that hold for any size sample. An
unbiased estimator is unbiased equally in a sample of size 10 and in a sample of size 1,000.
In some problems, however, we cannot find estimators that have such desirable properties as
unbiasedness in small samples.11 In this case, statisticians may justify the choice of an estimator
based on the properties of the estimator’s sampling distribution in extremely large samples,
the estimator’s so-called asymptotic properties. Among such properties, the most important is
consistency.

• Definition of Consistency. A consistent estimator is one for which the probability of
estimates close to the value of the population parameter increases as sample size increases.

Somewhat more technically, we can define a consistent estimator as an estimator whose
sampling distribution becomes concentrated on the value of the parameter it is intended to
estimate as the sample size approaches infinity. The sample mean, in addition to being an
efficient estimator, is also a consistent estimator of the population mean: As sample size n
goes to infinity, its standard error, σ/

√
n, goes to 0 and its sampling distribution becomes

concentrated right over the value of population mean, µ. To summarize, we can think of
a consistent estimator as one that tends to produce more and more accurate estimates of
the population parameter as we increase the sample’s size. If an estimator is consistent, we
may attempt to increase the accuracy of estimates of a population parameter by calculating

10An efficient estimator is sometimes referred to as the best unbiased estimator.
11Such problems frequently arise in regression and time-series analyses, which we discuss in later chapters.



Chapter 6 Sampling and Estimation 227

estimates using a larger sample. For an inconsistent estimator, however, increasing sample size
does not help to increase the probability of accurate estimates.

4.2. Confidence Intervals for the Population Mean

When we need a single number as an estimate of a population parameter, we make use of a
point estimate. However, because of sampling error, the point estimate is not likely to equal
the population parameter in any given sample. Often, a more useful approach than finding
a point estimate is to find a range of values that we expect to bracket the parameter with a
specified level of probability—an interval estimate of the parameter. A confidence interval
fulfills this role.

• Definition of Confidence Interval. A confidence interval is a range for which one can
assert with a given probability 1 − α, called the degree of confidence, that it will contain
the parameter it is intended to estimate. This interval is often referred to as the (1 − α)%
confidence interval for the parameter.

The endpoints of a confidence limit are referred to as the lower and upper confidence limits. In
this chapter, we are concerned only with two-sided confidence intervals—confidence intervals
for which we calculate both lower and upper limits.12

Confidence intervals are frequently given either a probabilistic interpretation or a practical
interpretation. In the probabilistic interpretation, we interpret a 95 percent confidence interval
for the population mean as follows: In repeated sampling, 95 percent of such confidence
intervals will, in the long run, include or bracket the population mean. For example, suppose
we sample from the population 1,000 times, and based on each sample, we construct a 95
percent confidence interval using the calculated sample mean. Because of random chance,
these confidence intervals will vary from each other, but we expect 95 percent, or 950, of
these intervals to include the unknown value of the population mean. In practice, we generally
do not carry out such repeated sampling. Therefore, in the practical interpretation, we assert
that we are 95 percent confident that a single 95 percent confidence interval contains the
population mean. We are justified in making this statement because we know that 95 percent
of all possible confidence intervals constructed in the same manner will contain the population
mean. The confidence intervals that we discuss in this chapter have structures similar to the
following basic structure:

• Construction of Confidence Intervals. A (1 − α)% confidence interval for a parameter
has the following structure:

Point estimate ± Reliability factor × Standard error

12It is also possible to define two types of one-sided confidence intervals for a population parameter. A
lower one-sided confidence interval establishes a lower limit only. Associated with such an interval is an
assertion that with a specified degree of confidence the population parameter equals or exceeds the lower
limit. An upper one-sided confidence interval establishes an upper limit only; the related assertion is that
the population parameter is less than or equal to that upper limit, with a specified degree of confidence.
Investment researchers rarely present one-sided confidence intervals, however.
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where

Point estimate = a point estimate of the parameter (a value of a sample statistic)
Reliability factor = a number based on the assumed distribution of the point estimate

and the degree of confidence (1 − α) for the confidence interval
Standard error = the standard error of the sample statistic providing the point estimate13

The most basic confidence interval for the population mean arises when we are sampling
from a normal distribution with known variance. The reliability factor in this case is based
on the standard normal distribution, which has a mean of 0 and a variance of 1. A standard
normal random variable is conventionally denoted by Z . The notation zα denotes the point of
the standard normal distribution such that α of the probability remains in the right tail. For
example, 0.05 or 5 percent of the possible values of a standard normal random variable are
larger than z0.05 = 1.65.

Suppose we want to construct a 95 percent confidence interval for the population mean
and, for this purpose, we have taken a sample of size 100 from a normally distributed
population with known variance of σ2 = 400 (so, σ = 20). We calculate a sample mean
of X = 25. Our point estimate of the population mean is, therefore, 25. If we move
1.96 standard deviations above the mean of a normal distribution, 0.025 or 2.5 percent
of the probability remains in the right tail; by symmetry of the normal distribution, if we
move 1.96 standard deviations below the mean, 0.025 or 2.5 percent of the probability
remains in the left tail. In total, 0.05 or 5 percent of the probability is in the two tails
and 0.95 or 95 percent lies in between. So, z0.025 = 1.96 is the reliability factor for this
95 percent confidence interval. Note the relationship (1 − α)% for the confidence interval
and the zα/2 for the reliability factor. The standard error of the sample mean, given by
Equation 6-1, is σX = 20/

√
100 = 2. The confidence interval, therefore, has a lower limit

of X − 1.96σX = 25 − 1.96(2) = 25 − 3.92 = 21.08. The upper limit of the confidence
interval is X + 1.96σX = 25 + 1.96(2) = 25 + 3.92 = 28.92. The 95 percent confidence
interval for the population mean spans 21.08 to 28.92.

• Confidence Intervals for the Population Mean (Normally Distributed Population
with Known Variance). A (1 − α)% confidence interval for population mean µ when
we are sampling from a normal distribution with known variance σ2 is given by

X ± zα/2
σ√
n

(6-4)

The reliability factors for the most frequently used confidence intervals are as follows:

• Reliability Factors for Confidence Intervals Based on the Standard Normal Distri-
bution. We use the following reliability factors when we construct confidence intervals
based on the standard normal distribution:14

13The quantity (Reliability factor) × (Standard error) is sometimes called the precision of the estimator;
larger values of the product imply lower precision in estimating the population parameter.
14Most practitioners use values for z0.05 and z0.005 that are carried to two decimal places. For reference,
more exact values for z0.05 and z0.005 are 1.645 and 2.575, respectively. For a quick calculation of a 95
percent confidence interval, z0.025 is sometimes rounded from 1.96 to 2.
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• 90 percent confidence intervals: Use z0.05 = 1.65
• 95 percent confidence intervals: Use z0.025 = 1.96
• 99 percent confidence intervals: Use z0.005 = 2.58

These reliability factors highlight an important fact about all confidence intervals. As we
increase the degree of confidence, the confidence interval becomes wider and gives us less
precise information about the quantity we want to estimate. ‘‘The surer we want to be, the
less we have to be sure of.’’15

In practice, the assumption that the sampling distribution of the sample mean is at least
approximately normal is frequently reasonable, either because the underlying distribution is
approximately normal or because we have a large sample and the central limit theorem applies.
However, rarely do we know the population variance in practice. When the population
variance is unknown but the sample mean is at least approximately normally distributed, we
have two acceptable ways to calculate the confidence interval for the population mean. We will
soon discuss the more conservative approach, which is based on Student’s t-distribution (the
t-distribution, for short).16 In investment literature, it is the most frequently used approach
in both estimation and hypothesis tests concerning the mean when the population variance is
not known, whether sample size is small or large.

A second approach to confidence intervals for the population mean, based on the standard
normal distribution, is the z-alternative. It can be used only when sample size is large. (In
general, a sample size of 30 or larger may be considered large.) In contrast to the confidence
interval given in Equation 6-4, this confidence interval uses the sample standard deviation, s,
in computing the standard error of the sample mean (Equation 6-2).

• Confidence Intervals for the Population Mean—The z-Alternative (Large Sample,
Population Variance Unknown). A (1 − α)% confidence interval for population mean
µ when sampling from any distribution with unknown variance and when sample size is
large is given by

X ± zα/2
s√
n

(6-5)

Because this type of confidence interval appears quite often, we illustrate its calculation in
Example 6-4.

EXAMPLE 6-4 Confidence Interval for the Population Mean
of Sharpe Ratios—z-Statistic

Suppose an investment analyst takes a random sample of U.S. equity mutual funds and
calculates the average Sharpe ratio. The sample size is 100, and the average Sharpe ratio
is 0.45. The sample has a standard deviation of 0.30. Calculate and interpret the 90

15Freund and Williams (1977), p. 266.
16The distribution of the statistic t is called Student’s t-distribution after the pen name ‘‘Student’’ used
by W. S. Gosset, who published his work in 1908.
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percent confidence interval for the population mean of all U.S. equity mutual funds by
using a reliability factor based on the standard normal distribution.

The reliability factor for a 90 percent confidence interval, as given earlier, is
z0.05 = 1.65. The confidence interval will be

X ± z0.05
s√
n

= 0.45 ± 1.65
0.30√

100
= 0.45 ± 1.65(0.03) = 0.45 ± 0.0495

The confidence interval spans 0.4005 to 0.4995, or 0.40 to 0.50, carrying two decimal
places. The analyst can say with 90 percent confidence that the interval includes the
population mean.

In this example, the analyst makes no specific assumption about the probability
distribution describing the population. Rather, the analyst relies on the central limit
theorem to produce an approximate normal distribution for the sample mean.

As Example 6-4 shows, even if we are unsure of the underlying population distribution,
we can still construct confidence intervals for the population mean as long as the sample size
is large because we can apply the central limit theorem.

We now turn to the conservative alternative, using the t-distribution, for constructing
confidence intervals for the population mean when the population variance is not known. For
confidence intervals based on samples from normally distributed populations with unknown
variance, the theoretically correct reliability factor is based on the t-distribution. Using a
reliability factor based on the t-distribution is essential for a small sample size. Using a t
reliability factor is appropriate when the population variance is unknown, even when we have
a large sample and could use the central limit theorem to justify using a z reliability factor.
In this large sample case, the t-distribution provides more-conservative (wider) confidence
intervals.

The t-distribution is a symmetrical probability distribution defined by a single parameter
known as degrees of freedom (df). Each value for the number of degrees of freedom defines
one distribution in this family of distributions. We will shortly compare t-distributions with
the standard normal distribution, but first we need to understand the concept of degrees of
freedom. We can do so by examining the calculation of the sample variance.

Equation 6-3 gives the unbiased estimator of the sample variance that we use. The term
in the denominator, n − 1, which is the sample size minus 1, is the number of degrees
of freedom in estimating the population variance when using Equation 6-3. We also use
n − 1 as the number of degrees of freedom for determining reliability factors based on the
t-distribution. The term ‘‘degrees of freedom’’ is used because in a random sample, we
assume that observations are selected independently of each other. The numerator of the
sample variance, however, uses the sample mean. How does the use of the sample mean
affect the number of observations collected independently for the sample variance formula?
With a sample of size 10 and a mean of 10 percent, for example, we can freely select only 9
observations. Regardless of the 9 observations selected, we can always find the value for the
10th observation that gives a mean equal to 10 percent. From the standpoint of the sample
variance formula, then, there are 9 degrees of freedom. Given that we must first compute the
sample mean from the total of n independent observations, only n − 1 observations can be
chosen independently for the calculation of the sample variance. The concept of degrees of
freedom comes up frequently in statistics, and you will see it often in later chapters.



Chapter 6 Sampling and Estimation 231
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FIGURE 6-1 Student’s t-Distribution Versus the Standard Normal Distribution

Suppose we sample from a normal distribution. The ratio z = (X − µ)/(σ/
√

n) is
distributed normally with a mean of 0 and standard deviation of 1; however, the ratio
t = (X − µ)/(s/

√
n) follows the t-distribution with a mean of 0 and n − 1 degrees of

freedom. The ratio represented by t is not normal because t is the ratio of two random
variables, the sample mean and the sample standard deviation. The definition of the standard
normal random variable involves only one random variable, the sample mean. As degrees of
freedom increase, however, the t-distribution approaches the standard normal distribution.
Figure 6-1 shows the standard normal distribution and two t-distributions, one with df = 2
and one with df = 8.

Of the three distributions shown in Figure 6-1, the standard normal distribution is
clearly the most peaked; it has tails that approach zero faster than the tails of the two
t-distributions. The t-distribution is also symmetrically distributed around its mean value of
zero, just like the normal distribution. The t-distribution with df = 2 is the least peaked of
the three distributions, and its tails lie above the tails for the normal and t with df = 8. The
t-distribution with df = 8 has an intermediate degree of peakedness, and its tails lie above the
tails for the normal but below those for t with df = 2. As the degrees of freedom increase, the
t-distribution approaches the standard normal. The t-distribution with df = 8 is closer to the
standard normal than the t-distribution with df = 2.

Beyond plus and minus four standard deviations from the mean, the area under the
standard normal distribution appears to approach 0; both t-distributions continue to show
some area under each curve beyond four standard deviations, however. The t-distributions
have fatter tails, but the tails of the t-distribution with df = 8 more closely resemble the
normal distribution’s tails. As the degrees of freedom increase, the tails of the t-distribution
become less fat.

Frequently referred to values for the t-distribution are presented in tables at the end
of the book. For each degree of freedom, five values are given: t0.10, t0.05, t0.025, t0.01, and
t0.005. The values for t0.10, t0.05, t0.025, t0.01, and t0.005 are such that, respectively, 0.10, 0.05,
0.025, 0.01, and 0.005 of the probability remains in the right tail, for the specified number of
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degrees of freedom.17 For example, for df = 30, t0.10 = 1.310, t0.05 = 1.697, t0.025 = 2.042,
t0.01 = 2.457, and t0.005 = 2.750.

We now give the form of confidence intervals for the population mean using the
t-distribution.

• Confidence Intervals for the Population Mean (Population Variance Unknown)—
t-Distribution. If we are sampling from a population with unknown variance and either
of the conditions below holds:

• the sample is large, or
• the sample is small but the population is normally distributed, or approximately normally

distributed,

then a (1 − α)% confidence interval for the population mean µ is given by

X ± tα/2
s√
n

(6-6)

where the number of degrees of freedom for tα/2 is n − 1 and n is the sample size.

Example 6-5 reprises the data of Example 6-4 but uses the t-statistic rather than the z-statistic
to calculate a confidence interval for the population mean of Sharpe ratios.

EXAMPLE 6-5 Confidence Interval for the Population Mean
of Sharpe Ratios—t-Statistic

As in Example 6-4, an investment analyst seeks to calculate a 90 percent confidence
interval for the population mean Sharpe ratio of U.S. equity mutual funds based on
a random sample of 100 U.S. equity mutual funds. The sample mean Sharpe ratio is
0.45, and the sample standard deviation of the Sharpe ratios is 0.30. Now recognizing
that the population variance of the distribution of Sharpe ratios is unknown, the
analyst decides to calculate the confidence interval using the theoretically correct
t-statistic.

Because the sample size is 100, df = 99. In the tables in the back of the book,
the closest value is df = 100. Using df = 100 and reading down the 0.05 column, we
find that t0.05 = 1.66. This reliability factor is slightly larger than the reliability factor
z0.05 = 1.65 that was used in Example 6-4. The confidence interval will be

X ± t0.05
s√
n

= 0.45 ± 1.66
0.30√

100
= 0.45 ± 1.66(0.03) = 0.45 ± 0.0498

17The values t0.10, t0.05, t0.025, t0.01, and t0.005 are also referred to as one-sided critical values of t at the
0.10, 0.05, 0.025, 0.01, and 0.005 significance levels, for the specified number of degrees of freedom.
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The confidence interval spans 0.4002 to 0.4998, or 0.40 to 0.50, carrying two decimal
places. To two decimal places, the confidence interval is unchanged from the one
computed in Example 6-4.

Table 6-3 summarizes the various reliability factors that we have used.

TABLE 6-3 Basis of Computing Reliability Factors

Statistic for Small Statistic for Large
Sampling from: Sample Size Sample Size

Normal distribution with known variance z z
Normal distribution with unknown variance t t ∗
Nonnormal distribution with known variance not available z
Nonnormal distribution with unknown variance not available t ∗

∗Use of z also acceptable.

4.3. Selection of Sample Size
What choices affect the width of a confidence interval? To this point we have discussed two
factors that affect width: the choice of statistic (t or z) and the choice of degree of confidence
(affecting which specific value of t or z we use). These two choices determine the reliability
factor. (Recall that a confidence interval has the structure Point estimate ± Reliability factor ×
Standard error.)

The choice of sample size also affects the width of a confidence interval. All else equal, a
larger sample size decreases the width of a confidence interval. Recall the expression for the
standard error of the sample mean:

Standard error of the sample mean = Sample standard deviation√
Sample size

We see that the standard error varies inversely with the square root of sample size. As we
increase sample size, the standard error decreases and consequently the width of the confidence
interval also decreases. The larger the sample size, the greater precision with which we can
estimate the population parameter.18 All else equal, larger samples are good, in that sense. In
practice, however, two considerations may operate against increasing sample size. First, as we
saw in Example 6-2 concerning the Sharpe ratio, increasing the size of a sample may result
in sampling from more than one population. Second, increasing sample size may involve
additional expenses that outweigh the value of additional precision. Thus three issues that the
analyst should weigh in selecting sample size are the need for precision, the risk of sampling
from more than one population, and the expenses of different sample sizes.

18A formula exists for determining the sample size needed to obtain a desired width for a confidence
interval. Define E = Reliability factor × Standard error. The smaller E is, the smaller the width of the
confidence interval, because 2E is the confidence interval’s width. The sample size to obtain a desired
value of E at a given degree of confidence (1 − α) is n = [(tα/2s)/E]2.
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EXAMPLE 6-6 A Money Manager Estimates
Net Client Inflows

A money manager wants to obtain a 95 percent confidence interval for fund inflows and
outflows over the next six months for his existing clients. He begins by calling a random
sample of 10 clients and inquiring about their planned additions to and withdrawals
from the fund. The manager then computes the change in cash flow for each client
sampled as a percentage change in total funds placed with the manager. A positive
percentage change indicates a net cash inflow to the client’s account, and a negative
percentage change indicates a net cash outflow from the client’s account. The manager
weights each response by the relative size of the account within the sample and then
computes a weighted average.

As a result of this process, the money manager computes a weighted average of
5.5 percent. Thus, a point estimate is that the total amount of funds under management
will increase by 5.5 percent in the next six months. The standard deviation of the
observations in the sample is 10 percent. A histogram of past data looks fairly close to
normal, so the manager assumes the population is normal.

1. Calculate a 95 percent confidence interval for the population mean and interpret
your findings.

The manager decides to see what the confidence interval would look like if he had used
a sample size of 20 or 30 and found the same mean (5.5 percent) and standard deviation
(10 percent).

2. Using the sample mean of 5.5 percent and standard deviation of 10 percent,
compute the confidence interval for sample sizes of 20 and 30. For the sample
size of 30, use Equation 6-6.

3. Interpret your results from Parts 1 and 2.

Solution to 1: Because the population is unknown and the sample size is small, the
manager must use the t-statistic in Equation 6-6 to calculate the confidence interval.
Based on the sample size of 10, df = n − 1 = 10 − 1 = 9. For a 95 percent confidence
interval, he needs to use the value of t0.025 for df = 9. According to the tables in the
back of the book, this value is 2.262. Therefore, a 95 percent confidence interval for the
population mean is

X ± t0.025
s√
n

= 5.5% ± 2.262
10%√

10

= 5.5% ± 2.262(3.162)

= 5.5% ± 7.15%
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The confidence interval for the population mean spans −1.65 percent to +12.65
percent.19 The manager can be confident at the 95 percent level that this range includes
the population mean.

Solution to 2: Table 6-4 gives the calculations for the three sample sizes.

TABLE 6-4 The 95 Percent Confidence Interval for Three Sample Sizes

95% Confidence Lower Upper Relative
Distribution Interval Bound Bound Size

t(n = 10) 5.5% ± 2.262(3.162) −1.65% 12.65% 100.0%
t(n = 20) 5.5% ± 2.093(2.236) 0.82% 10.18% 65.5%
t(n = 30) 5.5% ± 2.045(1.826) 1.77% 9.23% 52.2%

Solution to 3: The width of the confidence interval decreases as we increase the sample
size. This decrease is a function of the standard error becoming smaller as n increases.
The reliability factor also becomes smaller as the number of degrees of freedom increases.
The last column of Table 6-4 shows the relative size of the width of confidence intervals
based on n = 10 to be 100 percent. Using a sample size of 20 reduces the confidence
interval’s width to 65.5 percent of the interval width for a sample size of 10. Using a
sample size of 30 cuts the width of the interval almost in half. Comparing these choices,
the money manager would obtain the most precise results using a sample of 30.

Having covered many of the fundamental concepts of sampling and estimation, we are
in a good position to focus on sampling issues of special concern to analysts. The quality of
inferences depends on the quality of the data as well as on the quality of the sampling plan
used. Financial data pose special problems, and sampling plans frequently reflect one or more
biases. The next section of this chapter discusses these issues.

5. MORE ON SAMPLING

We have already seen that the selection of sample period length may raise the issue of sampling
from more than one population. There are, in fact, a range of challenges to valid sampling
that arise in working with financial data. In this section we discuss four such sampling-related
issues: data-mining bias, sample selection bias, look-ahead bias, and time-period bias. All of
these issues are important for point and interval estimation and hypothesis testing. As we
will see, if the sample is biased in any way, then point and interval estimates and any other
conclusions that we draw from the sample will be in error.

19We assumed in this example that sample size is sufficiently small compared with the size of the client
base that we can disregard the finite population correction factor (mentioned in Footnote 6).
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5.1. Data-Mining Bias

Data mining relates to overuse of the same or related data in ways that we shall describe
shortly. Data-mining bias refers to the errors that arise from such misuse of data. Investment
strategies that reflect data-mining biases are often not successful in the future. Nevertheless,
both investment practitioners and researchers have frequently engaged in data mining. Analysts
thus need to understand and guard against this problem.

Data-mining is the practice of determining a model by extensive searching through a
dataset for statistically significant patterns (that is, repeatedly ‘‘drilling’’ in the same data until
finding something that appears to work).20 In exercises involving statistical significance we
set a significance level, which is the probability of rejecting the hypothesis we are testing
when the hypothesis is in fact correct.21 Because rejecting a true hypothesis is undesirable,
the investigator often sets the significance level at a relatively small number such as 0.05 or
5 percent.22 Suppose we test the hypothesis that a variable does not predict stock returns,
and we test in turn 100 different variables. Let us also suppose that in truth none of the
100 variables has the ability to predict stock returns. Using a 5 percent significance level in
our tests, we would still expect that 5 out of 100 variables would appear to be significant
predictors of stock returns because of random chance alone. We have mined the data to find
some apparently significant variables. In essence, we have explored the same data again and
again until we found some after-the-fact pattern or patterns in the dataset. This is the sense in
which data mining involves overuse of data. If we were to just report the significant variables,
without also reporting the total number of variables that we tested that were unsuccessful
as predictors, we would be presenting a very misleading picture of our findings. Our results
would appear to be far more significant than they actually were, because a series of tests such as
the one just described invalidates the conventional interpretation of a given significance level
(such as 5 percent), according to the theory of inference.

How can we investigate the presence of data-mining bias? With most financial data, the
most ready means is to conduct out-of-sample tests of the proposed variable or strategy. An
out-of-sample test uses a sample that does not overlap the time period(s) of the sample(s) on
which a variable, strategy, or model, was developed. If a variable or investment strategy is the
result of data mining, it should generally not be significant in out-of-sample tests. A variable or
investment strategy that is statistically and economically significant in out-of-sample tests, and
that has a plausible economic basis, may be the basis for a valid investment strategy. Caution
is still warranted, however. The most crucial out-of-sample test is future investment success. If
the strategy becomes known to other investors, prices may adjust so that the strategy, however
well tested, does not work in the future. To summarize, the analyst should be aware that many
apparently profitable investment strategies may reflect data-mining bias and thus should be
cautious about the future applicability of published investment research results.

Untangling the extent of data mining can be complex. To assess the significance of an
investment strategy, we need to know how many unsuccessful strategies were tried not only

20Some researchers use the term ‘‘data snooping’’ instead of data mining.
21To convey an understanding of data mining, it is very helpful to introduce some basic concepts related
to hypothesis testing. The chapter on hypothesis testing contains further discussion of significance levels
and tests of significance.
22In terms of our previous discussion of confidence intervals, significance at the 5 percent level
corresponds to a hypothesized value for a population statistic falling outside a 95 percent confidence
interval based on an appropriate sample statistic (e.g., the sample mean, when the hypothesis concerns
the population mean).
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by the current investigator but also by previous investigators using the same or related datasets.
Much research, in practice, closely builds on what other investigators have done, and so reflects
intergenerational data mining, to use the terminology of McQueen and Thorley (1999).
Intergenerational data mining involves using information developed by previous researchers
using a dataset to guide current research using the same or a related dataset.23 Analysts
have accumulated many observations about the peculiarities of many financial datasets, and
other analysts may develop models or investment strategies that will tend to be supported
within a dataset based on their familiarity with the prior experience of other analysts. As a
consequence, the importance of those new results may be overstated. Research has suggested
that the magnitude of this type of data-mining bias may be considerable.24

With the background of the above definitions and explanations, we can under-
stand McQueen and Thorley’s (1999) cogent exploration of data mining in the context
of the popular Motley Fool ‘‘Foolish Four’’ investment strategy. The Foolish Four strategy,
first presented in 1996, was a version of the Dow Dividend Strategy that was tuned by its
developers to exhibit an even higher arithmetic mean return than the Dow Dividend Strategy
over 1973 to 1993.25 From 1973 to 1993, the Foolish Four portfolio had an average annual
return of 25 percent, and the claim was made in print that the strategy should have similar
returns in the future. As McQueen and Thorley discussed, however, the Foolish Four strategy
was very much subject to data-mining bias, including bias from intergenerational data mining,
as the strategy’s developers exploited observations about the dataset made by earlier workers.
McQueen and Thorley highlighted the data-mining issues by taking the Foolish Four portfolio
one step further. They mined the data to create a ‘‘Fractured Four’’ portfolio that earned
nearly 35 percent over 1973 to 1996, beating the Foolish Four strategy by almost 8 percentage
points. Observing that all of the Foolish Four stocks did well in even years but not odd years
and that the second-to-lowest-priced high-yielding stock was relatively the best performing
stock in odd years, the strategy of the Fractured Four portfolio was to hold the Foolish Four
stocks with equal weights in even years and hold only the second-to-lowest-priced stock in
odd years. How likely is it that a performance difference between even and odd years reflected
underlying economic forces, rather than a chance pattern of the data over the particular time
period? Probably, very unlikely. Unless an investment strategy reflected underlying economic
forces, we would not expect it to have any value in a forward-looking sense. Because the
Foolish Four strategy also partook of data mining, the same issues applied to it. McQueen
and Thorley found that in an out-of-sample test over the 1949–72 period, the Foolish Four
strategy had about the same mean return as buying and holding the DJIA, but with higher

23The term ‘‘intergenerational’’ comes from viewing each round of researchers as a generation. Campbell,
Lo, and MacKinlay (1997) have called intergenerational data mining ‘‘data snooping.’’ The latter phrase,
however, is commonly used as a synonym of data mining; thus McQueen and Thorley’s terminology is
less ambiguous. The term ‘‘intragenerational data mining’’ is available when we want to highlight that
the reference is to an investigator’s new or independent data mining.
24For example, Lo and MacKinlay (1990) concluded that the magnitude of this type of bias on tests of
the capital asset pricing model was considerable.
25The Dow Dividend Strategy, also known as Dogs of the Dow Strategy, consists of holding an equally
weighted portfolio of the 10 highest-yielding DJIA stocks as of the beginning of a year. At the time of
McQueen and Thorley’s research, the Foolish Four strategy was as follows: At the beginning of each
year, the Foolish Four portfolio purchases a 4-stock portfolio from the 5 lowest-priced stocks of the 10
highest-yielding DJIA stocks. The lowest-priced stock of the 5 is excluded, and 40 percent is invested in
the second-to-lowest-priced stock, with 20 percent weights in the remaining 3.
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risk. If the higher taxes and transaction costs of the Foolish Four strategy were accounted for,
the comparison would have been even more unfavorable.

McQueen and Thorley presented two signs that can warn analysts about the potential
existence of data mining:

• Too much digging/too little confidence. The testing of many variables by the researcher
is the ‘‘too much digging’’ warning sign of a data-mining problem. Unfortunately, many
researchers do not disclose the number of variables examined in developing a model.
Although the number of variables examined may not be reported, we should look closely
for verbal hints that the researcher searched over many variables. The use of terms such
as ‘‘we noticed (or noted) that’’ or ‘‘someone noticed (or noted) that,’’ with respect to a
pattern in a dataset, should raise suspicions that the researchers were trying out variables
based on their own or others’ observations of the data.

• No story/no future. The absence of an explicit economic rationale for a variable or trading
strategy is the ‘‘no story’’ warning sign of a data-mining problem. Without a plausible
economic rationale or story for why a variable should work, the variable is unlikely to
have predictive power. In a demonstration exercise using an extensive search of variables
in an international financial database, Leinweber (1997) found that butter production in
a particular country remote from the United States explained 75 percent of the variation
in U.S. stock returns as represented by the S&P 500. Such a pattern, with no plausible
economic rationale, is highly likely to be a random pattern particular to a specific time
period.26 What if we do have a plausible economic explanation for a significant variable?
McQueen and Thorley caution that a plausible economic rationale is a necessary but not
a sufficient condition for a trading strategy to have value. As we mentioned earlier, if the
strategy is publicized, market prices may adjust to reflect the new information as traders
seek to exploit it; as a result, the strategy may no longer work.

5.2. Sample Selection Bias

When researchers look into questions of interest to analysts or portfolio managers, they
may exclude certain stocks, bonds, portfolios, or time periods from the analysis for various
reasons—perhaps because of data availability. When data availability leads to certain assets
being excluded from the analysis, we call the resulting problem sample selection bias. For
example, you might sample from a database that tracks only companies currently in existence.
Many mutual fund databases, for instance, provide historical information about only those
funds that currently exist. Databases that report historical balance sheet and income statement
information suffer from the same sort of bias as the mutual fund databases: Funds or companies
that are no longer in business do not appear there. So, a study that uses these types of databases
suffers from a type of sample selection bias known as survivorship bias.

Dimson, Marsh, and Staunton (2002) raised the issue of survivorship bias in international
indexes:

An issue that has achieved prominence is the impact of market survival on estimated
long-run returns. Markets can experience not only disappointing performance but
also total loss of value through confiscation, hyperinflation, nationalization, and

26In the finance literature, such a random but irrelevant-to-the-future pattern is sometimes called an
artifact of the dataset.
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market failure. By measuring the performance of markets that survive over long
intervals, we draw inferences that are conditioned on survival. Yet, as pointed
out by Brown, Goetzmann, and Ross (1995) and Jorion and Goetzmann (1999),
one cannot determine in advance which markets will survive and which will
perish. (p. 41)

Survivorship bias sometimes appears when we use both stock price and accounting data. For
example, many studies in finance have used the ratio of a company’s market price to book
equity per share (i.e., the price-to-book ratio, P/B) and found that P/B is inversely related to
a company’s returns [see Fama and French (1992, 1993)]. P/B is also used to create many
popular value and growth indexes. If the database that we use to collect accounting data
excludes failing companies, however, a survivorship bias might result. Kothari, Shanken, and
Sloan (1995) investigated just this question and argued that failing stocks would be expected
to have low returns and low P/Bs. If we exclude failing stocks, then those stocks with low
P/Bs that are included will have returns that are higher on average than if all stocks with low
P/Bs were included. Kothari, Shanken, and Sloan suggested that this bias is responsible for
the previous findings of an inverse relationship between average return and P/B.27 The only
advice we can offer at this point is to be aware of any biases potentially inherent in a sample.
Clearly, sample selection biases can cloud the results of any study.

A sample can also be biased because of the removal (or delisting) of a company’s stock
from an exchange.28 For example, the Center for Research in Security Prices at the University
of Chicago is a major provider of return data used in academic research. When a delisting
occurs, CRSP attempts to collect returns for the delisted company, but many times, it cannot
do so because of the difficulty involved; CRSP must simply list delisted company returns as
missing. A study in the Journal of Finance by Shumway and Warther (1999) documented the
bias caused by delisting for CRSP Nasdaq return data. The authors showed that delistings
associated with poor company performance (e.g., bankruptcy) are missed more often than
delistings associated with good or neutral company performance (e.g., merger or moving to
another exchange). In addition, delistings occur more frequently for small companies.

Sample selection bias occurs even in markets where the quality and consistency of the data
are quite high. Newer asset classes such as hedge funds may present even greater problems of
sample selection bias. Hedge funds are a heterogeneous group of investment vehicles typically
organized so as to be free from regulatory oversight. In general, hedge funds are not required
to publicly disclose performance (in contrast to, say, mutual funds). Hedge funds themselves
decide whether they want to be included in one of the various databases of hedge fund
performance. Hedge funds with poor track records clearly may not wish to make their records
public, creating a problem of self-selection bias in hedge fund databases. Further, as pointed
out by Fung and Hsieh (2002), because only hedge funds with good records will volunteer to
enter a database, in general, overall past hedge fund industry performance will tend to appear
better than it really is. Furthermore, many hedge fund databases drop funds that go out of
business, creating survivorship bias in the database. Even if the database does not drop defunct

27See Fama and French (1996, p. 80) for discussion of data snooping and survivorship bias in their tests.
28Delistings occur for a variety of reasons: merger, bankruptcy, liquidation, or migration to another
exchange.
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hedge funds, in the attempt to eliminate survivorship bias, the problem remains of hedge
funds that stop reporting performance because of poor results.29

5.3. Look-Ahead Bias

A test design is subject to look-ahead bias if it uses information that was not available on
the test date. For example, tests of trading rules that use stock market returns and accounting
balance sheet data must account for look-ahead bias. In such tests, a company’s book value per
share is commonly used to construct the P/B variable. Although the market price of a stock is
available for all market participants at the same point in time, fiscal year-end book equity per
share might not become publicly available until sometime in the following quarter.

5.4. Time-Period Bias

A test design is subject to time-period bias if it is based on a time period that may make
the results time-period specific. A short time series is likely to give period-specific results that
may not reflect a longer period. A long time series may give a more accurate picture of true
investment performance; its disadvantage lies in the potential for a structural change occurring
during the time frame that would result in two different return distributions. In this situation,
the distribution that would reflect conditions before the change differs from the distribution
that would describe conditions after the change.

EXAMPLE 6-7 Biases in Investment Research

An analyst is reviewing the empirical evidence on historical U.S. equity returns. She
finds that value stocks (i.e., those with low P/Bs) outperformed growth stocks (i.e.,
those with high P/Bs) in some recent time periods. After reviewing the U.S. market, the
analyst wonders whether value stocks might be attractive in the United Kingdom. She
investigates the performance of value and growth stocks in the U.K. market from January
1990 to December 2003. To conduct this research, the analyst does the following:

• obtains the current composition of the Financial Times Stock Exchange (FTSE) All
Share Index, which is a market-capitalization-weighted index;

• eliminates the few companies that do not have December fiscal year-ends;
• uses year-end book values and market prices to rank the remaining universe of

companies by P/Bs at the end of the year;
• based on these rankings, divides the universe into 10 portfolios, each of which

contains an equal number of stocks;
• calculates the equal-weighted return of each portfolio and the return for the FTSE

All Share Index for the 12 months following the date each ranking was made; and

29See Ackerman, McEnally, and Ravenscraft (1999) and Fung and Hsieh (2002) for more details on
the problems of interpreting hedge fund performance. Note that an offsetting type of bias may occur if
successful funds stop reporting performance because they no longer want new cash inflows.
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• subtracts the FTSE returns from each portfolio’s returns to derive excess returns for
each portfolio.

Describe and discuss each of the following biases introduced by the analyst’s research
design:

• survivorship bias,
• look-ahead bias, and
• time-period bias.

Survivorship bias. A test design is subject to survivorship bias if it fails to account
for companies that have gone bankrupt, merged, or otherwise departed the database. In
this example, the analyst used the current list of FTSE stocks rather than the actual list
of stocks that existed at the start of each year. To the extent that the computation of
returns excluded companies removed from the index, the performance of the portfolios
with the lowest P/B is subject to survivorship bias and may be overstated. At some time
during the testing period, those companies not currently in existence were eliminated
from testing. They would probably have had low prices (and low P/Bs) and poor returns.

Look-ahead bias. A test design is subject to look-ahead bias if it uses information
unavailable on the test date. In this example, the analyst conducted the test under the
assumption that the necessary accounting information was available at the end of the
fiscal year. For example, the analyst assumed that book value per share for fiscal 1990
was available on 31 December 1990. Because this information is not released until
several months after the close of a fiscal year, the test may have contained look-ahead
bias. This bias would make a strategy based on the information appear successful, but it
assumes perfect forecasting ability.

Time-period bias. A test design is subject to time-period bias if it is based on a
time period that may make the results time-period specific. Although the test covered
a period extending more than 10 years, that period may be too short for testing an
anomaly. Ideally, an analyst should test market anomalies over several business cycles to
ensure that results are not period specific. This bias can favor a proposed strategy if the
time period chosen was favorable to the strategy.





CHAPTER 7
HYPOTHESIS TESTING

1. INTRODUCTION

Analysts often confront competing ideas about how financial markets work. Some of these
ideas develop through personal research or experience with markets; others come from
interactions with colleagues; and many others appear in the professional literature on finance
and investments. In general, how can an analyst decide whether statements about the financial
world are probably true or probably false?

When we can reduce an idea or assertion to a definite statement about the value of a
quantity, such as an underlying or population mean, the idea becomes a statistically testable
statement or hypothesis. The analyst may want to explore questions such as the following:

• Is the underlying mean return on this mutual fund different from the underlying mean
return on its benchmark?

• Did the volatility of returns on this stock change after the stock was added to a stock market
index?

• Are a security’s bid-ask spreads related to the number of dealers making a market in the
security?

• Do data from a national bond market support a prediction of an economic theory about
the term structure of interest rates (the relationship between yield and maturity)?

To address these questions, we use the concepts and tools of hypothesis testing. Hypothesis
testing is part of statistical inference, the process of making judgments about a larger group
(a population) on the basis of a smaller group actually observed (a sample). The concepts and
tools of hypothesis testing provide an objective means to gauge whether the available evidence
supports the hypothesis. After a statistical test of a hypothesis we should have a clearer idea
of the probability that a hypothesis is true or not, although our conclusion always stops short
of certainty. Hypothesis testing has been a powerful tool in the advancement of investment
knowledge and science. As Robert L. Kahn of the Institute for Social Research (Ann Arbor,
Michigan) has written, ‘‘The mill of science grinds only when hypothesis and data are in
continuous and abrasive contact.’’

The main emphases of this chapter are the framework of hypothesis testing and tests
concerning mean and variance, two quantities frequently used in investments. We give an
overview of the procedure of hypothesis testing in the next section. We then address testing
hypotheses about the mean and hypotheses about the differences between means. In the fourth
section of this chapter, we address testing hypotheses about a single variance and hypotheses
about the differences between variances. We end the chapter with an overview of some other
important issues and techniques in statistical inference.
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2. HYPOTHESIS TESTING

Hypothesis testing, as we have mentioned, is part of the branch of statistics known as statistical
inference. Traditionally, the field of statistical inference has two subdivisions: estimation and
hypothesis testing. Estimation addresses the question ‘‘What is this parameter’s (e.g., the
population mean’s) value?’’ The answer is in the form of a confidence interval built around a
point estimate. Take the case of the mean: We build a confidence interval for the population
mean around the sample mean as a point estimate. For the sake of specificity, suppose the
sample mean is 50 and a 95 percent confidence interval for the population mean is 50 ± 10
(the confidence interval runs from 40 to 60). If this confidence interval has been properly
constructed, there is a 95 percent probability that the interval from 40 to 60 contains the
population mean’s value.1 The second branch of statistical inference, hypothesis testing, has a
somewhat different focus. A hypothesis testing question is ‘‘Is the value of the parameter (say,
the population mean) 45 (or some other specific value)?’’ The assertion ‘‘the population mean
is 45’’ is a hypothesis. A hypothesis is defined as a statement about one or more populations.

This section focuses on the concepts of hypothesis testing. The process of hypothesis
testing is part of a rigorous approach to acquiring knowledge known as the scientific method.
The scientific method starts with observation and the formulation of a theory to organize and
explain observations. We judge the correctness of the theory by its ability to make accurate
predictions—for example, to predict the results of new observations.2 If the predictions
are correct, we continue to maintain the theory as a possibly correct explanation of our
observations. When risk plays a role in the outcomes of observations, as in finance, we can only
try to make unbiased, probability-based judgments about whether the new data support the
predictions. Statistical hypothesis testing fills that key role of testing hypotheses when chance
plays a role. In an analyst’s day-to-day work, he may address questions to which he might give
answers of varying quality. When an analyst correctly formulates the question into a testable
hypothesis and carries out and reports on a hypothesis test, he has provided an element of
support to his answer consistent with the standards of the scientific method. Of course, the
analyst’s logic, economic reasoning, information sources, and perhaps other factors also play a
role in our assessment of the answer’s quality.3

We organize this introduction to hypothesis testing around the following list of seven
steps.

• Steps in Hypothesis Testing. The steps in testing a hypothesis are as follows:4

1. Stating the hypotheses.
2. Identifying the appropriate test statistic and its probability distribution.
3. Specifying the significance level.
4. Stating the decision rule.
5. Collecting the data and calculating the test statistic.
6. Making the statistical decision.
7. Making the economic or investment decision.

1We discussed the construction and interpretation of confidence intervals in the chapter on sampling.
2To be testable, a theory must be capable of making predictions that can be shown to be wrong.
3See Freeley and Steinberg (1999) for a discussion of critical thinking applied to reasoned decision
making.
4This list is based on one in Daniel and Terrell (1986).
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We will explain each of these steps using as illustration a hypothesis test concerning the sign
of the risk premium on Canadian stocks. The steps above constitute a traditional approach to
hypothesis testing. We will end the section with a frequently used alternative to those steps,
the p-value approach.

The first step in hypothesis testing is stating the hypotheses. We always state two hypotheses:
the null hypothesis (or null), designated H0, and the alternative hypothesis, designated Ha.

• Definition of Null Hypothesis. The null hypothesis is the hypothesis to be tested. For
example, we could hypothesize that the population mean risk premium for Canadian
equities is less than or equal to zero.

The null hypothesis is a proposition that is considered true unless the sample we use to
conduct the hypothesis test gives convincing evidence that the null hypothesis is false. When
such evidence is present, we are led to the alternative hypothesis.

• Definition of Alternative Hypothesis. The alternative hypothesis is the hypothesis
accepted when the null hypothesis is rejected. Our alternative hypothesis is that the
population mean risk premium for Canadian equities is greater than zero.

Suppose our question concerns the value of a population parameter, θ, in relation to one
possible value of the parameter, θ0 (these are read, respectively, ‘‘theta’’ and ‘‘theta sub zero’’).5

Examples of a population parameter include the population mean, µ, and the population
variance, σ2. We can formulate three different sets of hypotheses, which we label according to
the assertion made by the alternative hypothesis.

• Formulations of Hypotheses. We can formulate the null and alternative hypotheses in
three different ways:

1. H0: θ = θ0 versus Ha: θ �= θ0 (a ‘‘not equal to’’ alternative hypothesis)
2. H0: θ ≤ θ0 versus Ha: θ > θ0 (a ‘‘greater than’’ alternative hypothesis)
3. H0: θ ≥ θ0 versus Ha: θ < θ0 (a ‘‘less than’’ alternative hypothesis)

In our Canadian example, θ = µRP and represents the population mean risk premium on
Canadian equities. Also, θ0 = 0 and we are using the second of the above three formulations.

The first formulation is a two-sided hypothesis test (or two-tailed hypothesis test): We
reject the null in favor of the alternative if the evidence indicates that the population parameter
is either smaller or larger than θ0. In contrast, Formulations 2 and 3 are each a one-sided
hypothesis test (or one-tailed hypothesis test). For Formulations 2 and 3, we reject the null
only if the evidence indicates that the population parameter is respectively greater than or less
than θ0. The alternative hypothesis has one side.

Notice that in each case above, we state the null and alternative hypotheses such that
they account for all possible values of the parameter. With Formulation 1, for example, the
parameter is either equal to the hypothesized value θ0 (under the null hypothesis) or not equal
to the hypothesized value θ0 (under the alternative hypothesis). Those two statements logically
exhaust all possible values of the parameter.

5Greek letters, such as σ, are reserved for population parameters; Roman letters in italics, such as s, are
used for sample statistics.
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Despite the different ways to formulate hypotheses, we always conduct a test of the null
hypothesis at the point of equality, θ = θ0. Whether the null is H0: θ = θ0, H0: θ ≤ θ0, or
H0: θ ≥ θ0, we actually test θ = θ0. The reasoning is straightforward. Suppose the hypothesized
value of the parameter is 5. Consider H0: θ ≤ 5, with a ‘‘greater than’’ alternative hypothesis,
Ha: θ > 5. If we have enough evidence to reject H0: θ = 5 in favor of Ha: θ > 5, we definitely
also have enough evidence to reject the hypothesis that the parameter, θ, is some smaller value,
such as 4.5 or 4. To review, the calculation to test the null hypothesis is the same for all three
formulations. What is different for the three formulations, we will see shortly, is how the
calculation is evaluated to decide whether or not to reject the null.

How do we choose the null and alternative hypotheses? Probably most common are ‘‘not
equal to’’ alternative hypotheses. We reject the null because the evidence indicates that the
parameter is either larger or smaller than θ0. Sometimes, however, we may have a ‘‘suspected’’
or ‘‘hoped for’’ condition for which we want to find supportive evidence.6 In that case, we
can formulate the alternative hypothesis as the statement that this condition is true; the null
hypothesis that we test is the statement that this condition is not true. If the evidence supports
rejecting the null and accepting the alternative, we have statistically confirmed what we
thought was true. For example, economic theory suggests that investors require a positive risk
premium on stocks (the risk premium is defined as the expected return on stocks minus the
risk-free rate). Following the principle of stating the alternative as the ‘‘hoped for’’ condition,
we formulate the following hypotheses:

H0: The population mean risk premium on Canadian stocks is less than or equal to 0.

Ha: The population mean risk premium on Canadian stocks is positive.

Note that ‘‘greater than’’ and ‘‘less than’’ alternative hypotheses reflect the beliefs of the
researcher more strongly than a ‘‘not equal to’’ alternative hypothesis. To emphasize an
attitude of neutrality, the researcher may sometimes select a ‘‘not equal to’’ alternative
hypothesis when a one-sided alternative hypothesis is also reasonable.

The second step in hypothesis testing is identifying the appropriate test statistic and its probability
distribution.

• Definition of Test Statistic. A test statistic is a quantity, calculated based on a sample,
whose value is the basis for deciding whether or not to reject the null hypothesis.

The focal point of our statistical decision is the value of the test statistic. Frequently (in all the
cases that we examine in this chapter), the test statistic has the form

Test statistic = Sample statistic − Value of the population parameter under H0

Standard error of the sample statistic
(7-1)

For our risk premium example, the population parameter of interest is the population mean
risk premium, µRP. We label the hypothesized value of the population mean under H0 as
µ0. Restating the hypotheses using symbols, we test H0: µRP ≤ µ0 versus Ha: µRP > µ0.
However, because under the null we are testing µ0 = 0, we write H0: µRP ≤ 0 versus
Ha: µRP > 0.

6Part of this discussion of the selection of hypotheses follows Bowerman and O’Connell (1997, p. 386).
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The sample mean provides an estimate of the population mean. Therefore, we can use
the sample mean risk premium calculated from historical data, X RP, as the sample statistic in
Equation 7-1. The standard deviation of the sample statistic, known as the ‘‘standard error’’
of the statistic, is the denominator in Equation 7-1. For this example, the sample statistic is a
sample mean. For a sample mean, X , calculated from a sample generated by a population with
standard deviation σ, the standard error is given by one of two expressions:

σX = σ√
n

(7-2)

when we know σ (the population standard deviation), or

s X = s√
n

(7-3)

when we do not know the population standard deviation and need to use the sample
standard deviation s to estimate it. For this example, because we do not know the population
standard deviation of the process generating the return, we use Equation 7-3. The test statistic
is thus

X RP − µ0

s X
= X RP − 0

s/
√

n

In making the substitution of 0 for µ0, we use the fact already highlighted that we test any
null hypothesis at the point of equality, as well as the fact that µ0 = 0 here.

We have identified a test statistic to test the null hypothesis. What probability distribution
does it follow? We will encounter four distributions for test statistics in this chapter:

• the t-distribution (for a t-test),
• the standard normal or z-distribution (for a z-test),
• the chi-square (χ2) distribution (for a chi-square test), and
• the F -distribution (for an F -test).

We will discuss the details later, but assume we can conduct a z-test based on the cen-tral
limit theorem because our Canadian sample has many observations.7 To summarize, the test
statistic for the hypothesis test concerning the mean risk premium is X RP/s X . We can conduct
a z-test because we can plausibly assume that the test statistic follows a standard normal
distribution.

The third step in hypothesis testing is specifying the significance level. When the test statistic
has been calculated, two actions are possible: (1) We reject the null hypothesis or (2) we do
not reject the null hypothesis. The action we take is based on comparing the calculated test
statistic to a specified possible value or values. The comparison values we choose are based on
the level of significance selected. The level of significance reflects how much sample evidence
we require to reject the null. Analogous to its counterpart in a court of law, the required
standard of proof can change according to the nature of the hypotheses and the seriousness of
the consequences of making a mistake. There are four possible outcomes when we test a null
hypothesis:

7The central limit theorem says that the sampling distribution of the sample mean will be approximately
normal with mean µ and variance σ2/n when the sample size is large. The sample we will use for this
example has 103 observations.
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TABLE 7-1 Type I and Type II Errors in Hypothesis Testing

True Situation

Decision H0 True H0 False

Do not reject H0 Correct Decision Type II Error
Reject H0 (accept Ha) Type I Error Correct Decision

1. We reject a false null hypothesis. This is a correct decision.
2. We reject a true null hypothesis. This is called a Type I error.
3. We do not reject a false null hypothesis. This is called a Type II error.
4. We do not reject a true null hypothesis. This is a correct decision.

We illustrate these outcomes in Table 7-1.
When we make a decision in a hypothesis test, we run the risk of making either a Type I

or a Type II error. These are mutually exclusive errors: If we mistakenly reject the null, we can
only be making a Type I error; if we mistakenly fail to reject the null, we can only be making
a Type II error.

The probability of a Type I error in testing a hypothesis is denoted by the Greek letter
alpha, α. This probability is also known as the level of significance of the test. For example, a
level of significance of 0.05 for a test means that there is a 5 percent probability of rejecting a
true null hypothesis. The probability of a Type II error is denoted by the Greek letter beta, β.

Controlling the probabilities of the two types of errors involves a trade-off. All else equal,
if we decrease the probability of a Type I error by specifying a smaller significance level (say,
0.01 rather than 0.05), we increase the probability of making a Type II error because we
will reject the null less frequently, including when it is false. The only way to reduce the
probabilities of both types of errors simultaneously is to increase the sample size, n.

Quantifying the trade-off between the two types of error in practice is usually impossible
because the probability of a Type II error is itself hard to quantify. Consider H0: θ ≤ 5 versus
Ha: θ > 5. Because every true value of θ greater than 5 makes the null hypothesis false, each
value of θ greater than 5 has a different β (Type II error probability). In contrast, it is sufficient
to state a Type I error probability for θ = 5, the point at which we conduct the test of the
null hypothesis. Thus, in general, we specify only α, the probability of a Type I error, when
we conduct a hypothesis test. Whereas the significance level of a test is the probability of
incorrectly rejecting the null, the power of a test is the probability of correctly rejecting the
null—that is, the probability of rejecting the null when it is false.8 When more than one
test statistic is available to conduct a hypothesis test, we should prefer the most powerful, all
else equal.9

To summarize, the standard approach to hypothesis testing involves specifying a level of
significance (probability of Type I error) only. It is most appropriate to specify this significance
level prior to calculating the test statistic. If we specify it after calculating the test statistic, we
may be influenced by the result of the calculation, which detracts from the objectivity of the test.

We can use three conventional significance levels to conduct hypothesis tests: 0.10, 0.05,
and 0.01. Qualitatively, if we can reject a null hypothesis at the 0.10 level of significance, we
have some evidence that the null hypothesis is false. If we can reject a null hypothesis at the

8The power of a test is, in fact, 1 minus the probability of a Type II error.
9We do not always have information on the relative power of the test for competing test statistics, however.
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0.05 level, we have strong evidence that the null hypothesis is false. And if we can reject a null
hypothesis at the 0.01 level, we have very strong evidence that the null hypothesis is false. For
the risk premium example, we will specify a 0.05 significance level.

The fourth step in hypothesis testing is stating the decision rule. The general principle is simply
stated. When we test the null hypothesis, if we find that the calculated value of the test statistic
is as extreme or more extreme than a given value or values determined by the specified level
of significance, α, we reject the null hypothesis. We say the result is statistically significant.
Otherwise, we do not reject the null hypothesis and we say the result is not statistically
significant. The value or values with which we compare the calculated test statistic to make
our decision are the rejection points (critical values) for the test.10

• Definition of a Rejection Point (Critical Value) for the Test Statistic. A rejection
point (critical value) for a test statistic is a value with which the computed test statistic is
compared to decide whether to reject or not reject the null hypothesis.

For a one-tailed test, we indicate a rejection point using the symbol for the test statistic
with a subscript indicating the specified probability of a Type I error, α; for example, zα. For a
two-tailed test, we indicate zα/2. To illustrate the use of rejection points, suppose we are using
a z-test and have chosen a 0.05 level of significance.

• For a test of H0: θ = θ0 versus Ha: θ �= θ0, two rejection points exist, one negative and
one positive. For a two-sided test at the 0.05 level, the total probability of a Type I error
must sum to 0.05. Thus, 0.05/2 = 0.025 of the probability should be in each tail of the
distribution of the test statistic under the null. Consequently, the two rejection points
are z0.025 = 1.96 and −z0.025 = −1.96. Let z represent the calculated value of the test
statistic. We reject the null if we find that z < −1.96 or z > 1.96. We do not reject if
−1.96 ≤ z ≤ 1.96.

• For a test of H0: θ ≤ θ0 versus Ha: θ > θ0 at the 0.05 level of significance, the rejection
point is z0.05 = 1.645. We reject the null hypothesis if z > 1.645. The value of the standard
normal distribution such that 5 percent of the outcomes lie to the right is z0.05 = 1.645.

• For a test of H0: θ ≥ θ0 versus Ha: θ < θ0, the rejection point is −z0.05 = −1.645. We
reject the null hypothesis if z < −1.645.

Figure 7-1 illustrates a test H0: µ = µ0 versus Ha: µ �= µ0 at the 0.05 significance level
using a z-test. The ‘‘acceptance region’’ is the traditional name for the set of values of the
test statistic for which we do not reject the null hypothesis. (The traditional name, however,
is inaccurate. We should avoid using phrases such as ‘‘accept the null hypothesis’’ because
such a statement implies a greater degree of conviction about the null than is warranted
when we fail to reject it.11) On either side of the acceptance region is a rejection region (or
critical region). If the null hypothesis that µ = µ0 is true, the test statistic has a 2.5 percent
chance of falling in the left rejection region and a 2.5 percent chance of falling in the right
rejection region. Any calculated value of the test statistic that falls in either of these two regions
causes us to reject the null hypothesis at the 0.05 significance level. The rejection points

10‘‘Rejection point’’ is a descriptive synonym for the more traditional term ‘‘critical value.’’
11The analogy in some courts of law (for example, in the United States) is that if a jury does not return
a verdict of guilty (the alternative hypothesis), it is most accurate to say that the jury has failed to reject
the null hypothesis, namely, that the defendant is innocent.
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FIGURE 7-1 Rejection Points (Critical Values), 0.05 Significance Level, Two-Sided Test of the
Population Mean Using a z-Test

of 1.96 and −1.96 are seen to be the dividing lines between the acceptance and rejection
regions.

Figure 7-1 affords a good opportunity to highlight the relationship between confidence
intervals and hypothesis tests. A 95 percent confidence interval for the population mean, µ,
based on sample mean, X , is given by X − 1.96 s X to X + 1.96 s X , where s X is the standard
error of the sample mean (Equation 7-3).12

Now consider one of the conditions for rejecting the null hypothesis:

X − µ0

s X
> 1.96

Here, µ0 is the hypothesized value of the population mean. The condition states that
rejection is warranted if the test statistic exceeds 1.96. Multiplying both sides by s X , we
have X − µ0 > 1.96 s X or, after rearranging, X − 1.96 s X > µ0, which we can also write
as µ0 < X − 1.96 s X . This expression says that if the hypothesized population mean, µ0, is
less than the lower limit of the 95 percent confidence interval based on the sample mean, we
must reject the null hypothesis at the 5 percent significance level (the test statistic falls in the
rejection region to the right).

Now, we can take the other condition for rejecting the null hypothesis

X − µ0

s X
< −1.96

12Just as with the hypothesis test, we can use this confidence interval, based on the standard normal
distribution, when we have large samples. An alternative hypothesis test and confidence interval uses the
t-distribution, which requires concepts that we introduce in the next section.
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and, using algebra as before, rewrite it as µ0 > X + 1.96 s X . If the hypothesized population
mean is larger than the upper limit of the 95 percent confidence interval, we reject the null
hypothesis at the 5 percent level (the test statistic falls in the rejection region to the left). Thus,
an α significance level in a two-sided hypothesis test can be interpreted in exactly the same
way as a (1 − α) confidence interval.

In summary, when the hypothesized value of the population parameter under the null is
outside the corresponding confidence interval, the null hypothesis is rejected. We could use
confidence intervals to test hypotheses; practitioners, however, usually do not. Computing
a test statistic (one number, versus two numbers for the usual confidence interval) is more
efficient. Also, analysts encounter actual cases of one-sided confidence intervals only rarely.
Furthermore, only when we compute a test statistic can we obtain a p-value, a useful quantity
relating to the significance of our results (we will discuss p-values shortly).

To return to our risk premium test, we stated hypotheses H0: µRP ≤ 0 versus Ha: µRP > 0.
We identified the test statistic as X RP/s X and stated that it follows a standard normal
distribution. We are, therefore, conducting a one-sided z-test. We specified a 0.05 significance
level. For this one-sided z-test, the rejection point at the 0.05 level of significance is 1.645.
We will reject the null if the calculated z-statistic is larger than 1.645. Figure 7-2 illustrates
this test.

The fifth step in hypothesis testing is collecting the data and calculating the test statistic.
The quality of our conclusions depends not only on the appropriateness of the statistical
model but also on the quality of the data we use in conducting the test. We first need to
check for measurement errors in the recorded data. Some other issues to be aware of include
sample selection bias and time-period bias. Sample selection bias refers to bias introduced by
systematically excluding some members of the population according to a particular attribute.
One type of sample selection bias is survivorship bias. For example, if we define our sample as
U.S. bond mutual funds currently operating and we collect returns for just these funds, we will
systematically exclude funds that have not survived to the present date. Nonsurviving funds

0.95

Acceptance Region

 = 0.05

0 1.645

Rejection 
Region
z > 1.645

a

FIGURE 7-2 Rejection Point (Critical Value), 0.05 Significance Level, One-Sided Test of the
Population Mean Using a z-Test
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are likely to have underperformed surviving funds, on average; as a result the performance
reflected in the sample may be biased upward. Time-period bias refers to the possibility that
when we use a time-series sample, our statistical conclusion may be sensitive to the starting
and ending dates of the sample.13

To continue with the risk premium hypothesis, we focus on Canadian equities. According
to Dimson, Marsh, and Staunton (2002) as updated to the end of 2002,14 for the period 1900
to 2002 inclusive (103 annual observations), the arithmetic mean equity risk premium for
Canadian stocks relative to bond returns, X RP, was 5.1 percent per year. The sample standard
deviation of the annual risk premiums was 18.6 percent. Using Equation 7-3, the standard
error of the sample mean is s X = s/

√
n = 18.6%/

√
103 = 1.833%. The test statistic is

z = X RP/s X = 5.1%/1.833% = 2.78.
The sixth step in hypothesis testing is making the statistical decision. For our example, because

the test statistic z = 2.78 is larger than the rejection point of 1.645, we reject the null
hypothesis in favor of the alternative hypothesis that the risk premium on Canadian stocks is
positive. The first six steps are the statistical steps. The final decision concerns our use of the
statistical decision.

The seventh and final step in hypothesis testing is making the economic or investment decision.
The economic or investment decision takes into consideration not only the statistical decision
but also all pertinent economic issues. In the sixth step, we found strong statistical evidence
that the Canadian risk premium is positive. The magnitude of the estimated risk premium,
5.1 percent a year, is economically very meaningful as well. Based on these considerations,
an investor might decide to commit funds to Canadian equities. A range of nonstatistical
considerations, such as the investor’s tolerance for risk and financial position, might also enter
the decision-making process.

The preceding discussion raises an issue that often arises in this decision-making step.
We frequently find that slight differences between a variable and its hypothesized value are
statistically significant but not economically meaningful. For example, we may be testing an
investment strategy and reject a null hypothesis that the mean return to the strategy is zero
based on a large sample. Equation 7-1 shows that the smaller the standard error of the sample
statistic (the divisor in the formula), the larger the value of the test statistic and the greater the
chance the null will be rejected, all else equal. The standard error decreases as the sample size,
n, increases, so that for very large samples, we can reject the null for small departures from it.
We may find that although a strategy provides a statistically significant positive mean return,
the results are not economically significant when we account for transaction costs, taxes, and
risk. Even if we conclude that a strategy’s results are economically meaningful, we should
explore the logic of why the strategy might work in the future before actually implementing
it. Such considerations cannot be incorporated into a hypothesis test.

Before leaving the subject of the process of hypothesis testing, we should discuss an
important alternative approach called the p-value approach to hypothesis testing. Analysts and
researchers often report the p-value (also called the marginal significance level) associated with
hypothesis tests.

• Definition of p-Value. The p-value is the smallest level of significance at which the null
hypothesis can be rejected.

13These issues are discussed further in the chapter on sampling.
14Updated by communication dated 19 May 2003 to the authors.
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For the value of the test statistic of 2.78 in the risk premium hypothesis test, using a
spreadsheet function for the standard normal distribution, we calculate a p-value of 0.002718.
We can reject the null hypothesis at that level of significance. The smaller the p-value, the
stronger the evidence against the null hypothesis and in favor of the alternative hypothesis. The
p-value for a two-sided test that a parameter equals zero is frequently generated automatically
by statistical and econometric software programs.15

We can use p-values in the hypothesis testing framework presented above as an alternative
to using rejection points. If the p-value is less than our specified level of significance, we reject
the null hypothesis. Otherwise, we do not reject the null hypothesis. Using the p-value in this
fashion, we reach the same conclusion as we do using rejection points. For example, because
0.002718 is less than 0.05, we would reject the null hypothesis in the risk premium test. The
p-value, however, provides more precise information on the strength of the evidence than does
the rejection points approach. The p-value of 0.002718 indicates that the null is rejected at a
far smaller level of significance than 0.05.

If one researcher examines a question using a 0.05 significance level and another researcher
uses a 0.01 significance level, the reader may have trouble comparing the findings. This concern
has given rise to an approach to presenting the results of hypothesis tests that features p-values
and omits specification of the significance level (Step 3). The interpretation of the statistical
results is left to the consumer of the research. This has sometimes been called the p-value
approach to hypothesis testing.16

3. HYPOTHESIS TESTS CONCERNING
THE MEAN

Hypothesis tests concerning the mean are among the most common in practice. In this
section we discuss such tests for several distinct types of problems. In one type (discussed in
Section 3.1), we test whether the population mean of a single population is equal to (or greater
or less than) some hypothesized value. Then, in Sections 3.2 and 3.3, we address inference
on means based on two samples. Is an observed difference between two sample means due to
chance or to different underlying (population) means? When we have two random samples
that are independent of each other—no relationship exists between the measurements in one
sample and the measurements in the other—the techniques of Section 3.2 apply. When the
samples are dependent, the methods of Section 3.3 are appropriate.17

15We can use spreadsheets to calculate p-values as well. In Microsoft Excel, for example, we may use the
worksheet functions TTEST, NORMSDIST, CHIDIST, and FDIST to calculate p-values for t-tests,
z-tests, chi-square tests, and F -tests, respectively.
16Davidson and MacKinnon (1993) argued the merits of this approach: ‘‘The P value approach does
not necessarily force us to make a decision about the null hypothesis. If we obtain a P value of, say,
0.000001, we will almost certainly want to reject the null. But if we obtain a P value of, say, 0.04, or
even 0.004, we are not obliged to reject it. We may simply file the result away as information that casts
some doubt on the null hypothesis, but that is not, by itself, conclusive. We believe that this somewhat
agnostic attitude toward test statistics, in which they are merely regarded as pieces of information that
we may or may not want to act upon, is usually the most sensible one to take.’’ (p. 80).
17When we want to test whether the population means of more than two populations are equal, we
use analysis of variance (ANOVA). We introduce ANOVA in its most common application, regression
analysis, in the chapter on correlation and regression analysis.
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3.1. Tests Concerning a Single Mean

An analyst who wants to test a hypothesis concerning the value of an underlying or population
mean will conduct a t-test in the great majority of cases. A t-test is a hypothesis test
using a statistic (t-statistic) that follows a t-distribution. The t-distribution is a probability
distribution defined by a single parameter known as degrees of freedom (df). Each value of
degrees of freedom defines one distribution in this family of distributions. The t-distribution
is closely related to the standard normal distribution. Like the standard normal distribution,
a t-distribution is symmetrical with a mean of zero. However, the t-distribution is more
spread out: It has a standard deviation greater than 1 (compared to 1 for the standard
normal)18 and more probability for outcomes distant from the mean (it has fatter tails than
the standard normal distribution). As the number of degrees of freedom increases with sample
size, the spread decreases and the t-distribution approaches the standard normal distribution
as a limit.

Why is the t-distribution the focus for the hypothesis tests of this section? In practice,
investment analysts need to estimate the population standard deviation by calculating a sample
standard deviation; that is, the population variance (or standard deviation) is unknown. For
hypothesis tests concerning the population mean of a normally distributed population with
unknown variance, the theoretically correct test statistic is the t-statistic. What if a normal
distribution does not describe the population? The t-test is robust to moderate departures
from normality, except for outliers and strong skewness.19 When we have large samples,
departures of the underlying distribution from the normal are of increasingly less concern. The
sample mean is approximately normally distributed in large samples according to the central
limit theorem, whatever the distribution describing the population. In general, a sample size
of 30 or more usually can be treated as a large sample and a sample size of 29 or less is treated
as a small sample.20

• Test Statistic for Hypothesis Tests of the Population Mean (Practical Case—Popul-
ation Variance Unknown). If the population sampled has unknown variance and either
of the conditions below holds:

1. the sample is large, or
2. the sample is small but the population sampled is normally distributed, or approximately

normally distributed,

then the test statistic for hypothesis tests concerning a single population mean, µ, is

tn−1 = X − µ0

s/
√

n
(7-4)

where

tn−1 = t-statistic with n − 1 degrees of freedom (n is the sample size)
X = the sample mean

18The formula for the variance of a t-distribution is df/(df − 2).
19See Moore and McCabe (1998). A statistic is robust if the required probability calculations are
insensitive to violations of the assumptions.
20Although this generalization is useful, we caution that the sample size needed to obtain an approximately
normal sampling distribution for the sample mean depends on how nonnormal the original population
is. For some populations, ‘‘large’’ may be a sample size well in excess of 30.
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µ0 = the hypothesized value of the population mean
s = the sample standard deviation

The denominator of the t-statistic is an estimate of the sample mean standard error,
s X = s/

√
n.21

In Example 7-1, because the sample size is small, the test is called a small sample test
concerning the population mean.

EXAMPLE 7-1 Risk and Return Characteristics of an
Equity Mutual Fund (1)

You are analyzing Sendar Equity Fund, a midcap growth fund that has been in existence
for 24 months. During this period, it has achieved a mean monthly return of 1.50
percent with a sample standard deviation of monthly returns of 3.60 percent. Given its
level of systematic (market) risk and according to a pricing model, this mutual fund
was expected to have earned a 1.10 percent mean monthly return during that time
period. Assuming returns are normally distributed, are the actual results consistent with
an underlying or population mean monthly return of 1.10 percent?

1. Formulate null and alternative hypotheses consistent with the verbal description
of the research goal.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Identify the rejection point or points for the hypothesis tested in Part 1 at the

0.10 level of significance.
4. Determine whether the null hypothesis is rejected or not rejected at the 0.10 level

of significance. (Use the tables in the back of this book.)

Solution to 1: We have a ‘‘not equal to’’ alternative hypothesis, where µ is the underlying
mean return on Sendar Equity Fund—H0: µ = 1.10 versus Ha: µ �= 1.10.

Solution to 2: Because the population variance is not known, we use a t-test with
24 − 1 = 23 degrees of freedom.

Solution to 3: Because this is a two-tailed test, we have the rejection point tα/2,n−1 =
t0.05,23. In the table for the t-distribution, we look across the row for 23 degrees of
freedom to the 0.05 column, to find 1.714. The two rejection points for this two-sided

21A technical note, for reference, is required. When the sample comes from a finite population,
estimates of the standard error of the mean, whether from Equation 7-2 or Equation 7-3, overestimate
the true standard error. To address this, the computed standard error is multiplied by a shrinkage
factor called the finite population correction factor (fpc), equal to

√
(N − n)/(N − 1), where N is the

population size and n is the sample size. When the sample size is small relative to the population size
(less than 5 percent of the population size), the fpc is usually ignored. The overestimation problem
arises only in the usual situation of sampling without replacement (after an item is selected, it cannot
be picked again), as opposed to sampling with replacement.
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test are 1.714 and −1.714. We will reject the null if we find that t > 1.714 or
t < −1.714.

Solution to 4 :

t23 = 1.50 − 1.10

3.60/
√

24
= 0.40

0.734847
= 0.544331 or 0.544

Because 0.544 does not satisfy either t > 1.714 or t < −1.714, we do not reject the
null hypothesis.

The confidence interval approach provides another perspective on this hypothesis
test. The theoretically correct 100(1 − α)% confidence interval for the population mean
of a normal distribution with unknown variance, based on a sample of size n, is

X − tα/2 s X to X + tα/2 s X

where tα/2 is the value of t such that α/2 of the probability remains in the right
tail and where −tα/2 is the value of t such that α/2 of the probability remains in
the left tail, for n − 1 degrees of freedom. Here, the 90 percent confidence interval
runs from 1.5 − (1.714)(0.734847) = 0.240 to 1.5 + (1.714)(0.734847) = 2.760,
compactly [0.240, 2.760]. The hypothesized value of mean return, 1.10, falls within
this confidence interval, and we see from this perspective also that the null hypothesis is
not rejected. At a 10 percent level of significance, we conclude that a population mean
monthly return of 1.10 percent is consistent with the 24-month observed data series.
Note that 10 percent is a relatively high probability of rejecting the hypothesis of a 1.10
percent population mean monthly return when it is true.

EXAMPLE 7-2 A Slowdown in Payments of Receivables

FashionDesigns, a supplier of casual clothing to retail chains, is concerned about a
possible slowdown in payments from its customers. The controller’s office measures
the rate of payment by the average number of days in receivables.22 FashionDesigns
has generally maintained an average of 45 days in receivables. Because it would be too
costly to analyze all of the company’s receivables frequently, the controller’s office uses
sampling to track customers’ payment rates. A random sample of 50 accounts shows a
mean number of days in receivables of 49 with a standard deviation of 8 days.

1. Formulate null and alternative hypotheses consistent with determining whether
the evidence supports the suspected condition that customer payments have
slowed.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.

22This measure represents the average length of time that the business must wait after making a sale
before receiving payment. The calculation is (Accounts receivable)/(Average sales per day).
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3. Identify the rejection point or points for the hypothesis tested in Part 1 at the
0.05 and 0.01 levels of significance.

4. Determine whether the null hypothesis is rejected or not rejected at the 0.05 and
0.01 levels of significance.

Solution to 1: The suspected condition is that the number of days in receivables has
increased relative to the historical rate of 45 days, which suggests a ‘‘greater than’’
alternative hypothesis. With µ as the population mean number of days in receivables,
the hypotheses are H0: µ ≤ 45 versus Ha: µ > 45.

Solution to 2: Because the population variance is not known, we use a t-test with
50 − 1 = 49 degrees of freedom.

Solution to 3: The rejection point is found across the row for degrees of freedom of
49. To find the one-tailed rejection point for a 0.05 significance level, we use the 0.05
column: The value is 1.677. To find the one-tailed rejection point for a 0.01 level of
significance, we use the 0.01 column: The value is 2.405. To summarize, at a 0.05
significance level, we reject the null if we find that t > 1.677; at a 0.01 significance
level, we reject the null if we find that t > 2.405.

Solution to 4 : t49 = 49 − 45

8/
√

50
= 4

1.131371
= 3.536

Because 3.536 > 1.677, the null hypothesis is rejected at the 0.05 level. Because
3.536 > 2.405, the null hypothesis is also rejected at the 0.01 level. We can say with a
high level of confidence that FashionDesigns has experienced a slowdown in customer
payments. The level of significance, 0.01, is a relatively low probability of rejecting the
hypothesized mean of 45 days or less. Rejection gives us confidence that the mean has
increased above 45 days.

We stated above that when population variance is not known, we use a t-test for tests
concerning a single population mean. Given at least approximate normality, the t-test is always
called for when we deal with small samples and do not know the population variance. For
large samples, the central limit theorem states that the sample mean is approximately normally
distributed, whatever the distribution of the population. So the t-test is still appropriate, but
an alternative test may be more useful when sample size is large.

For large samples, practitioners sometimes use a z-test in place of a t-test for tests
concerning a mean.23 The justification for using the z-test in this context is twofold. First, in
large samples, the sample mean should follow the normal distribution at least approximately, as
we have already stated, fulfilling the normality assumption of the z-test. Second, the difference
between the rejection points for the t-test and z-test becomes quite small when sample size
is large. For a two-sided test at the 0.05 level of significance, the rejection points for a z-test
are 1.96 and −1.96. For a t-test, the rejection points are 2.045 and −2.045 for df = 29
(about a 4 percent difference between the z and t rejection points) and 2.009 and −2.009

23These practitioners choose between t-tests and z-tests based on sample size. For small samples (n < 30),
they use a t-test, and for large samples, a z-test.
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for df = 50 (about a 2.5 percent difference between the z and t rejection points). Because the
t-test is readily available as statistical program output and theoretically correct for unknown
population variance, we present it as the test of choice.

In a very limited number of cases, we may know the population variance; in such cases,
the z-test is theoretically correct.24

• The z-Test Alternative.

1. If the population sampled is normally distributed with known variance σ2, then the test
statistic for a hypothesis test concerning a single population mean, µ, is

z = X − µ0

σ/
√

n
(7-5)

2. If the population sampled has unknown variance and the sample is large, in place of a
t-test, an alternative test statistic (relying on the central limit theorem) is

z = X − µ0

s/
√

n
(7-6)

In the above equations,

σ = the known population standard deviation
s = the sample standard deviation

µ0 = the hypothesized value of the population mean

When we use a z-test, we most frequently refer to a rejection point in the list below.

• Rejection Points for a z-Test.

A. Significance level of α = 0.10.

1. H0: θ = θ0 versus Ha: θ �= θ0. The rejection points are z0.05 = 1.645 and −z0.05 =
−1.645.
Reject the null hypothesis if z > 1.645 or if z < −1.645.

2. H0: θ ≤ θ0 versus Ha: θ > θ0. The rejection point is z0.10 = 1.28.
Reject the null hypothesis if z > 1.28.

3. H0: θ ≥ θ0 versus Ha: θ < θ0. The rejection point is −z0.10 = −1.28.
Reject the null hypothesis if z < −1.28.

B. Significance level of α = 0.05.

1. H0: θ = θ0 versus Ha: θ �= θ0. The rejection points are z0.025 = 1.96 and
−z0.025 = −1.96.
Reject the null hypothesis if z > 1.96 or if z < −1.96.

24For example, in Monte Carlo simulation, we prespecify the probability distributions for the risk factors.
If we use a normal distribution, we know the true values of mean and variance. Monte Carlo simulation
involves the use of a computer to represent the operation of a system subject to risk; we discuss Monte
Carlo simulation in the chapter on common probability distributions.
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2. H0: θ ≤ θ0 versus Ha: θ > θ0. The rejection point is z0.05 = 1.645.
Reject the null hypothesis if z > 1.645.

3. H0: θ ≥ θ0 versus Ha: θ < θ0. The rejection point is −z0.05 = −1.645.
Reject the null hypothesis if z < −1.645.

C. Significance level of α = 0.01.

1. H0: θ = θ0 versus Ha: θ �= θ0. The rejection points are z0.005 = 2.575 and
−z0.005 = −2.575.
Reject the null hypothesis if z > 2.575 or if z < −2.575.

2. H0: θ ≤ θ0 versus Ha: θ > θ0. The rejection point is z0.01 = 2.33.
Reject the null hypothesis if z > 2.33.

3. H0: θ ≥ θ0 versus Ha: θ < θ0. The rejection point is −z0.01 = −2.33.
Reject the null hypothesis if z < −2.33.

EXAMPLE 7-3 The Effect of Commercial Paper Issuance
on Stock Prices

Commercial paper (CP) is unsecured short-term corporate debt that, like U.S. Treasury
bills, is characterized by a single payment at maturity. When a company enters the CP
market for the first time, how do stock market participants react to the announcement
of the CP ratings?

Nayar and Rozeff (1994) addressed this question using data for the period October
1981 to December 1985. During this period, 132 CP issues (96 industrial and 36
non-industrial) received an initial rating in Standard & Poor’s CreditWeek or Moody’s
Investors Service Bond Survey. Nayar and Rozeff categorized ratings as superior or
inferior. Superior CP ratings were A1+ or A1 from Standard & Poor’s and Prime-1
(P1) from Moody’s. Inferior CP ratings were A2 or lower from Standard & Poor’s
and Prime-2 (P2) or lower from Moody’s. The publication day of the initial ratings
was designated t = 0. The researchers found, however, that companies themselves often
disseminate the rating information prior to publication in CreditWeek or the Bond
Survey. The reaction of stock price was studied on the day before publication, t − 1,
because that date was closer to the actual date of information release.

If CP ratings provide new information useful for equity valuation, the information
should cause a change in stock prices and returns once it is available. Only one
component of stock returns is of interest: the return in excess of that predicted given
a stock’s market risk or beta, called the abnormal return. Positive (negative) abnormal
returns indicate that investors perceive favorable (unfavorable) corporate news in the
ratings announcement. Although Nayar and Rozeff examined abnormal returns for
various time horizons or event windows, we report a selection of their findings for the
day prior to rating publication (t − 1):

All CP Issues (n = 132 issues). The null hypothesis was that the average abnormal stock
return on day t − 1 was 0. The null would be true if stock investors did not find either
positive or negative information in the announcement.

Mean abnormal return = 0.39 percent
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Sample standard error of the mean of abnormal returns = 0.1336 percent25

Industrial CP Issues with Superior Ratings (n = 72 issues). The null hypothesis was that
the average abnormal stock return on day t − 1 was 0. The null would be true if stock
investors did not find either positive or negative information in the announcement.

Mean abnormal return = 0.79 percent
Sample standard error of the mean of abnormal returns = 0.197 percent

Industrial CP Issues with Inferior Ratings (n = 24 issues). The null hypothesis was that
the average abnormal stock return on day t − 1 was 0. The null would be true if stock
investors did not find either positive or negative information in the announcement.

Mean abnormal return = −0.57 percent
Sample standard error of the mean of abnormal returns = 0.38 percent

The researchers chose to use z-tests.

1. With respect to each of the three cases, suppose that the null hypothesis reflects
the belief that investors do not, on average, perceive either positive or negative
information in initial ratings. State one set of hypotheses (a null hypothesis and
an alternative hypothesis) that covers all three cases.

2. Determine whether the null hypothesis formulated in Part 1 is rejected or not
rejected at the 0.05 and 0.01 levels of significance for the All CP Issues case.
Interpret the results.

3. Determine whether the null hypothesis formulated in Part 1 is rejected or not
rejected at the 0.05 and 0.01 levels of significance for the Industrial CP Issues with
Superior Ratings case. Interpret the results.

4. Determine whether the null hypothesis formulated in Part 1 is rejected or not
rejected at the 0.05 and 0.01 levels of significance for the Industrial CP Issues with
Inferior Ratings case. Interpret the results.

Solution to 1: A set of hypotheses consistent with no information in CP credit ratings
relevant to stock investors is

H0: The population mean abnormal return on day t − 1 equals 0

Ha: The population mean abnormal return on day t − 1 does not equal 0

Solution to 2: From the information on rejection points for z-tests, we know that
we reject the null hypothesis at the 0.05 significance level if z > 1.96 or if z <

−1.96, and at the 0.01 significance level if z > 2.575 or if z < −2.575. Using
the z-test, z = (0.39% − 0%)/0.1336% = 2.92 is significant at the 0.05 and 0.01
levels. The null is rejected. The fact of CP issuance itself appears to be viewed as
favorable news.

Because it is possible that significant results could be due to outliers, the researchers
also reported the number of cases of positive and negative abnormal returns. The ratio
of cases of positive to negative abnormal returns was 80:52, which tends to support the
conclusion of positive abnormal returns from the z-test.

25This standard error was calculated as a sample standard deviation over the 132 issues (a cross-sectional
standard deviation) divided by the square root of 132. Other standard errors were calculated similarly.
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Solution to 3: Using the z-test, z = (0.79% − 0%)/0.197% = 4.01 is significant at
the 0.05 and 0.01 levels. Stocks earned clearly positive abnormal returns in response to
the news of a superior initial CP rating. Investors may view rating agencies as certifying
through a superior rating that a company’s future prospects are strong.

The ratio of cases of positive to negative abnormal returns was 48:24, which tends
to support the conclusion of positive abnormal returns from the z-test.

Solution to 4 : Using the z-test, z = (−0.57% − 0%)/0.38% = −1.50 is not significant
at either the 0.01 or 0.05 levels. In the case of inferior ratings, we cannot conclude that
investors found either positive or negative information in the announcements of initial
CP ratings.

The ratio of cases of positive to negative abnormal returns was 11:13 and tends to
support the conclusion of the z-test, which did not reject the null hypothesis.

Nearly all practical situations involve an unknown population variance. Table 7-2
summarizes our discussion for tests concerning the population mean when the population
variance is unknown.

TABLE 7-2 Test Concerning the Population Mean
(Population Variance Unknown)

Large Sample (n ≥ 30) Small Sample (n < 30)

Population normal t-Test (z-Test alternative) t-Test
Population nonnormal t-Test (z-Test alternative) Not Available

3.2. Tests Concerning Differences between Means
We often want to know whether a mean value—for example, a mean return—differs between
two groups. Is an observed difference due to chance or to different underlying values for the
mean? We have two samples, one for each group. When it is reasonable to believe that the
samples are from populations at least approximately normally distributed and that the samples
are also independent of each other, the techniques of this section apply. We discuss two t-tests
for a test concerning differences between the means of two populations. In one case, the
population variances, although unknown, can be assumed to be equal. Then, we efficiently
combine the observations from both samples to obtain a pooled estimate of the common but
unknown population variance. A pooled estimate is an estimate drawn from the combination
of two different samples. In the second case, we do not assume that the unknown population
variances are equal, and an approximate t-test is then available. Letting µ1 and µ2 stand,
respectively, for the population means of the first and second populations, we most often want
to test whether the population means are equal or whether one is larger than the other. Thus
we usually formulate the following hypotheses:

1. H0: µ1 − µ2 = 0 versus Ha: µ1 − µ2 �= 0 (the alternative is that µ1 �= µ2)
2. H0: µ1 − µ2 ≤ 0 versus Ha: µ1 − µ2 > 0 (the alternative is that µ1 > µ2)
3. H0: µ1 − µ2 ≥ 0 versus Ha: µ1 − µ2 < 0 (the alternative is that µ1 < µ2)

We can, however, formulate other hypotheses, such as H0: µ1 − µ2 = 2 versus Ha: µ1 − µ2

�= 2. The procedure is the same.
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The definition of the t-test follows.

• Test Statistic for a Test of the Difference between Two Population Means (Normally
Distributed Populations, Population Variances Unknown but Assumed Equal). When
we can assume that the two populations are normally distributed and that the unknown
population variances are equal, a t-test based on independent random samples is given by

t = (X 1 − X 2) − (µ1 − µ2)(
s2
p

n1
+ s2

p

n2

)1/2 (7-7)

where s2p = (n1 − 1)s2
1 + (n2 − 1)s22

n1 + n2 − 2
is a pooled estimator of the common variance.

The number of degrees of freedom is n1 + n2 − 2.

EXAMPLE 7-4 Mean Returns on the S&P 500: A Test of
Equality across Decades

The realized mean monthly return on the S&P 500 Index in the 1980s appears to
have been substantially different from the mean return in the 1970s. Was the difference
statistically significant? The data, shown in Table 7-3, indicate that assuming equal
population variances for returns in the two decades is not unreasonable.

TABLE 7-3 S&P 500 Monthly Return and Standard Deviation for Two Decades

Decade Number of Months (n) Mean Monthly Return (%) Standard Deviation

1970s 120 0.580 4.598
1980s 120 1.470 4.738

1. Formulate null and alternative hypotheses consistent with a two-sided hypothesis
test.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Identify the rejection point or points for the hypothesis tested in Part 1 at the 0.10,

0.05, and 0.01 levels of significance.
4. Determine whether the null hypothesis is rejected or not rejected at the 0.10, 0.05,

and 0.01 levels of significance.

Solution to 1: Letting µ1 stand for the population mean return for the 1970s and
µ2 stand for the population mean return for the 1980s, we formulate the following
hypotheses:

H0: µ1 − µ2 = 0 versus Ha: µ1 − µ2 �= 0

Solution to 2: Because the two samples are drawn from different decades, they are
independent samples. The population variances are not known but can be assumed
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to be equal. Given all these considerations, the t-test given in Equation 7-7 has
120 + 120 − 2 = 238 degrees of freedom.

Solution to 3: In the tables (Appendix B), the closest degree of freedom to 238 is
200. For a two-sided test, the rejection points are ±1.653, ± 1.972, and ±2.601 for,
respectively, the 0.10, 0.05, and 0.01 levels for df = 200. To summarize, at the 0.10
level, we will reject the null if t < −1.653 or t > 1.653; at the 0.05 level, we will reject
the null if t < −1.972 or t > 1.972; and at the 0.01 level, we will reject the null if
t < −2.601 or t > 2.601.

Solution to 4 : In calculating the test statistic, the first step is to calculate the pooled
estimate of variance:

s2
p = (n1 − 1)s21 + (n2 − 1)s2

2

n1 + n2 − 2
= (120 − 1)(4.598)2 + (120 − 1)(4.738)2

120 + 120 − 2

= 5,187.239512

238
= 21.795124

t = (X 1 − X 2) − (µ1 − µ2)(
s2
p

n1
+ s2

p

n2

)1/2 = (0.580 − 1.470) − 0(
21.795124

120
+ 21.795124

120

)1/2

= −0.89

0.602704
= −1.477

The t value of −1.477 is not significant at the 0.10 level, so it is also not significant at
the 0.05 and 0.01 levels. Therefore, we do not reject the null hypothesis at any of the
three levels.

In many cases of practical interest, we cannot assume that population variances are equal.
The following test statistic is often used in the investment literature in such cases:

• Test Statistic for a Test of the Difference between Two Population Means (Normally
Distributed Populations, Unequal and Unknown Population Variances). When we
can assume that the two populations are normally distributed but do not know the
population variances and cannot assume that they are equal, an approximate t-test based
on independent random samples is given by

t = (X 1 − X 2) − (µ1 − µ2)(
s21
n1

+ s2
2

n2

)1/2 (7-8)

where we use tables of the t-distribution using ‘‘modified’’ degrees of freedom computed
with the formula

df =

(
s21
n1

+ s2
2

n2

)2

(s2
1/n1)2

n1
+ (s2

2/n2)2

n2

(7-9)
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A practical tip is to compute the t-statistic before computing the degrees of freedom.
Whether or not the t-statistic is significant will sometimes be obvious.

EXAMPLE 7-5 Recovery Rates on Defaulted Bonds:
A Hypothesis Test

How are the required yields on risky corporate bonds determined? Two key factors are
the expected probability of default and the expected amount that will be recovered in
the event of default, or the recovery rate. Altman and Kishore (1996) documented for
the first time the average recovery rates on defaulted bonds stratified by industry and
seniority. For their study period, 1971 to 1995, Altman and Kishore discovered that
defaulted bonds of public utilities and chemicals, petroleum, and plastics manufacturers
experienced much higher recovery rates than did other industrial sectors. Could the
differences be explained by a greater preponderance of senior debt in the higher-recovery
sectors? They studied this by examining recovery rates stratified by seniority. We discuss
their results for senior secured bonds. With µ1 denoting the population mean recovery
rate for the senior secured bonds of utilities and µ2 denoting the population mean
recovery rate for the senior secured bonds of other sectors (non-utilities), the hypotheses
are H0: µ1 − µ2 = 0 versus Ha: µ1 − µ2 �= 0.

Table 7-4 excerpts from their findings.

TABLE 7-4 Recovery Rates by Seniority

Industry Group Ex-Utilities Sample

Industry Group/ Number of Average Standard Number of Average Standard
Seniority Observations Price∗ Deviation Observations Price∗ Deviation

Public Utilities
Senior Secured 21 $64.42 $14.03 64 $55.75 $25.17

Source: Altman and Kishore (1996), Table 5.
∗This is the average price at default and is a measure of recovery rate.

Following the researchers, assume that the populations (recovery rates of utilities,
recovery rates of non-utilities) are normally distributed and that the samples are
independent. Based on the data in the table, address the following:

1. Discuss why Altman and Kishore would choose a test based on Equation 7-8
rather than Equation 7-7.

2. Calculate the test statistic to test the null hypothesis given above.
3. What is the value of the test’s modified degrees of freedom?
4. Determine whether to reject the null hypothesis at the 0.10 level.

Solution to 1: The sample standard deviation for the recovery rate on the senior secured
bonds of utilities ($14.03) appears much smaller than the sample standard deviation of
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the comparable bonds for non-utilities ($25.17). Properly choosing not to assume equal
variances, Altman and Kishore employed the approximate t-test given in Equation 7-8.

Solution to 2: The test statistic is

t = (X 1 − X 2)(
s21
n1

+ s2
2

n2

)1/2

where

X 1 = sample mean recovery rate for utilities = 64.42
X 2 = sample mean recovery rate for non-utility sectors = 55.75
s2
1 = sample variance for utilities = 14.032 = 196.8409

s22 = sample variance for non-utilities = 25.172 = 633.5289
n1 = sample size of the utility sample = 21
n2 = sample size of the non-utility sample = 64

Thus, t = (64.42 − 55.75)/[(196.8409/21) + (633.5289/64)]1/2 = 8.67/(9.373376
+ 9.898889)1/2 = 8.67/4.390019 = 1.975. The calculated t-statistic is thus 1.975.

Solution to 3:

df =

(
s21
n1

+ s2
2

n2

)2

(s2
1/n1)2

n1
+ (s2

2/n2)2

n2

=

(
196.8409

21
+ 633.5289

64

)2

(196.8409/21)2

21
+ (633.5289/64)2

64

= 371.420208

5.714881
= 64.99 or 65 degrees of freedom

Solution to 4 : The closest entry to df = 65 in the tables for the t-distribution is
df = 60. For α = 0.10, we find tα/2 = 1.671. Thus, we reject the null if t < −1.671
or t > 1.671. Based on the computed value of 1.975, we reject the null hypothesis at
the 0.10 level. Some evidence exists that recovery rates differ between utilities and other
industries. Why? Altman and Kishore suggest that the differing nature of the companies’
assets and industry competitive structures may explain the different recovery rates.

3.3. Tests Concerning Mean Differences

In the previous section, we presented two t-tests for discerning differences between population
means. The tests were based on two samples. An assumption for those tests’ validity was that the
samples were independent—that is, unrelated to each other. When we want to conduct tests on
two means based on samples that we believe are dependent, the methods of this section apply.

The t-test in this section is based on data arranged in paired observations, and the test
itself is sometimes called a paired comparisons test. Paired observations are observations that
are dependent because they have something in common. A paired comparisons test is a statistical
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test for differences in dependent items. For example, we may be concerned with the dividend
policy of companies before and after a change in the tax law affecting the taxation of dividends.
We then have pairs of ‘‘before’’ and ‘‘after’’ observations for the same companies. We may
test a hypothesis about the mean of the differences (mean differences) that we observe across
companies. In other cases, the paired observations are not on the same units. For example, we
may be testing whether the mean returns earned by two investment strategies were equal over a
study period. The observations here are dependent in the sense that there is one observation for
each strategy in each month, and both observations depend on underlying market risk factors.
Because the returns to both strategies are likely to be related to some common risk factors,
such as the market return, the samples are dependent. By calculating a standard error based on
differences, the t-test presented below takes account of correlation between the observations.

Letting A represent ‘‘after’’ and B ‘‘before,’’ suppose we have observations for the random
variables XA and XB and that the samples are dependent. We arrange the observations in
pairs. Let di denote the difference between two paired observations. We can use the notation
di = xAi − xBi, where xAi and xBi are the ith pair of observations, i = 1, 2, . . . , n on the two
variables. Let µd stand for the population mean difference. We can formulate the following
hypotheses, where µd0 is a hypothesized value for the population mean difference:

1. H0: µd = µd0 versus Ha: µd �= µd0

2. H0: µd ≤ µd0 versus Ha: µd > µd0

3. H0: µd ≥ µd0 versus Ha: µd < µd0

In practice, the most commonly used value for µd0 is 0.
As usual, we are concerned with the case of normally distributed populations with

unknown population variances, and we will formulate a t-test. To calculate the t-statistic, we
first need to find the sample mean difference:

d = 1

n

n∑
i=1

di (7-10)

where n is the number of pairs of observations. The sample variance, denoted by s2d , is

s2d =

n∑
i=1

(di − d )2

n − 1
(7-11)

Taking the square root of this quantity, we have the sample standard deviation, sd , which then
allows us to calculate the standard error of the mean difference as follows:26

s d = sd√
n

(7-12)

• Test Statistic for a Test of Mean Differences (Normally Distributed Populations,
Unknown Population Variances). When we have data consisting of paired observations

26We can also use the following equivalent expression, which makes use of the correlation between the

two variables: s d =
√

s2A + s2B − 2r(XA, XB)sAsB, where s2A is the sample variance of XA, s2B is the sample

variance of XB, and r(XA, XB) is the sample correlation between XA and XB.
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from samples generated by normally distributed populations with unknown variances, a
t-test is based on

t = d − µd0

s d
(7-13)

with n − 1 degrees of freedom, where n is the number of paired observations, d is the
sample mean difference (as given by Equation 7-10), and s d is the standard error of d (as
given by Equation 7-12).

Table 7-5 reports the quarterly returns from 1997 to 2002 for two managed portfolios
specializing in precious metals. The two portfolios were closely similar in risk (as measured
by standard deviation of return and other measures) and had nearly identical expense ratios.
A major investment services company rated Portfolio B more highly than Portfolio A in
early 2003. In investigating the portfolios’ relative performance, suppose we want to test
the hypothesis that the mean quarterly return on Portfolio A equaled the mean quarterly
return on Portfolio B from 1997 to 2002. Because the two portfolios shared essentially the
same set of risk factors, their returns were not independent, so a paired comparisons test is
appropriate. Let µd stand for the population mean value of difference between the returns

TABLE 7-5 Quarterly Returns on Two Managed Portfolios: 1997–2002

Portfolio A Portfolio B Difference
Quarter (%) (%) (Portfolio A − Portfolio B)

4Q:2002 11.40 14.64 −3.24
3Q:2002 −2.17 0.44 −2.61
2Q:2002 10.72 19.51 −8.79
1Q:2002 38.91 50.40 −11.49
4Q:2001 4.36 1.01 3.35
3Q:2001 5.13 10.18 −5.05
2Q:2001 26.36 17.77 8.59
1Q:2001 −5.53 4.76 −10.29

4Q:2000 5.27 −5.36 10.63
3Q:2000 −7.82 −1.54 −6.28
2Q:2000 2.34 0.19 2.15
1Q:2000 −14.38 −12.07 −2.31
4Q:1999 −9.80 −9.98 0.18
3Q:1999 19.03 26.18 −7.15
2Q:1999 4.11 −2.39 6.50
1Q:1999 −4.12 −2.51 −1.61
4Q:1998 −0.53 −11.32 10.79
3Q:1998 5.06 0.46 4.60
2Q:1998 −14.01 −11.56 −2.45
1Q:1998 12.50 3.52 8.98
4Q:1997 −29.05 −22.45 −6.60
3Q:1997 3.60 0.10 3.50
2Q:1997 −7.97 −8.96 0.99
1Q:1997 −8.62 −0.66 −7.96
Mean 1.87 2.52 −0.65
Sample standard deviation of differences = 6.71
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on the two portfolios during this period. We test H0: µd = 0 versus Ha: µd �= 0 at a 0.05
significance level.

The sample mean difference, d , between Portfolio A and Portfolio B is −0.65 percent per
quarter. The standard error of the sample mean difference is s d = 6.71/

√
24 = 1.369673. The

calculated test statistic is t = (−0.65 − 0)/1.369673 = −0.475 with n − 1 = 24 − 1 = 23
degrees of freedom. At the 0.05 significance level, we reject the null if t > 2.069 or if
t < −2.069. Because −0.475 is not less than −2.069, we fail to reject the null. At the 0.10
significance level, we reject the null if t > 1.714 or if t < −1.714. Thus the difference in
mean quarterly returns is not significant at any conventional significance level.

The following example illustrates the application of this test to evaluate two competing
investment strategies.

EXAMPLE 7-6 The Dow-10 Investment Strategy

McQueen, Shields, and Thorley (1997) examined the popular investment strategy of
investing in the 10 stocks with the highest yields (rebalancing annually) in the Dow
Jones Industrial Average, compared with a buy-and-hold strategy in all 30 stocks of the
DJIA. Their study period was the 50 years from 1946 to 1995.

From Table 7-6 we have d = 3.06% and sd = 6.62%.

TABLE 7-6 Annual Return Summary for Dow-10 and
Dow-30 Portfolios: 1946 to 1995 (n = 50)

Strategy Mean Return Standard Deviation

Dow-10 16.77% 19.10%
Dow-30 13.71 16.64
Difference 3.06 6.62∗

Source: McQueen, Shields, and Thorley (1997), Table 1.
∗Sample standard deviation of differences.

1. Formulate null and alternative hypotheses consistent with a two-sided test that
the mean difference between the Dow-10 and Dow-30 strategies equals 0.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Identify the rejection point or points for the hypothesis tested in Part 1 at the

0.01 level of significance.
4. Determine whether the null hypothesis is rejected or not rejected at the 0.01 level

of significance. (Use the tables in the back of this book.)
5. Discuss the choice of a paired comparisons test.

Solution to 1: With µd as the underlying mean difference between the Dow-10 and
Dow-30 strategies, we have H0: µd = 0 versus Ha: µd �= 0.

Solution to 2: Because the population variance is unknown, the test statistic is a t-test
with 50 − 1 = 49 degrees of freedom.



Chapter 7 Hypothesis Testing 269

Solution to 3: In the table for the t-distribution, we look across the row for 49 degrees
of freedom to the 0.005 column, to find 2.68. We will reject the null if we find that
t > 2.68 or t < −2.68.

Solution to 4 :

t49 = 3.06

6.62/
√

50
= 3.06

0.936209
= 3.2685 or 3.27

Because 3.27 > 2.68, we reject the null hypothesis. The authors concluded that the
difference in mean returns was clearly statistically significant. However, after adjusting
for the Dow-10’s higher risk, extra transaction costs, and unfavorable tax treatment,
they found that the Dow-10 portfolio did not beat the Dow-30 economically.

Solution to 5: The Dow-30 includes the Dow-10. As a result, they are not inde-
pendent samples; in general, the correlation of returns on the Dow-10 and Dow-30
should be positive. Because the samples are dependent, a paired comparisons test was
appropriate.

4. HYPOTHESIS TESTS CONCERNING VARIANCE

Because variance and standard deviation are widely used quantitative measures of risk in
investments, analysts should be familiar with hypothesis tests concerning variance. The tests
discussed in this section make regular appearances in investment literature. We examine two
types: tests concerning the value of a single population variance and tests concerning the
differences between two population variances.

4.1. Tests Concerning a Single Variance

In this section, we discuss testing hypotheses about the value of the variance, σ2, of a single
population. We use σ2

0 to denote the hypothesized value of σ2. We can formulate hypotheses
as follows:

1. H0: σ2 = σ2
0 versus Ha: σ2 �= σ2

0 (a ‘‘not equal to’’ alternative hypothesis)

2. H0: σ2 ≤ σ2
0 versus Ha: σ2 > σ2

0 (a ‘‘greater than’’ alternative hypothesis)

3. H0: σ2 ≥ σ2
0 versus Ha: σ2 < σ2

0 (a ‘‘less than’’ alternative hypothesis)

In tests concerning the variance of a single normally distributed population, we make use of
a chi-square test statistic, denoted χ2. The chi-square distribution, unlike the normal and
t-distributions, is asymmetrical. Like the t-distribution, the chi-square distribution is a family
of distributions. A different distribution exists for each possible value of degrees of freedom,
n − 1 (n is sample size). Unlike the t-distribution, the chi-square distribution is bounded
below by 0; χ2 does not take on negative values.
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• Test Statistic for Tests Concerning the Value of a Population Variance (Normal Pop-
ulation). If we have n independent observations from a normally distributed population,
the appropriate test statistic is

χ2 = (n − 1)s2

σ2
0

(7-14)

with n − 1 degrees of freedom. In the numerator of the expression is the sample variance,
calculated as

s2 =

n∑
i=1

(Xi − X )2

n − 1
(7-15)

In contrast to the t-test, for example, the chi-square test is sensitive to violations of its
assumptions. If the sample is not actually random or if it does not come from a normally
distributed population, inferences based on a chi-square test are likely to be faulty.

If we choose a level of significance, α, the rejection points for the three kinds of hypotheses
are as follows:

• Rejection Points for Hypothesis Tests on the Population Variance.

1. ‘‘Not equal to’’ Ha: Reject the null hypothesis if the test statistic is greater than the
upper α/2 point (denoted χ2

α/2) or less than the lower α/2 point (denoted χ2
1−α/2) of

the chi-square distribution with df = n − 1.27

2. ‘‘Greater than’’ Ha: Reject the null hypothesis if the test statistic is greater than the
upper α point of the chi-square distribution with df = n − 1.

3. ‘‘Less than’’ Ha: Reject the null hypothesis if the test statistic is less than the lower α

point of the chi-square distribution with df = n − 1.

EXAMPLE 7-7 Risk and Return Characteristics of an
Equity Mutual Fund (2)

You continue with your analysis of Sendar Equity Fund, a midcap growth fund that
has been in existence for only 24 months. Recall that during this period, Sendar Equity
achieved a sample standard deviation of monthly returns of 3.60 percent. You now want
to test a claim that the particular investment disciplines followed by Sendar result in a
standard deviation of monthly returns of less than 4 percent.

1. Formulate null and alternative hypotheses consistent with the verbal description
of the research goal.

27Just as with other hypothesis tests, the chi-square test can be given a confidence interval interpretation.
Unlike confidence intervals based on z- or t-statistics, however, chi-square confidence intervals for
variance are asymmetric. A two-sided confidence interval for population variance, based on a sample of
size n, has a lower limit L = (n − 1)s2/χ2

α/2 and an upper limit U = (n − 1)s2/χ2
1−α/2. Under the null

hypothesis, the hypothesized value of the population variance should fall within these two limits.
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2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Identify the rejection point or points for the hypothesis tested in Part 1 at the

0.05 level of significance.
4. Determine whether the null hypothesis is rejected or not rejected at the 0.05 level

of significance. (Use the tables in the back of this book.)

Solution to 1: We have a ‘‘less than’’ alternative hypothesis, where σ is the underlying
standard deviation of return on Sendar Equity Fund. Being careful to square standard
deviation to obtain a test in terms of variance, the hypotheses are H0: σ2 ≥ 16.0 versus
Ha: σ2 < 16.0.

Solution to 2: The test statistic is chi-square with 24 − 1 = 23 degrees of freedom.

Solution to 3: The lower 0.05 rejection point is found on the line for df = 23, under
the 0.95 column (95 percent probability in the right tail, to give 0.95 probability of
getting a test statistic this large or larger). The rejection point is 13.091. We will reject
the null if we find that chi-square is less than 13.091.

Solution to 4 :

χ2 = (n − 1)s2

σ2
0

= 23 × 3.602

42
= 298.08

16
= 18.63

Because 18.63 (the calculated value of the test statistic) is not less than 13.091, we do
not reject the null hypothesis. We cannot conclude that Sendar’s investment disciplines
result in a standard deviation of monthly returns of less than 4 percent.

4.2. Tests Concerning the Equality (Inequality) of Two Variances

Suppose we have a hypothesis about the relative values of the variances of two normally
distributed populations with means µ1 and µ2 and variances σ2

1 and σ2
2. We can formulate all

hypotheses as one of the choices below:

1. H0: σ2
1 = σ2

2 versus Ha: σ2
1 �= σ2

2

2. H0: σ2
1 ≤ σ2

2 versus Ha: σ2
1 > σ2

2

3. H0: σ2
1 ≥ σ2

2 versus Ha: σ2
1 < σ2

2

Note that at the point of equality, the null hypothesis σ2
1 = σ2

2 implies that the ratio of
population variances equals 1: σ2

1/σ
2
2 = 1. Given independent random samples from these

populations, tests related to these hypotheses are based on an F -test, which is the ratio
of sample variances. Suppose we use n1 observations in calculating the sample variance s21
and n2 observations in calculating the sample variance s22. Tests concerning the difference
between the variances of two populations make use of the F -distribution. Like the chi-square
distribution, the F -distribution is a family of asymmetrical distributions bounded from below
by 0. Each F -distribution is defined by two values of degrees of freedom, called the numerator
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and denominator degrees of freedom.28 The F -test, like the chi-square test, is not robust to
violations of its assumptions.

• Test Statistic for Tests Concerning Differences between the Variances of Two Pop-
ulations (Normally Distributed Populations). Suppose we have two samples, the first
with n1 observations and sample variance s21, the second with n2 observations and sample
variance s22. The samples are random, independent of each other, and generated by normally
distributed populations. A test concerning differences between the variances of the two
populations is based on the ratio of sample variances

F = s2
1

s2
2

(7-16)

with df1 = n1 − 1 numerator degrees of freedom and df2 = n2 − 1 denominator degrees
of freedom. Note that df1 and df2 are the divisors used in calculating s21 and s2

2, respectively.

A convention, or usual practice, is to use the larger of the two ratios s21/s22 or s2
2/s21 as

the actual test statistic. When we follow this convention, the value of the test statistic is
always greater than or equal to 1; tables of critical values of F then need include only values
greater than or equal to 1. Under this convention, the rejection point for any formulation of
hypotheses is a single value in the right-hand side of the relevant F -distribution. Note that the
labeling of populations as ‘‘1’’ or ‘‘2’’ is arbitrary in any case.

• Rejection Points for Hypothesis Tests on the Relative Values of Two Population
Variances. Follow the convention of using the larger of the two ratios s21/s22 and s22/s21 and
consider two cases:

1. A ‘‘not equal to’’ alternative hypothesis: Reject the null hypothesis at the α significance
level if the test statistic is greater than the upper α/2 point of the F -distribution with
the specified numerator and denominator degrees of freedom.

2. A ‘‘greater than’’ or ‘‘less than’’ alternative hypothesis: Reject the null hypothesis at the α

significance level if the test statistic is greater than the upper α point of the F -distribution
with the specified number of numerator and denominator degrees of freedom.

Thus, if we conduct a two-sided test at the α = 0.01 level of significance, we need to find
the rejection point in F -tables at the α/2 = 0.01/2 = 0.005 significance level for a one-sided
test (Case 1). But a one-sided test at 0.01 uses rejection points in F -tables for α = 0.01 (Case
2). As an example, suppose we are conducting a two-sided test at the 0.05 significance level.
We calculate a value of F of 2.77 with 12 numerator and 19 denominator degrees of freedom.
Using the F -tables for 0.05/2 = 0.025 in the back of the book, we find that the rejection
point is 2.72. Because the value 2.77 is greater than 2.72, we reject the null hypothesis at the
0.05 significance level.

If the convention stated above is not followed and we are given a calculated value of
F less than 1, can we still use F -tables? The answer is yes; using a reciprocal property of
F -statistics, we can calculate the needed value. The easiest way to present this property is to

28The relationship between the chi-square and F -distributions is as follows: If χ2
1 is one chi-square

random variable with m degrees of freedom and χ2
2 is another chi-square random variable with n degrees

of freedom, then F = (χ2
1/m)/(χ2

2/n) follows an F -distribution with m numerator and n denominator
degrees of freedom.
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show a calculation. Suppose our chosen level of significance is 0.05 for a two-tailed test and we
have a value of F of 0.11, with 7 numerator degrees of freedom and 9 denominator degrees of
freedom. We take the reciprocal, 1/0.11 = 9.09. Then we look up this value in the F -tables
for 0.025 (because it is a two-tailed test) with degrees of freedom reversed: F for 9 numerator
and 7 denominator degrees of freedom. In other words, F9,7 = 1/F7,9 and 9.09 exceeds the
critical value of 4.82, so F7,9 = 0.11 is significant at the 0.05 level.

EXAMPLE 7-8 Volatility and the Crash of 1987

You are investigating whether the population variance of returns on the S&P 500
changed subsequent to the October 1987 market crash. You gather the data in Table
7-7 for 120 months of returns before October 1987 and 120 months of returns after
October 1987. You have specified a 0.01 level of significance.

TABLE 7-7 S&P 500 Returns and Variance before and after
October 1987

Mean Monthly Variance
n Return (%) of Returns

Before October 1987 120 1.498 18.776
After October 1987 120 1.392 13.097

1. Formulate null and alternative hypotheses consistent with the verbal description
of the research goal.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Determine whether or not to reject the null hypothesis at the 0.01 level of

significance. (Use the F -tables in the back of this book.)

Solution to 1: We have a ‘‘not equal to’’ alternative hypothesis:

H0: σ2
Before = σ2

After versus Ha: σ2
Before �= σ2

After

Solution to 2: To test a null hypothesis of the equality of two variances, we use F = s21/s22
with 120 − 1 = 119 numerator and denominator degrees of freedom.

Solution to 3: The ‘‘before’’ sample variance is larger, so following a convention
for calculating F -statistics, the ‘‘before’’ sample variance goes in the numerator: F =
18.776/13.097 = 1.434. Because this is a two-tailed test, we use F -tables for the 0.005
level (= 0.01/2) to give a 0.01 significance level. In the tables in the back of the book,
the closest value to 119 degrees of freedom is 120 degrees of freedom. At the 0.01 level,
the rejection point is 1.61. Because 1.434 is less than the critical value 1.61, we cannot
reject the null hypothesis that the population variance of returns is the same in the pre-
and postcrash periods.
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EXAMPLE 7-9 The Volatility of Derivatives Expiration Days

In the 1980s concern arose in the United States about the triple occurrence of stock
option, index option, and futures expirations on the same day during four months of
the year. Such days were known as ‘‘triple witching days.’’ Table 7-8 presents evidence
on the daily standard deviation of return for normal days and options/futures expiration
days during the period 1 July 1983 to 24 October 1986. The tabled data refer to options
and futures on the S&P 100, a subset of the S&P 500 that includes 100 of the most
liquid S&P 500 stocks on which there are traded options.

TABLE 7-8 Standard Deviation of Return: 1 July 1983 to
24 October 1986

Type of Day n Standard Deviation (%)

Normal trading 115 0.786
Options/futures expiration 12 1.178

Source: Based on Edwards (1988), Table I.

1. Formulate null and alternative hypotheses consistent with the belief that triple
witching days displayed above-normal volatility.

2. Identify the test statistic for conducting a test of the hypotheses in Part 1.
3. Determine whether or not to reject the null hypothesis at the 0.05 level of

significance. (Use the F -tables in the back of this book.)

Solution to 1: We have a ‘‘greater than’’ alternative hypothesis:

H0: σ2
Expirations ≤ σ2

Normal versus Ha: σ2
Expirations > σ2

Normal

Solution to 2: Let σ2
1 represent the variance of triple witching days, and σ2

2 represent the
variance of normal days, following the convention for the selection of the numerator
and the denominator stated earlier. To test the null hypothesis, we use F = s21/s22 with
12 − 1 = 11 numerator and 115 − 1 = 114 denominator degrees of freedom.

Solution to 3: F = (1.178)2/(0.786)2 = 1.388/0.618 = 2.25. Because this is a one-
tailed test at the 0.05 significance level, we use F -tables for the 0.05 level directly.
In the tables in the back of the book, the closest value to 114 degrees of freedom is
120 degrees of freedom. At the 0.05 level, the rejection point is 1.87. Because 2.25 is
greater than 1.87, we reject the null hypothesis. It appears that triple witching days had
above-normal volatility.
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5. OTHER ISSUES: NONPARAMETRIC INFERENCE

The hypothesis-testing procedures we have discussed to this point have two characteristics in
common. First, they are concerned with parameters, and second, their validity depends on a
definite set of assumptions. Mean and variance, for example, are two parameters, or defining
quantities, of a normal distribution. The tests also make specific assumptions—in particular,
assumptions about the distribution of the population producing the sample. Any test or
procedure with either of the above two characteristics is a parametric test or procedure. In
some cases, however, we are concerned about quantities other than parameters of distributions.
In other cases, we may believe that the assumptions of parametric tests do not hold for the
particular data we have. In such cases, a nonparametric test or procedure can be useful. A
nonparametric test is a test that is not concerned with a parameter, or a test that makes
minimal assumptions about the population from which the sample comes.29

We primarily use nonparametric procedures in three situations: when the data we use do
not meet distributional assumptions, when the data are given in ranks, or when the hypothesis
we are addressing does not concern a parameter.

The first situation occurs when the data available for analysis suggest that the distributional
assumptions of the parametric test are not satisfied. For example, we may want to test a
hypothesis concerning the mean of a population but believe that neither a t-test nor a z-test
is appropriate because the sample is small and may come from a markedly nonnormally
distributed population. In that case, we may use a nonparametric test. The nonparametric
test will frequently involve the conversion of observations (or a function of observations)
into ranks according to magnitude, and sometimes it will involve working with only ‘‘greater
than’’ or ‘‘less than’’ relationships (using the signs + and − to denote those relationships).
Characteristically, one must refer to specialized statistical tables to determine the rejection
points of the test statistic, at least for small samples.30 Such tests, then, typically interpret
the null hypothesis as a thesis about ranks or signs. In Table 7-9, we give examples of
nonparametric alternatives to the parametric tests we have discussed in this chapter.31 The
reader should consult a comprehensive business statistics textbook for an introduction to such
tests and a specialist textbook for details.32

We pointed out that when we use nonparametric tests, we often convert the original data
into ranks. In some cases, the original data are already ranked. In those cases, we also use
nonparametric tests because parametric tests generally require a stronger measurement scale
than ranks. For example, if our data were the rankings of investment managers, hypotheses
concerning those rankings would be tested using nonparametric procedures. Ranked data also
appear in many other finance contexts. For example, Heaney, Koga, Oliver, and Tran (1999)
studied the relationship between the size of Japanese companies (as measured by revenue)
and their use of derivatives. The companies studied used derivatives to hedge one or more

29Some writers make a distinction between ‘‘nonparametric’’ and ‘‘distribution-free’’ tests. They refer
to procedures that do not concern the parameters of a distribution as nonparametric and to procedures
that make minimal assumptions about the underlying distribution as distribution free. We follow a
commonly accepted, inclusive usage of the term nonparametric.
30For large samples, there is often a transformation of the test statistic that permits the use of tables for
the standard normal or t-distribution.
31In some cases, there are several nonparametric alternatives to a parametric test.
32See, for example, Hettmansperger and McKean (1998) or Siegel (1956).
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TABLE 7-9 Nonparametric Alternatives to Parametric Tests

Parametric Nonparametric

Tests concerning a single mean t-Test Wilcoxon signed-rank test
z-Test

Tests concerning differences t-Test Mann–Whitney U test
between means Approximate t-test

Tests concerning mean differences t-Test Wilcoxon signed-rank test
(paired comparisons tests) Sign test

of five types of risk exposure: interest rate risk, foreign exchange risk, commodity price risk,
marketable security price risk, and credit risk. The researchers gave a ‘‘perceived scope of risk
exposure’’ score to each company that was equal to the number of types of risk exposure that
the company reported hedging. Although revenue is measured on a strong scale (a ratio scale),
scope of risk exposure is measured on only an ordinal scale.33 The researchers thus employed
nonparametric statistics to explore the relationship between derivatives usage and size.

A third situation in which we use nonparametric procedures occurs when our question
does not concern a parameter. For example, if the question concerns whether a sample is
random or not, we use the appropriate nonparametric test (a so-called runs test). Another type
of question nonparametrics can address is whether a sample came from a population following
a particular probability distribution (using the Kolmogorov–Smirnov test, for example).

We end this chapter by describing in some detail a nonparametric statistic that has often
been used in investment research, the Spearman rank correlation.

5.1. Tests Concerning Correlation: The Spearman Rank
Correlation Coefficient
In many contexts in investments, we want to assess the strength of the linear relationship
between two variables—the correlation between them. In a majority of cases, we use the
correlation coefficient described in the chapters on probability concepts and on correlation
and regression. However, the t-test of the hypothesis that two variables are uncorrelated, based
on the correlation coefficient, relies on fairly stringent assumptions.34 When we believe that
the population under consideration meaningfully departs from those assumptions, we can
employ a test based on the Spearman rank correlation coefficient, rS . The Spearman rank
correlation coefficient is essentially equivalent to the usual correlation coefficient calculated
on the ranks of the two variables (say, X and Y ) within their respective samples. Thus it is a
number between −1 and +1, where −1 (+1) denotes a perfect inverse (positive) straight-line

33We discussed scales of measurement in the chapter on statistical concepts and market returns.
34The t-test is described in the chapter on correlation and regression. The assumption of the test is that
each observation (x, y) on the two variables (X , Y ) is a random observation from a bivariate normal
distribution. Informally, in a bivariate or two-variable normal distribution, each individual variable is
normally distributed and their joint relationship is completely described by the correlation, ρ, between
them. For more details, see, for example, Daniel and Terrell (1986).



Chapter 7 Hypothesis Testing 277

relationship between the variables and 0 represents the absence of any straight-line relationship
(no correlation). The calculation of rS requires the following steps:

1. Rank the observations on X from largest to smallest. Assign the number 1 to the
observation with the largest value, the number 2 to the observation with second-largest
value, and so on. In case of ties, we assign to each tied observation the average of the
ranks that they jointly occupy. For example, if the third- and fourth-largest values are
tied, we assign both observations the rank of 3.5 (the average of 3 and 4). Perform the
same procedure for the observations on Y .

2. Calculate the difference, di, between the ranks of each pair of observations on X and Y .
3. Then, with n the sample size, the Spearman rank correlation is given by35

rS = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)
(7-17)

Suppose an investor wants to invest in a U.S. large-cap growth mutual fund. He has narrowed
the field to 10 funds. In examining the funds, a question arises as to whether the funds’
reported three-year Sharpe ratios are related to their most recent reported expense ratios.
Because the assumptions of the t-test on the correlation coefficient may not be met, it is
appropriate to conduct a test on the rank correlation coefficient.36 Table 7-10 presents the
calculation of rS .37

The first two rows contain the original data. The row of X ranks converts the Sharpe
ratios to ranks; the row of Y ranks converts the expense ratios to ranks. We want to test
H0: ρ = 0 versus Ha: ρ �= 0, where ρ is defined in this context as the population correlation
of X and Y after ranking. For small samples, the rejection points for the test based on rS must
be looked up in Table 7-11. For large samples (say, n > 30), we can conduct a t-test using

t = (n − 2)1/2rs

(1 − r2
s )1/2

(7-18)

based on n − 2 degrees of freedom.
In the example at hand, a two-tailed test with a 0.05 significance level, Table 7-11 gives

the upper-tail rejection point for n = 10 as 0.6364 (we use the 0.025 column for a two-tailed
test at a 0.05 significance level). Accordingly, we reject the null hypothesis if rS is less than
−0.6364 or greater than 0.6364. With rS equal to 0.2545, we do not reject the null hypothesis.

In the mutual fund example, we converted observations on two variables into ranks. If
one or both of the original variables were in the form of ranks, we would need to use rS to
investigate correlation.

35Calculating the usual correlation coefficient on the ranks would yield approximately the same result as
Equation 7-17.
36The expense ratio (the ratio of a fund’s operating expenses to average net assets) is bounded both from
below (by zero) and from above. The Sharpe ratio is also observed within a limited range, in practice.
Thus neither variable can be normally distributed, and hence jointly they cannot follow a bivariate
normal distribution. In short, the assumptions of a t-test are not met.
37The data for the table are based on statistics reported in Standard & Poor’s Mutual Fund Reports for
actual large-cap growth funds for the three-year period ending in the first quarter of 2003. The negative
Sharpe ratios reflect in part declining U.S. equity markets during this period.



278 Quantitative Investment Analysis

TABLE 7-10 The Spearman Rank Correlation: An Example

Mutual Fund

1 2 3 4 5 6 7 8 9 10

Sharpe
Ratio (X ) −1.08 −0.96 −1.13 −1.16 −0.91 −1.08 −1.18 −1.00 −1.06 −1.00

Expense
Ratio (Y ) 1.34 0.92 1.02 1.45 1.35 0.50 1.00 1.50 1.45 1.50

X Rank 6.5 2 8 9 1 6.5 10 3.5 5 3.5
Y Rank 6 9 7 3.5 5 10 8 1.5 3.5 1.5
di 0.5 −7 1 5.5 −4 −3.5 2 2 1. 5 2
d2

i 0.25 49 1 30.25 16 12.25 4 4 2.25 4

rS = 1 − 6�d2
i

n(n2 − 1)
= 1 − 6(123)

10(100 − 1)
= 0.2545

TABLE 7-11 Spearman Rank Correlation
Distribution Approximate Upper-Tail
Rejection Points

Sample size: n α = 0.05 α = 0.025 α = 0.01

5 0.8000 0.9000 0.9000
6 0.7714 0.8286 0.8857
7 0.6786 0.7450 0.8571
8 0.6190 0.7143 0.8095
9 0.5833 0.6833 0.7667

10 0.5515 0.6364 0.7333
11 0.5273 0.6091 0.7000
12 0.4965 0.5804 0.6713
13 0.4780 0.5549 0.6429
14 0.4593 0.5341 0.6220
15 0.4429 0.5179 0.6000
16 0.4265 0.5000 0.5824
17 0.4118 0.4853 0.5637
18 0.3994 0.4716 0.5480
19 0.3895 0.4579 0.5333
20 0.3789 0.4451 0.5203
21 0.3688 0.4351 0.5078
22 0.3597 0.4241 0.4963
23 0.3518 0.4150 0.4852
24 0.3435 0.4061 0.4748
25 0.3362 0.3977 0.4654
26 0.3299 0.3894 0.4564
27 0.3236 0.3822 0.4481
28 0.3175 0.3749 0.4401
29 0.3113 0.3685 0.4320
30 0.3059 0.3620 0.4251

Note: The corresponding lower tail critical value
is obtained by changing the sign of the upper-tail
critical value.
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5.2. Nonparametric Inference: Summary
Nonparametric statistical procedures extend the reach of inference because they make few
assumptions, can be used on ranked data, and may address questions unrelated to parameters.
Quite frequently, nonparametric tests are reported alongside parametric tests. The reader
can then assess how sensitive the statistical conclusion is to the assumptions underlying the
parametric test. However, if the assumptions of the parametric test are met, the parametric
test (where available) is generally preferred to the nonparametric test because the parametric
test usually permits us to draw sharper conclusions.38 For complete coverage of all the
nonparametric procedures that may be encountered in the finance and investment literature,
it is best to consult a specialist textbook.39

38To use a concept introduced in an earlier section, the parametric test is often more powerful.
39See, for example, Hettmansperger and McKean (1998) or Siegel (1956).





CHAPTER 8
CORRELATION AND

REGRESSION

1. INTRODUCTION

As a financial analyst, you will often need to examine the relationship between two or more
financial variables. For example, you might want to know whether returns to different stock
market indexes are related and, if so, in what way. Or you might hypothesize that the spread
between a company’s return on invested capital and its cost of capital helps to explain the
company’s value in the marketplace. Correlation and regression analysis are tools for examining
these issues.

This chapter is organized as follows. In Section 2, we present correlation analysis, a basic
tool in measuring how two variables vary in relation to each other. Topics covered include the
calculation, interpretation, uses, limitations, and statistical testing of correlations. Section 3
introduces basic concepts in regression analysis, a powerful technique for examining the ability
of one or more variables (independent variables) to explain or predict another variable (the
dependent variable).

2. CORRELATION ANALYSIS

We have many ways to examine how two sets of data are related. Two of the most useful
methods are scatter plots and correlation analysis. We examine scatter plots first.

2.1. Scatter Plots

A scatter plot is a graph that shows the relationship between the observations for two data
series in two dimensions. Suppose, for example, that we want to graph the relationship
between long-term money growth and long-term inflation in six industrialized countries to
see how strongly the two variables are related. Table 8-1 shows the average annual growth
rate in the money supply and the average annual inflation rate from 1970 to 2001 for the six
countries.

To translate the data in Table 8-1 into a scatter plot, we use the data for each country
to mark a point on a graph. For each point, the x-axis coordinate is the country’s annual
average money supply growth from 1970–2001 and the y-axis coordinate is the country’s
annual average inflation rate from 1970–2001. Figure 8-1 shows a scatter plot of the data in
Table 8-1.

281
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TABLE 8-1 Annual Money Supply Growth Rate and
Inflation Rate by Country, 1970–2001

Money Supply
Country Growth Rate Inflation Rate

Australia 11.66% 6.76%
Canada 9.15% 5.19%
New Zealand 10.60% 8.15%
Switzerland 5.75% 3.39%
United Kingdom 12.58% 7.58%
United States 6.34% 5.09%
Average 9.35% 6.03%

Source: International Monetary Fund.

Inflation (%)
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FIGURE 8-1 Scatter Plot of Annual Money Supply Growth Rate and Inflation Rate by Country:
1970–2001
Source: International Monetary Fund.

Note that each observation in the scatter plot is represented as a point, and the points are
not connected. The scatter plot does not show which observation comes from which country;
it shows only the actual observations of both data series plotted as pairs. For example, the
rightmost point shows the data for the United Kingdom. The data plotted in Figure 8-1 show
a fairly strong linear relationship with a positive slope. Next we examine how to quantify this
linear relationship.

2.2. Correlation Analysis
In contrast to a scatter plot, which graphically depicts the relationship between two data series,
correlation analysis expresses this same relationship using a single number. The correlation
coefficient is a measure of how closely related two data series are. In particular, the correlation
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FIGURE 8-2 Variables with a Correlation of 1

coefficient measures the direction and extent of linear association between two variables.
A correlation coefficient can have a maximum value of 1 and a minimum value of −1. A
correlation coefficient greater than 0 indicates a positive linear association between the two
variables: When one variable increases (or decreases), the other also tends to increase (or
decrease). A correlation coefficient less than 0 indicates a negative linear association between
the two variables: When one increases (or decreases), the other tends to decrease (or increase).
A correlation coefficient of 0 indicates no linear relation between the two variables.1 Figure 8-2
shows the scatter plot of two variables with a correlation of 1.

Note that all the points on the scatter plot in Figure 8-2 lie on a straight line with a
positive slope. Whenever variable A increases by one unit, variable B increases by half a unit.
Because all of the points in the graph lie on a straight line, an increase of one unit in A is
associated with exactly the same half-unit increase in B, regardless of the level of A. Even if
the slope of the line in the figure were different (but positive), the correlation between the two
variables would be 1 as long as all the points lie on that straight line.

Figure 8-3 shows a scatter plot for two variables with a correlation coefficient of −1.
Once again, the plotted observations fall on a straight line. In this graph, however, the line has
a negative slope. As A increases by one unit, B decreases by half a unit, regardless of the initial
value of A.

Figure 8-4 shows a scatter plot of two variables with a correlation of 0; they have no linear
relation. This graph shows that the value of A tells us absolutely nothing about the value of B.

2.3. Calculating and Interpreting the Correlation Coefficient

To define and calculate the correlation coefficient, we need another measure of linear
association: covariance. In the chapter on probability concepts, we defined covariance as the

1Later, we show that variables with a correlation of 0 can have a strong nonlinear relation.
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FIGURE 8-3 Variables with a Correlation of −1

expected value of the product of the deviations of two random variables from their respective
population means. That was the definition of population covariance, which we would also use
in a forward-looking sense. To study historical or sample correlations, we need to use sample
covariance. The sample covariance of X and Y , for a sample of size n, is

Cov (X , Y ) =
n∑

i=1

(Xi − X )(Yi − Y )/(n − 1) (8-1)

The sample covariance is the average value of the product of the deviations of observations on
two random variables from their sample means.2 If the random variables are returns, the unit
of covariance would be returns squared.

The sample correlation coefficient is much easier to explain than the sample covariance. To
understand the sample correlation coefficient, we need the expression for the sample standard
deviation of a random variable X . We need to calculate the sample variance of X to obtain its
sample standard deviation. The variance of a random variable is simply the covariance of the
random variable with itself. The expression for the sample variance of X , s2X , is

s2X =
n∑

i=1

(Xi − X )2/(n − 1)

The sample standard deviation is the positive square root of the sample variance:

sX =
√

s2
X

2The use of n − 1 in the denominator is a technical point; it ensures that the sample covariance is an
unbiased estimate of population covariance.
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FIGURE 8-4 Variables with a Correlation of 0

Both the sample variance and the sample standard deviation are measures of the dispersion of
observations about the sample mean. Standard deviation uses the same units as the random
variable; variance is measured in the units squared.

The formula for computing the sample correlation coefficient is

r = Cov (X , Y )

sX sY
(8-2)

The correlation coefficient is the covariance of two variables (X and Y ) divided by the product
of their sample standard deviations (sX and sY ). Like covariance, the correlation coefficient is a
measure of linear association. The correlation coefficient, however, has the advantage of being
a simple number, with no unit of measurement attached. It has no units because it results
from dividing the covariance by the product of the standard deviations. Because we will be
using sample variance, standard deviation, and covariance in this chapter, we will repeat the
calculations for these statistics.
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TABLE 8-2 Sample Covariance and Sample Standard Deviations: Annual Money Supply Growth
Rate and Inflation Rate by Country, 1970–2001

Money Supply Inflation Squared Squared
Growth Rate Rate Cross-Product Deviations Deviations

Country Xi Yi (Xi − X )(Yi − Y ) (Xi − X )2 (Yi − Y )2

Australia 0.1166 0.0676 0.000169 0.000534 0.000053
Canada 0.0915 0.0519 0.000017 0.000004 0.000071
New Zealand 0.1060 0.0815 0.000265 0.000156 0.000449
Switzerland 0.0575 0.0339 0.000950 0.001296 0.000697
United Kingdom 0.1258 0.0758 0.000501 0.001043 0.000240
United States 0.0634 0.0509 0.000283 0.000906 0.000088

Sum 0.5608 0.3616 0.002185 0.003939 0.001598
Average 0.0935 0.0603
Covariance 0.000437
Variance 0.000788 0.000320
Standard deviation 0.028071 0.017889

Source: International Monetary Fund.
Notes:
1. Divide the cross-product sum by n − 1 (with n = 6) to obtain the covariance of X and Y .
2. Divide the squared deviations sums by n − 1 (with n = 6) to obtain the variances of X and Y .

Table 8-2 shows how to compute the various components of the correlation equation
(Equation 8-2) from the data in Table 8-1.3 The individual observations on countries’ annual
average money supply growth from 1970–2001 are denoted Xi, and individual observations
on countries’ annual average inflation rate from 1970–2001 are denoted Yi. The remaining
columns show the calculations for the inputs to correlation: the sample covariance and the
sample standard deviations.

Using the data shown in Table 8-2, we can compute the sample correlation coefficient
for these two variables as follows:

r = Cov (X , Y )

sX sY
= 0.000437

(0.028071)(0.017889)
= 0.8702

The correlation coefficient of approximately 0.87 indicates a strong linear association between
long-term money supply growth and long-term inflation for the countries in the sample. The
correlation coefficient captures this strong association numerically, whereas the scatter plot in
Figure 8-1 shows the information graphically.

What assumptions are necessary to compute the correlation coefficient? Correlation
coefficients can be computed validly if the means and variances of X and Y , as well as
the covariance of X and Y , are finite and constant. Later, we will show that when these

3We have not used full precision in the table’s calculations. We used the average value of the money
supply growth rate of 0.5608/6 = 0.0935, rounded to four decimal places, in the cross-product and
squared deviation calculations, and similarly, we used the mean inflation rate as rounded to 0.0603
in those calculations. We computed standard deviation as the square root of variance rounded to six
decimal places, as shown in the table. Had we used full precision in all calculations, some of the table’s
entries would be different and the computed value of correlation would be 0.8709 rather than 0.8702,
not materially affecting our conclusions.
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assumptions are not true, correlations between two different variables can depend greatly on
the sample that is used.

2.4. Limitations of Correlation Analysis

Correlation measures the linear association between two variables, but it may not always
be reliable. Two variables can have a strong nonlinear relation and still have a very low
correlation. For example, the relation B = (A − 4)2 is a nonlinear relation contrasted to the
linear relation B = 2A − 4. The nonlinear relation between variables A and B is shown in
Figure 8-5. Below a level of 4 for A, variable B decreases with increasing values of A. When A

Variable B

Variable A

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8

FIGURE 8-5 Variables with a Strong Non-Linear Association
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FIGURE 8-6 U.S. Inflation and Stock Returns in the 1990s
Source: Ibbotson Associates.

is 4 or greater, however, B increases whenever A increases. Even though these two variables are
perfectly associated, the correlation between them is 0.4

Correlation also may be an unreliable measure when outliers are present in one or both
of the series. Outliers are small numbers of observations at either extreme (small or large) of a
sample. Figure 8-6 shows a scatter plot of the monthly returns to the Standard & Poor’s 500
Index and the monthly inflation rate in the United States during the 1990s (January 1990
through December 1999).

In the scatter plot in Figure 8-6, most of the data lie clustered together with little discernible
relation between the two variables. In three cases, however (the three circled observations),
inflation was greater than 0.8 percent in a particular month and stock returns were strongly
negative. These observations are outliers. If we compute the correlation coefficient for the
entire data sample, that correlation is −0.2997. If we eliminate the three outliers, however,
the correlation is −0.1347.

The correlation in Figure 8-6 is quite sensitive to excluding only three observations.
Does it make sense to exclude those observations? Are they noise or news? One possible
partial explanation of Figure 8-6 is that during the 1990s, whenever inflation was very high
during a month, market participants became concerned that the Federal Reserve would raise
interest rates, which would cause the value of stocks to decline. This story offers one plausible
explanation for how investors reacted to large inflation announcements. Consequently, the
outliers may provide important information about market reactions during this period.
Therefore, the correlation that includes the outliers may make more sense than the correlation
that excludes them.

4The perfect association is the quadratic relationship B = (A − 4)2.
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As a general rule, we must determine whether a computed sample correlation changes
greatly by removing a few outliers. But we must also use judgment to determine whether
those outliers contain information about the two variables’ relationship (and should thus
be included in the correlation analysis) or contain no information (and should thus be
excluded).

Keep in mind that correlation does not imply causation. Even if two variables are
highly correlated, one does not necessarily cause the other in the sense that certain values
of one variable bring about the occurrence of certain values of the other. Furthermore,
correlations can be spurious in the sense of misleadingly pointing towards associations between
variables.

The term spurious correlation has been used to refer to (1) correlation between two
variables that reflects chance relationships in a particular data set, (2) correlation induced by
a calculation that mixes each of two variables with a third, and (3) correlation between two
variables arising not from a direct relation between them but from their relation to a third
variable. As an example of the second kind of spurious correlation, two variables that are
uncorrelated may be correlated if divided by a third variable. As an example of the third
kind of spurious correlation, height may be positively correlated with the extent of a person’s
vocabulary, but the underlying relationships are between age and height and between age and
vocabulary. Investment professionals must be cautious in basing investment strategies on high
correlations. Spurious correlation may suggest investment strategies that appear profitable but
actually would not be so, if implemented.

2.5. Uses of Correlation Analysis

In this section, we give examples of correlation analysis for investment. Because investors’
expectations about inflation are important in determining asset prices, inflation forecast
accuracy will serve as our first example.

EXAMPLE 8-1 Evaluating Economic Forecasts (1)

Investors closely watch economists’ forecasts of inflation, but do these forecasts contain
useful information? In the United States, the Survey of Professional Forecasters (SPF)
gathers professional forecasters’ predictions about many economic variables.5 Since the
early 1980s, SPF has gathered predictions on the U.S. inflation rate using the change
in the U.S. consumer price index (CPI) for all urban consumers and all items to
measure inflation. If these forecasts of inflation could perfectly predict actual inflation,
the correlation between forecasts and inflation would be 1; that is, predicted and actual
inflation would always be the same.

Figure 8-7 shows a scatter plot of the mean forecast of current-quarter percentage
change in CPI from previous quarter and actual percentage change in CPI, on an

5The survey was originally developed by Victor Zarnowitz for the American Statistical Association and
the National Bureau of Economic Research. Starting in 1990, the survey has been directed by Dean
Croushire of the Federal Reserve Bank of Philadelphia.
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FIGURE 8-7 Actual Change in CPI vs. Predicted Change
Source: Federal Reserve Banks of Philadelphia and St. Louis.

annualized basis, from the first quarter of 1983 to the last quarter of 2002.6 In this
scatter plot, the forecast for each quarter is plotted on the x-axis and the actual change
in the CPI is plotted on the y-axis.

As Figure 8-7 shows, a fairly strong linear association exists between the forecast
and the actual inflation rate, suggesting that professional forecasts of inflation might be
useful in investment decision-making. In fact, the correlation between the two series
is 0.7138. Although there is no causal relation here, there is a direct relation because
forecasters assimilate information to forecast inflation.

One important issue in evaluating a portfolio manager’s performance is determining an
appropriate benchmark for the manager. In recent years, style analysis has been an important
component of benchmark selection.7

6In this scatter plot, the actual change in CPI is from the Federal Reserve’s economic and financial
database, available at the Web site of the Federal Reserve Bank of St. Louis.
7See, for example, Sharpe (1992) and Buetow, Johnson, and Runkle (2000).
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EXAMPLE 8-2 Style Analysis Correlations

Suppose a portfolio manager uses small-cap stocks in an investment portfolio. By
applying style analysis, we can try to determine whether the portfolio manager uses a
small-cap growth style or a small-cap value style.

In the United States, the Russell 2000 Growth Index and the Russell 2000 Value
Index are often used as benchmarks for small-cap growth and small-cap value managers,
respectively. Correlation analysis shows, however, that the returns to these two indexes
are very closely associated with each other. For the 20 years ending in 2002 (January
1983 to December 2002), the correlation between the monthly returns to the Russell
2000 Growth Index and the Russell 2000 Value Index was 0.8526.

If the correlation between the returns to the two indexes were 1, there would
be absolutely no difference in equity management style between small-cap value and
small-cap growth. If we knew the return to one style, we could be certain about the
return to the other style. Because the returns to the two indexes are highly correlated,
we can say that very little difference exists between the two return series, and therefore,
we may not be able to justify distinguishing between small-cap growth and small-cap
value as different investment styles.

The previous examples in this chapter have examined the correlation between two
variables. Often, however, investment managers need to understand the correlations among
many asset returns. For example, investors who have any exposure to movements in exchange
rates must understand the correlations of the returns to different foreign currencies and other
assets in order to determine their optimal portfolios and hedging strategies.8 In the following
example, we see how a correlation matrix shows correlation between pairs of variables when we
have more than two variables. We also see one of the main challenges to investment managers:
Investment return correlations can change substantially over time.

EXAMPLE 8-3 Exchange Rate Return Correlations

The exchange rate return measures the periodic domestic currency return to holding
foreign currency. Suppose a change in inflation rates in the United Kingdom and the
United States results in the U.S. dollar price of a pound changing from $1.50 to $1.25.
If this change occurred in one month, the return in that month to holding pounds
would be (1.25 − 1.50)/1.50 = −16.67 percent, in terms of dollars.

Table 8-3 shows a correlation matrix of monthly returns in U.S. dollars to holding
Canadian, Japanese, Swedish, or British currencies.9 To interpret a correlation matrix,
we first examine the top panel of this table. The first column of numbers of that panel

8See, for example, Clarke and Kritzman (1996).
9Data for the 1980s run from January 1980 through December 1989. Data for the 1990s run from
January 1990 through December 1999.
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shows the correlations between USD returns to holding the Canadian dollar and USD
returns to holding Canadian, Japanese, Swedish, and British currencies. Of course, any
variable is perfectly correlated with itself, and so the correlation between USD returns to
holding the Canadian dollar and USD returns to holding the Canadian dollar is 1. The
second row of this column shows that the correlation between USD returns to holding
the Canadian dollar and USD returns to holding the Japanese yen was 0.2593 from
1980 to 1989. The remaining correlations in the panel show how the USD returns to
other combinations of currency holdings were correlated during this period.

Note that Table 8-3 omits many of the correlations. For example, Column 2 of
the panel omits the correlation between USD returns to holding yen and USD returns

TABLE 8-3 Correlations of Monthly U.S. Dollar Returns to
Selected Foreign Currency Returns

United
1980–1989 Canada Japan Sweden Kingdom

Canada 1.0000
Japan 0.2593 1.0000
Sweden 0.2834 0.6576 1.0000
United Kingdom 0.3925 0.6068 0.6840 1.0000

United
1990–1999 Canada Japan Sweden Kingdom

Canada 1.0000
Japan −0.0734 1.0000
Sweden 0.1640 0.2860 1.0000
United Kingdom 0.0475 0.2906 0.6444 1.0000

Source: Ibbotson Associates.

to holding Canadian dollars. This correlation is omitted because it is identical to the
correlation between USD returns to holding Canadian dollars and USD returns to
holding yen shown in Row 2 of Column 1. Other omitted correlations would also have
been duplicative. In fact, correlations are always symmetrical: The correlation between
X and Y is always the same as the correlation between Y and X .

If you compare the two panels of this table, you will find that many of the currency
return correlations changed dramatically between the 1980s and the 1990s. In the 1980s,
for example, the correlation between the return to holding Japanese yen and the return to
holding either Swedish kronor (0.6576) or British pounds (0.6068) was almost as high as
the correlation between the return to holding kronor and the return to holding pounds
(0.6840). In the 1990s, however, the correlation between yen returns and either krona or
pound returns dropped by more than half (to 0.2860 and 0.2906, respectively), but the
correlation between krona and pound returns hardly changed at all (0.6444). Some of
the correlations between returns to the Canadian dollar and returns to other currencies
dropped even more dramatically. In the 1980s, the correlation between Canadian dollar
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returns and Japanese yen returns was 0.2593. By the 1990s, that correlation actually
became negative (−0.0734). The correlation between the Canadian dollar returns and
British pound returns dropped from 0.3925 in the 1980s to 0.0475 in the 1990s.

Optimal asset allocation depends on expectations of future correlations. With less
than perfect positive correlation between two assets’ returns, there are potential risk-
reduction benefits to holding both assets. Expectations of future correlation may be based
on historical sample correlations, but the variability in historical sample correlations
poses challenges. We discuss these issues in detail in the chapter on portfolio concepts.

In the next example, we extend the discussion of the correlations of stock market indexes
begun in Example 8-2 to indexes representing large-cap, small-cap, and broad-market returns.
This type of analysis has serious diversification and asset allocation consequences because
the strength of the correlations among the assets tells us how successfully the assets can be
combined to diversify risk.

EXAMPLE 8-4 Correlations among Stock Return Series

Table 8-4 shows the correlation matrix of monthly returns to three U.S. stock indexes
during the period January 1971 to December 1999 and in three subperiods (the 1970s,
1980s, and 1990s).10 The large-cap style is represented by the return to the S&P 500
Index, the small-cap style is represented by the return to the Dimensional Fund Advisors
U.S. Small-Stock Index, and the broad-market returns are represented by the return to
the Wilshire 5000 Index.

TABLE 8-4 Correlations of Monthly Returns to Various
U.S. Stock Indexes

1971–1999 S&P 500 U.S. Small-Stock Wilshire 5000

S&P 500 1.0000
U.S. Small-Stock 0.7615 1.0000
Wilshire 5000 0.9894 0.8298 1.0000

1971–1979 S&P 500 U.S. Small-Stock Wilshire 5000

S&P 500 1.0000
U.S. Small-Stock 0.7753 1.0000
Wilshire 5000 0.9906 0.8375 1.0000

1980–1989 S&P 500 U.S. Small-Stock Wilshire 5000

S&P 500 1.0000
U.S. Small-Stock 0.8440 1.0000
Wilshire 5000 0.9914 0.8951 1.0000

(continued )

10The 1970s data have an initiation date of January 1971 because that is the starting date of the Wilshire
5000 total return series.
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TABLE 8-4 (continued )

1990–1999 S&P 500 U.S. Small-Stock Wilshire 5000

S&P 500 1.0000
U.S. Small-Stock 0.6843 1.0000
Wilshire 5000 0.9858 0.7768 1.0000

Source: Ibbotson Associates.

The first column of numbers in the top panel of Table 8-4 shows nearly perfect
positive correlation between returns to the S&P 500 and returns to the Wilshire
5000: The correlation between the two return series is 0.9894. This result should not
be surprising, because both the S&P 500 and the Wilshire 5000 are value-weighted
indexes, and large-cap stock returns receive most of the weight in both indexes. In fact,
the companies that make up the S&P 500 have about 80 percent of the total market
value of all companies included in the Wilshire 5000.

Small stocks also have a reasonably high correlation with large stocks. In the total
sample, the correlation between the S&P 500 returns and the U.S. Small-Stock returns
is 0.7615. The correlation between U.S. Small-Stock returns and returns to the Wilshire
5000 is slightly higher (0.8298). This result is also not too surprising because the
Wilshire 5000 contains small-cap stocks and the S&P 500 does not. The second, third,
and fourth panels of Table 8-4 show that correlations among the various stock market
return series show some variation from decade to decade. For example, the correlation
between returns to the S&P 500 and U.S. small-cap stocks dropped from 0.8440 in the
1980s to 0.6843 in the 1990s.11

For asset allocation purposes, correlations among asset classes are studied carefully with a
view towards maintaining appropriate diversification based on forecasted correlations.

EXAMPLE 8-5 Correlations of Debt and Equity Returns

Table 8-5 shows the correlation matrix for various U.S. debt returns and S&P 500
returns using monthly data from January 1926 to December 2002.

The first column of numbers, in particular, shows the correlations of S&P 500
returns with various debt returns. Note that S&P 500 returns are almost completely
uncorrelated (−0.0174) with 30-day Treasury bill returns for this period. Long-term
corporate debt returns are somewhat more correlated (0.2143) with S&P 500 returns.
Returns on high-yield corporate bonds have the highest correlation (0.6471) with S&P
500 total returns. This high correlation is understandable; high-yield debt securities
behave partially as equities because of their high default risk. If a company defaults,
holders of high-yield debt typically lose most of their investment.

11The correlation coefficient for the 1990s was less than that for the 1980s at the 0.01 significance
level. A test for this type of hypothesis on the correlation coefficient can be conducted using Fisher’s
z-transformation. See Daniel and Terrell (1995) for information on this method.
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TABLE 8-5 Correlations among U.S. Stock and
Debt Returns, 1926–2002

U.S. U.S.
Long- Long- U.S. High-
Term Term 30-Day Yield

All S&P 500 Corp. Govt. T-Bill Corp.

S&P 500 1.0000
U.S. Long-Term Corp. 0.2143 1.0000
U.S. Long-Term Govt. 0.1466 0.8480 1.0000
U.S. 30-Day T-bill −0.0174 0.0970 0.1119 1.0000
High-Yield Corp. 0.6471 0.4274 0.3131 0.0174 1.0000

Source: Ibbotson Associates.

Long-term government bonds, however, have a low correlation (0.1466) with S&P
500 returns. We expect some correlation between these variables because interest rate
increases reduce the present value of future cash flows for both bonds and stocks. The
relatively low correlation between these two return series, however, shows that other
factors affect the returns on stocks besides interest rates. Without these other factors,
the correlation between bond and stock returns would be higher.

The second column of numbers in Table 8-5 shows that the correlation between
long-term government bond and corporate bond returns is quite high (0.8480) for this
time period. Although this correlation is the highest in the entire matrix, it is not 1. The
correlation is less than 1 because the default premium for long-term corporate bonds
changes, whereas U.S. government bonds do not incorporate a default premium. As a
result, changes in required yields for government bonds have a correlation less than 1
with changes in required yields for corporate bonds, and return correlations between
government bonds and corporate bonds are also below 1. Note also that the correlation
of high-yield corporate bond returns with long-term government bond returns (0.3131),
indicated in the third column of numbers, is less than half the correlation of high-yield
corporate bond returns with S&P 500 returns. This relatively low correlation is another
indicator that high-yield bond returns behave more similarly to equity returns than to
debt returns.

Note finally that 30-day T-bill returns have a very low correlation with all other
return series. In fact, the correlations between T-bill returns and other return series are
lower than any of the other correlations in this table.

In the final example of this section, correlation is used in a financial statement setting to show
that net income is an inadequate proxy for cash flow.

EXAMPLE 8-6 Correlations among Net Income, Cash Flow
from Operations, and Free Cash Flow to the Firm

Net income (NI), cash flow from operations (CFO), and free cash flow to the firm (FCFF)
are three measures of company performance that analysts often use to value companies.
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Differences in these measures for given companies would not cause differences in the
relative valuation if the measures were highly correlated.

CFO equals net income plus the net noncash charges that were subtracted to
obtain net income, minus the company’s investment in working capital during the same
time period. FCFF equals CFO plus net-of-tax interest expense, minus the company’s
investment in fixed capital over the time period. FCFF may be interpreted as the cash
flow available to the company’s suppliers of capital (debtholders and shareholders) after
all operating expenses have been paid and necessary investments in working and fixed
capital have been made.12

Some analysts base their valuations only on NI, ignoring CFO and FCFF. If the
correlations among NI, CFO, and FCFF were very high, then an analyst’s decision to
ignore CFO and FCFF would be easy to understand because NI would then appear to
capture everything one needs to know about cash flow.

TABLE 8-6 Correlations among Performance
Measures: U.S. Women’s Clothing Stores, 2001

NI CFO FCFF

NI 1.0000
CFO 0.6959 1.0000
FCFF 0.4045 0.8217 1.0000

Source: Compustat.

Table 8-6 shows the correlations among NI, CFO, and FCFF for a group of six
publicly traded U.S. companies involved in retailing women’s clothing for 2001. Before
computing the correlations, we normalized all of the data by dividing each company’s
three performance measures by the company’s revenue for the year.13

Because CFO and FCFF include NI as a component (in the sense that CFO
and FCFF can be obtained by adding and subtracting various quantities from NI), we
might expect that the correlations between NI and CFO and between NI and FCFF
would be positive. Table 8-6 supports that conclusion. These correlations with NI,
however, are much smaller than the correlation between CFO and FCFF (0.8217). The
lowest correlation in the table is between NI and FCFF (0.4045). This relatively low
correlation shows that NI contained some but far from all the information in FCFF
for these companies in 2001. Later in this chapter, we will test whether the correlation
between NI and FCFF is significantly different from zero.

12For more on these three measures and their use in equity valuation, see Stowe, Robinson, Pinto, and
McLeavey (2002). The statements in the footnoted paragraph explain the relationships among these
measures according to U.S. GAAP. Stowe et al. also discuss the relationships among these measures
according to international accounting standards.
13The results in this table are based on data for all women’s clothing stores (U.S. Occupational Health
and Safety Administration Standard Industrial Classification 5621) with a market capitalization of more
than $250 million at the end of 2001. The market-cap criterion was used to eliminate microcap firms,
whose performance-measure correlations may be different from those of higher-valued firms. We will
discuss in detail the data normalization used in this example (dividing by firm revenue) in the section on
misspecified regressions in Chapter 9.
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2.6. Testing the Significance of the Correlation Coefficient

Significance tests allow us to assess whether apparent relationships between random variables
are the result of chance. If we decide that the relationships do not result from chance, we
will be inclined to use this information in predictions because a good prediction of one
variable will help us predict the other variable. Using the data in Table 8-2, we calculated
0.8702 as the sample correlation between long-term money growth and long-term inflation in
six industrialized countries between 1970 and 2001. That estimated correlation seems high,
but is it significantly different from 0? Before we can answer this question, we must know
some details about the distribution of the underlying variables themselves. For purposes of
simplicity, let us assume that both of the variables are normally distributed.14

We propose two hypotheses: the null hypothesis, H0, that the correlation in the population
is 0 (ρ = 0); and the alternative hypothesis, Ha, that the correlation in the population is
different from 0 (ρ �= 0).

The alternative hypothesis is a test that the correlation is not equal to 0; therefore, a two-
tailed test is appropriate.15 As long as the two variables are distributed normally, we can test
to determine whether the null hypothesis should be rejected using the sample correlation, r.
The formula for the t-test is

t = r
√

n − 2√
1 − r2

(8-3)

This test statistic has a t-distribution with n − 2 degrees of freedom if the null hypothesis is
true. One practical observation concerning Equation 8-3 is that the magnitude of r needed
to reject the null hypothesis H0: ρ = 0 decreases as sample size n increases, for two reasons.
First, as n increases, the number of degrees of freedom increases and the absolute value of the
critical value tc decreases. Second, the absolute value of the numerator increases with larger
n, resulting in larger-magnitude t-values. For example, with sample size n = 12, r = 0.58
results in a t-statistic of 2.252 that is just significant at the 0.05 level (tc = 2.228). With a
sample size n = 32, a smaller sample correlation r = 0.35 yields a t-statistic of 2.046 that is
just significant at the 0.05 level (tc = 2.042); the r = 0.35 would not be significant with a
sample size of 12 even at the 0.10 significance level. Another way to make this point is that
sampling from the same population, a false null hypothesis H0: ρ = 0 is more likely to be
rejected as we increase sample size, all else equal.

EXAMPLE 8-7 Testing the Correlation between Money
Supply Growth and Inflation

Earlier in this chapter, we showed that the sample correlation between long-term money
supply growth and long-term inflation in six industrialized countries was 0.8702 during

14Actually, we must assume that the variables come from a bivariate normal distribution. If two variables,
X and Y , come from a bivariate normal distribution, then for each value of X the distribution of Y is
normal. See, for example, Ross (1997) or Greene (2003).
15See the chapter on hypothesis testing for a more in-depth discussion of two-tailed tests.
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the 1970–2001 period. Suppose we want to test the null hypothesis, H0, that the true
correlation in the population is 0 (ρ = 0) against the alternative hypothesis, Ha, that
the correlation in the population is different from 0 (ρ �= 0).

Recalling that this sample has six observations, we can compute the statistic for
testing the null hypothesis as follows:

t = 0.8702
√

6 − 2√
1 − 0.87022

= 3.532

The value of the test statistic is 3.532. As the table of critical values of the
t-distribution for a two-tailed test shows, for a t-distribution with n − 2 = 6 − 2 = 4
degrees of freedom at the 0.05 level of significance, we can reject the null hypothesis
(that the population correlation is equal to 0) if the value of the test statistic is greater
than 2.776 or less than −2.776. The fact that we can reject the null hypothesis of
no correlation based on only six observations is quite unusual; it further demonstrates
the strong relation between long-term money supply growth and long-term inflation in
these six countries.

EXAMPLE 8-8 Testing the Krona–Yen Return Correlation

The data in Table 8-3 showed that the sample correlation between the USD monthly
returns to Swedish kronor and Japanese yen was 0.2860 for the period from January
1990 through December 1999. If we observe this sample correlation, can we reject a
null hypothesis that the underlying or population correlation equals 0?

With 120 months from January 1990 through December 1999, we use the following
statistic to test the null hypothesis, H0, that the true correlation in the population is 0,
against the alternative hypothesis, Ha, that the correlation in the population is different
from 0:

t = 0.2860
√

120 − 2√
1 − 0.28602

= 3.242

At the 0.05 significance level, the critical level for this test statistic is 1.98 (n = 120,
degrees of freedom = 118). When the test statistic is either larger than 1.98 or smaller
than −1.98, we can reject the hypothesis that the correlation in the population is 0.
The test statistic is 3.242, so we can reject the null hypothesis.

Note that the sample correlation coefficient in this case is significantly dif-
ferent from 0 at the 0.05 level, even though the coefficient is much smaller
than that in the previous example. The correlation coefficient, though smaller,
is still significant because the sample is much larger (120 observations instead of
6 observations).
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The above example shows the importance of sample size in tests of the significance of the
correlation coefficient. The following example also shows the importance of sample size and
examines the relationship at the 0.01 level of significance as well as at the 0.05 level.

EXAMPLE 8-9 The Correlation Between Bond Returns and
T-Bill Returns

Table 8-5 showed that the sample correlation between monthly returns to U.S. gov-
ernment bonds and monthly returns to 30-day T-bills was 0.1119 from January 1926
through December 2002. Suppose we want to test whether the correlation coefficient
is statistically significantly different from zero. There are 924 months during the period
January 1926 to December 2002. Therefore, to test the null hypothesis, H0 (that the
true correlation in the population is 0), against the alternative hypothesis, Ha (that the
correlation in the population is different from 0), we use the following test statistic:

t = 0.1119
√

924 − 2√
1 − 0.11192

= 3.4193

At the 0.05 significance level, the critical value for the test statistic is approximately
1.96. At the 0.01 significance level, the critical value for the test statistic is approximately
2.58. The test statistic is 3.4193, so we can reject the null hypothesis of no correlation
in the population at both the 0.05 and 0.01 levels. This example shows that, in
large samples, even relatively small correlation coefficients can be significantly different
from zero.

In the final example of this section, we explore another situation of small sample size.

EXAMPLE 8-10 Testing the Correlation Between Net Income
and Free Cash Flow to the Firm

Earlier in this chapter, we showed that the sample correlation between NI and FCFF
for six women’s clothing stores was 0.4045 in 2001. Suppose we want to test the null
hypothesis, H0, that the true correlation in the population is 0 (ρ = 0) against the
alternative hypothesis, Ha, that the correlation in the population is different from 0
(ρ �= 0). Recalling that this sample has six observations, we can compute the statistic for
testing the null hypothesis as follows:

t = 0.4045
√

6 − 2√
1 − 0.40452

= 0.8846

With n − 2 = 6 − 2 = 4 degrees of freedom and a 0.05 significance level, we reject
the null hypothesis that the population correlation equals 0 for values of the test statistic



300 Quantitative Investment Analysis

greater than 2.776 or less than −2.776. In this case, however, the t-statistic is 0.8846,
so we cannot reject the null hypothesis. Therefore, for this sample of women’s clothing
stores, there is no statistically significant correlation between NI and FCFF, when each
is normalized by dividing by sales for the company.16

The scatter plot creates a visual picture of the relationship between two variables, while the
correlation coefficient quantifies the existence of any linear relationship. Large absolute values
of the correlation coefficient indicate strong linear relationships. Positive coefficients indicate
a positive relationship and negative coefficients indicate a negative relationship between two
data sets. In Examples 8-8 and 8-9, we saw that relatively small sample correlation coefficients
(0.2860 and 0.1119) can be statistically significant and thus might provide valuable information
about the behavior of economic variables.

Next we will introduce linear regression, another tool useful in examining the relationship
between two variables.

3. LINEAR REGRESSION

3.1. Linear Regression with One Independent Variable

As a financial analyst, you will often want to understand the relationship between financial or
economic variables, or to predict the value of one variable using information about the value
of another variable. For example, you may want to know the impact of changes in the 10-year
Treasury bond yield on the earnings yield of the S&P 500 (the earnings yield is the reciprocal
of the price-to-earnings ratio). If the relationship between those two variables is linear, you
can use linear regression to summarize it.

Linear regression allows us to use one variable to make predictions about another,
test hypotheses about the relation between two variables, and quantify the strength of the
relationship between the two variables. The remainder of this chapter focuses on linear
regression with a single independent variable. In the next chapter, we will examine regression
with more than one independent variable.

Regression analysis begins with the dependent variable (denoted Y ), the variable that you
are seeking to explain. The independent variable (denoted X ) is the variable you are using to
explain changes in the dependent variable. For example, you might try to explain small-stock
returns (the dependent variable) based on returns to the S&P 500 (the independent variable).
Or you might try to explain inflation (the dependent variable) as a function of growth in a
country’s money supply (the independent variable).

Linear regression assumes a linear relationship between the dependent and the indepen-
dent variables. The following regression equation describes that relation:

Yi = b0 + b1Xi + εi, i = 1, . . . , n (8-4)

16It is worth repeating that the smaller the sample, the greater the evidence in terms of the magnitude
of the sample correlation needed to reject the null hypothesis of zero correlation. With a sample size of
6, the absolute value of the sample correlation would need to be greater than 0.81 (carrying two decimal
places) for us to reject the null hypothesis. Viewed another way, the value of 0.4045 in the text would
be significant if the sample size were 24, because 0.4045(24 − 2)1/2/(1 − 0.40452)1/2 = 2.075, which
is greater than the critical t-value of 2.074 at the 0.05 significance level with 22 degrees of freedom.
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This equation states that the dependent variable, Y , is equal to the intercept, b0, plus a slope
coefficient, b1, times the independent variable, X , plus an error term, ε. The error term
represents the portion of the dependent variable that cannot be explained by the independent
variable. We refer to the intercept b0 and the slope coefficient b1 as the regression coefficients.

Regression analysis uses two principal types of data: cross-sectional and time series.
Cross-sectional data involve many observations on X and Y for the same time period. Those
observations could come from different companies, asset classes, investment funds, people,
countries, or other entities, depending on the regression model. For example, a cross-sectional
model might use data from many companies to test whether predicted earnings-per-share
growth explains differences in price-to-earnings ratios (P/Es) during a specific time period.
The word ‘‘explain’’ is frequently used in describing regression relationships. One estimate
of a company’s P/E that does not depend on any other variable is the average P/E. If a
regression of a P/E on an independent variable tends to give more-accurate estimates of P/E
than just assuming that the company’s P/E equals the average P/E, we say that the independent
variable helps explain P/Es because using that independent variable improves our estimates.
Finally, note that if we use cross-sectional observations in a regression, we usually denote the
observations as i = 1, 2, . . . , n.

Time-series data use many observations from different time periods for the same company,
asset class, investment fund, person, country, or other entity, depending on the regression
model. For example, a time-series model might use monthly data from many years to test
whether U.S. inflation rates determine U.S. short-term interest rates.17 If we use time-series
data in a regression, we usually denote the observations as t = 1, 2, . . . , T .18

Exactly how does linear regression estimate b0 and b1? Linear regression, also known as
linear least squares, computes a line that best fits the observations; it chooses values for the
intercept, b0, and slope, b1, that minimize the sum of the squared vertical distances between
the observations and the regression line. Linear regression chooses the estimated or fitted
parameters b̂0 and b̂1 in Equation 8-4 to minimize19

n∑
i=1

(Yi − b̂0 − b̂1Xi)
2 (8-5)

In this equation, the term (Yi − b̂0 − b̂1Xi)2 means (Dependent variable–Predicted value of
dependent variable)2. Using this method to estimate the values of b̂0 and b̂1, we can fit a
line through the observations on X and Y that best explains the value that Y takes for any
particular value of X .20

Note that we never observe the population parameter values b0 and b1 in a regression
model. Instead, we observe only b̂0 and b̂1, which are estimates of the population parameter
values. Thus predictions must be based on the parameters’ estimated values, and testing is
based on estimated values in relation to the hypothesized population values.

17A mix of time-series and cross-sectional data, also known as panel data, is now frequently used in
financial analysis. The analysis of panel data is an advanced topic that Greene (2003) discusses in detail.
18In this chapter, we primarily use the notation i = 1, 2, . . . , n even for time series to prevent confusion
that would be caused by switching back and forth between different notations.
19Hats over the symbols for coefficients indicate estimated values.
20For a discussion of the precise statistical sense in which the estimates of b0 and b1 are optimal, see
Greene (2003).
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FIGURE 8-8 Fitted Regression Line Explaining the Inflation Rate Using Growth in the Money
Supply by Country: 1970–2001
Source: International Monetary Fund.

Figure 8-8 gives a visual example of how linear regression works. The figure shows the
linear regression that results from estimating the regression relation between the annual rate
of inflation (the dependent variable) and annual rate of money supply growth (the indepen-
dent variable) for six industrialized countries from 1970 to 2001 (n = 6).21 The equation
to be estimated is Long-term rate of inflation = b0 + b1 (Long-term rate of money supply
growth) +ε.

The distance from each of the six data points to the fitted regression line is the regression
residual, which is the difference between the actual value of the dependent variable and the
predicted value of the dependent variable made by the regression equation. Linear regression
chooses the estimated coefficients b̂0 and b̂1 in Equation 8-4 such that the sum of the
squared vertical distances is minimized. The estimated regression equation is Long-term
inflation = 0.0084 + 0.5545 (Long-term money supply growth).22

According to this regression equation, if the long-term money supply growth is 0 for
any particular country, the long-term rate of inflation in that country will be 0.84 percent.
For every 1-percentage-point increase in the long-term rate of money supply growth for a
country, the long-term inflation rate is predicted to increase by 0.5545 percentage points. In
a regression such as this one, which contains one independent variable, the slope coefficient
equals Cov(Y , X )/Var(X ). We can solve for the slope coefficient using data from Table 8-2,
excerpted here:

21These data appear in Table 8-2.
22We entered the monthly returns as decimals.
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TABLE 8-2 (excerpted)

Money Supply Inflation Squared Squared
Growth Rate Rate Cross-Product Deviations Deviations

Xi Yi (Xi − X )(Yi − Y ) (Xi − X )2 (Yi − Y )2

Sum 0.5608 0.3616 0.002185 0.003939 0.001598
Average 0.0935 0.0603
Covariance 0.000437
Variance 0.000788 0.000320
Standard deviation 0.028071 0.017889

Cov (Y , X ) = 0.000437

Var (X ) = 0.000788

Cov (Y , X )/Var (X ) = 0.000437/0.000788

b̂1 = 0.5545

In a linear regression, the regression line fits through the point corresponding to the
means of the dependent and the independent variables. As shown in Table 8-1 (excerpted
below), from 1970 to 2001, the mean long-term growth rate of the money supply for
these six countries was 9.35 percent, whereas the mean long-term inflation rate was
6.03 percent.

TABLE 8-1 (excerpted)

Money Supply
Growth Rate Inflation Rate

Average 9.35% 6.03%

Because the point (9.35, 6.03) lies on the regression line b̂0 = Y − b̂1X , we can solve for the
intercept using this point as follows:

b̂0 = 0.0603 − 0.5545(0.0935) = 0.0084

We are showing how to solve the linear regression equation step by step to make the
source of the numbers clear. Typically, an analyst will use the data analysis function on a
spreadsheet or a statistical package to perform linear regression analysis. Later, we will discuss
how to use regression residuals to quantify the uncertainty in a regression model.

3.2. Assumptions of the Linear Regression Model

We have discussed how to interpret the coefficients in a linear regression model. Now we turn
to the statistical assumptions underlying this model. Suppose that we have n observations on
both the dependent variable, Y , and the independent variable, X , and we want to estimate
Equation 8-4:

Yi = b0 + b1Xi + εi, i = 1, . . . , n
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To be able to draw valid conclusions from a linear regression model with a single
independent variable, we need to make the following six assumptions, known as the classic
normal linear regression model assumptions:

1. The relationship between the dependent variable, Y , and the independent variable, X
is linear in the parameters b0 and b1. This requirement means that b0 and b1 are raised
to the first power only and that neither b0 nor b1 is multiplied or divided by another
regression parameter (as in b0/b1, for example). The requirement does not exclude X
from being raised to a power other than 1.

2. The independent variable, X , is not random.23

3. The expected value of the error term is 0: E(ε) = 0.
4. The variance of the error term is the same for all observations: E(ε2

i ) = σε
2, i = 1, . . . , n.

5. The error term, ε, is uncorrelated across observations. Consequently, E(εiεj) = 0 for all
i not equal to j.24

6. The error term, ε, is normally distributed.25

Now we can take a closer look at each of these assumptions.
Assumption 1 is critical for a valid linear regression. If the relationship between the

independent and dependent variables is nonlinear in the parameters, then estimating that
relation with a linear regression model will produce invalid results. For example, Yi =
b0eb1Xi + εi is nonlinear in b1, so we could not apply the linear regression model to it.26

Even if the dependent variable is nonlinear, linear regression can be used as long as the
regression is linear in the parameters. So, for example, linear regression can be used to estimate
the equation Yi = b0 + b1X 2

i + εi.
Assumptions 2 and 3 ensure that linear regression produces the correct estimates of b0

and b1.
Assumptions 4, 5, and 6 let us use the linear regression model to determine the distri-

bution of the estimated parameters b̂0 and b̂1 and thus test whether those coefficients have a
particular value.

• Assumption 4, that the variance of the error term is the same for all observations, is also
known as the homoskedasticity assumption. The chapter on regression analysis discusses
how to test for and correct violations of this assumption.

23Although we assume that the independent variable in the regression model is not random, that
assumption is clearly often not true. For example, it is unrealistic to assume that the monthly returns
to the S&P 500 are not random. If the independent variable is random, then is the regression model
incorrect? Fortunately, no. Econometricians have shown that even if the independent variable is random,
we can still rely on the results of regression models given the crucial assumption that the error term is
uncorrelated with the independent variable. The mathematics underlying this reliability demonstration,
however, are quite difficult. See, for example, Greene (2003) or Goldberger (1998).
24Var(εi) = E[εi − E(εi)]2 = E(εi − 0)2 = E(εi)2. Cov(εi, εj) = E{[εi − E(εi)][εj − E(εj)]} =
E[(εi − 0)(εj − 0)] = E(εiεj) = 0.
25If the regression errors are not normally distributed, we can still use regression analysis. Econometricians
who dispense with the normality assumption use chi-square tests of hypotheses rather than F -tests. This
difference usually does not affect whether the test will result in a particular null hypothesis being rejected.
26For more information on nonlinearity in the parameters, see Gujarati (2003).



Chapter 8 Correlation and Regression 305

• Assumption 5, that the errors are uncorrelated across observations, is also necessary for
correctly estimating the variances of the estimated parameters b̂0 and b̂1. The chapter on
multiple regression discusses violations of this assumption.

• Assumption 6, that the error term is normally distributed, allows us to easily test a particular
hypothesis about a linear regression model.27

EXAMPLE 8-11 Evaluating Economic Forecasts (2)

If economic forecasts were completely accurate, every prediction of change in an eco-
nomic variable in a quarter would exactly match the actual change that occurs in
that quarter. Even though forecasts can be inaccurate, we hope at least that they are
unbiased—that is, that the expected value of the forecast error is zero. An unbiased
forecast can be expressed as E(Actual change − Predicted change) = 0. In fact, most
evaluations of forecast accuracy test whether forecasts are unbiased.28

Figure 8-9 repeats Figure 8-7 in showing a scatter plot of the mean forecast
of current-quarter percentage change in CPI from the previous quarter and actual
percentage change in CPI, on an annualized basis, from the first quarter of 1983 to
the last quarter of 2002, but it adds the fitted regression line for the equation Actual
percentage change = b0 + b1 (Predicted percentage change) + ε. If the forecasts are
unbiased, the intercept, b0, should be 0 and the slope, b1, should be 1. We should
also find E(Actual change − Predicted change) = 0. If forecasts are actually unbiased, as
long as b0 = 0 and b1 = 1, the error term [Actual change − b0 − b1(Predicted change)]
will have an expected value of 0, as required by Assumption 3 of the linear regression
model. With unbiased forecasts, any other values of b0 and b1 would yield an error term
with an expected value different from 0.

If b0 = 0 and b1 = 1, our best guess of actual change in CPI would be 0 if pro-
fessional forecasters’ predictions of change in CPI were 0. For every 1-percentage-point
increase in the prediction of change by the professional forecasters, the regression model
would predict a 1-percentage-point increase in actual change.

The fitted regression line in Figure 8-9 comes from the equation Actual change =
−0.0140 + 0.9637(Predicted change). Note that the estimated values of both b0

and b1 are close to the values b0 = 0 and b1 = 1 that are consistent with unbiased
forecasts. Later in this chapter, we discuss how to test the hypotheses that b0 = 0 and
b1 = 1.

27For large sample sizes, we may be able to drop the assumption of normality by appeal to the central
limit theorem, which was discussed in the chapter on sampling; see Greene (2003). Asymptotic theory
shows that, in many cases, the test statistics produced by standard regression programs are valid even
if the error term is not normally distributed. As illustrated in the chapter on statistical concepts and
market returns, however, non-normality of some financial time series can be quite severe. With severe
non-normality, even with a relatively large number of observations, invoking asymptotic theory to justify
using test statistics from linear regression models may be inappropriate.
28See, for example, Keane and Runkle (1990).
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FIGURE 8-9 Actual Change in CPI vs. Predicted Change
Source: Federal Reserve Banks of Philadelphia and St. Louis.

3.3. The Standard Error of Estimate

The linear regression model sometimes describes the relationship between two variables quite
well, but sometimes it does not. We must be able to distinguish between these two cases in
order to use regression analysis effectively. Therefore, in this section and the next, we discuss
statistics that measure how well a given linear regression model captures the relationship
between the dependent and independent variables.

Figure 8-9, for example, shows a strong relation between predicted inflation and actual
inflation. If we knew professional forecasters’ predictions for inflation in a particular quarter,
we would be reasonably certain that we could use this regression model to forecast actual
inflation relatively accurately.

In other cases, however, the relation between the dependent and independent variables is
not strong. Figure 8-10 adds a fitted regression line to the data on inflation and stock returns
in the 1990s from Figure 8-6. In this figure, the actual observations are generally much farther
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from the fitted regression line than in Figure 8-9. Using the estimated regression equation
to predict monthly stock returns assuming a particular level of inflation might result in an
inaccurate forecast.

As noted, the regression relation in Figure 8-10 is less precise than that in Figure 8-9. The
standard error of estimate (sometimes called the standard error of the regression) measures this
uncertainty. This statistic is very much like the standard deviation for a single variable, except
that it measures the standard deviation of ε̂i, the residual term in the regression.

The formula for the standard error of estimate (SEE) for a linear regression model with
one independent variable is

SEE =
(

n∑
i=1

(Yi − b̂0 − b̂1Xi)2

n − 2

)1/2

=
(

n∑
i=1

(ε̂i)2

n − 2

)1/2

(8-6)

In the numerator of this equation, we are computing the difference between the dependent
variable’s actual value for each observation and its predicted value (b̂0 + b̂1Xi) for each
observation. The difference between the actual and predicted values of the dependent variable
is the regression residual, ε̂i.

Equation 8-6 looks very much like the formula for computing a standard deviation,
except that n − 2 appears in the denominator instead of n − 1. We use n − 2 because the
sample includes n observations and the linear regression model estimates two parameters (b̂0

and b̂1); the difference between the number of observations and the number of parameters is
n − 2. This difference is also called the degrees of freedom; it is the denominator needed to
ensure that the estimated standard error of estimate is unbiased.
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FIGURE 8-10 Fitted Regression Line Explaining Stock Returns by Inflation During the 1990s
Source: Ibbotson Associates.
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EXAMPLE 8-12 Computing the Standard Error of Estimate

Recall that the estimated regression equation for the inflation and money supply growth
data shown in Figure 8-8 was Yi = 0.0084 + 0.5545Xi. Table 8-7 uses this estimated
equation to compute the data needed for the standard error of estimate.

TABLE 8-7 Computing the Standard Error of Estimate

Money
Supply Predicted
Growth Inflation Inflation Regression Squared

Rate Rate Rate Residual Residual
Country Xi Yi Ŷi Yi − Ŷi (Yi − Ŷi)2

Australia 0.1166 0.0676 0.0731 −0.0055 0.000030
Canada 0.0915 0.0519 0.0591 −0.0072 0.000052
New Zealand 0.1060 0.0815 0.0672 0.0143 0.000204
Switzerland 0.0575 0.0339 0.0403 −0.0064 0.000041
United Kingdom 0.1258 0.0758 0.0782 −0.0024 0.000006
United States 0.0634 0.0509 0.0436 0.0073 0.000053

Sum 0.000386

Source: International Monetary Fund.

The first and second columns of numbers in Table 8-7 show the long-term money
supply growth rates, Xi, and long-term inflations rates, Yi, for the six countries. The
third column of numbers shows the predicted value of the dependent variable from the
fitted regression equation for each observation. For the United States, for example, the
predicted value of long-term inflation is 0.0084 + 0.5545(0.0634) = 0.0436 or 4.36
percent. The next-to-last column contains the regression residual, which is the difference
between the actual value of the dependent variable, Yi, and the predicted value of the
dependent variable, (Ŷi = b̂0 + b̂1Xi). So for the United States, the residual is equal
to 0.0509 − 0.0436 = 0.0073 or 0.73 percent. The last column contains the squared
regression residual. The sum of the squared residuals is 0.000386. Applying the formula
for the standard error of estimate, we obtain

(
0.000386

6 − 2

)1/2

= 0.009823

Thus the standard error of estimate is about 0.98 percent.
Later, we will combine this estimate with estimates of the uncertainty about the

parameters in this regression to determine confidence intervals for predicting inflation
rates from money supply growth. We will see that smaller standard errors result in
more-accurate predictions.
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3.4. The Coefficient of Determination

Although the standard error of estimate gives some indication of how certain we can be
about a particular prediction of Y using the regression equation, it still does not tell us how
well the independent variable explains variation in the dependent variable. The coefficient of
determination does exactly this: It measures the fraction of the total variation in the de-pendent
variable that is explained by the independent variable.

We can compute the coefficient of determination in two ways. The simpler method,
which can be used in a linear regression with one independent variable, is to square the
correlation coefficient between the dependent and independent variables. For example, recall
that the correlation coefficient between the long-term rate of money growth and the long-term
rate of inflation between 1970 and 2001 for six industrialized countries was 0.8702. Thus
the coefficient of determination in the regression shown in Figure 8-8 is (0.8702)2 = 0.7572.
So in this regression, the long-term rate of money supply growth explains approximately 76
percent of the variation in the long-term rate of inflation across the countries between 1970
and 2001.

The problem with this method is that it cannot be used when we have more than one
independent variable.29 Therefore, we need an alternative method of computing the coefficient
of determination for multiple independent variables. We now present the logic behind that
alternative.

If we did not know the regression relationship, our best guess for the value of any
particular observation of the dependent variable would simply be Y , the mean of the
dependent variable. One measure of accuracy in predicting Yi based on Y is the sample

variance of Yi,
n∑

i=1

(Yi − Y )2

n − 1
. An alternative to using Y to predict a particular observation Yi

is using the regression relationship to make that prediction. In that case, our predicted value
would be Ŷi = b̂0 + b̂1Xi. If the regression relationship works well, the error in predicting
Yi using Ŷi should be much smaller than the error in predicting Yi using Y . If we call

n∑
i=1

(Yi − Y )2 the total variation of Y and
n∑

i=1

(Yi − Ŷi)
2 the unexplained variation from the

regression, then we can measure the explained variation from the regression using the following
equation:

Total variation = Unexplained variation + Explained variation (8-7)

The coefficient of determination is the fraction of the total variation that is explained by the
regression. This gives us the relationship

R2 = Explained variation

Total variation
= Total variation − Unexplained variation

Total variation
(8-8)

= 1 − Unexplained variation

Total variation

Note that total variation equals explained variation plus unexplained variation, as shown in
Equation 8-7. Most regression programs report the coefficient of determination as R2.30

29We will discuss such models in the chapter on multiple regression.
30As we illustrate in the tables of regression output later in this chapter, regression programs also
report multiple R, which is the correlation between the actual values and the forecast values of Y . The
coefficient of determination is the square of multiple R.
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EXAMPLE 8-13 Inflation Rate and Growth in the
Money Supply

Using the data in Table 8-7, we can see that the unexplained variation from the
regression, which is the sum of the squared residuals, equals 0.000386. Table 8-8 shows
the computation of total variation in the dependent variable, the long-term rate of
inflation.

TABLE 8-8 Computing Total Variation

Money
Supply Deviation
Growth Inflation from Squared

Rate Rate Mean Deviation
Country Xi Yi Yi − Y (Yi − Y )2

Australia 0.1166 0.0676 0.0073 0.000053
Canada 0.0915 0.0519 −0.0084 0.000071
New Zealand 0.1060 0.0815 0.0212 0.000449
Switzerland 0.0575 0.0339 −0.0264 0.000697
United Kingdom 0.1258 0.0758 0.0155 0.000240
United States 0.0634 0.0509 −0.0094 0.000088

Average: 0.0603 Sum: 0.001598

Source: International Monetary Fund.

The average inflation rate for this period is 6.03 percent. The next-to-last column
shows the amount each country’s long-term inflation rate deviates from that average;
the last column shows the square of that deviation. The sum of those squared deviations
is the total variation in Y for the sample (0.001598), shown in Table 8-8.

The coefficient of determination for the regression is

Total variation − Unexplained variation

Total variation
= 0.001598 − 0.000386

0.001598
= 0.7584

Note that this method gives the same result rounded to two decimal places, 0.76, that
we obtained earlier (the difference at greater decimal places results from rounding). We
will use this method again in the chapter on multiple regression; when we have more
than one independent variable, this method is the only way to compute the coefficient
of determination.

3.5. Hypothesis Testing

In this section, we address testing hypotheses concerning the population values of the intercept
or slope coefficient of a regression model. This topic is critical in practice. For example, we
may want to check a stock’s valuation using the capital asset pricing model; we hypothesize
that the stock has a market-average beta or level of systematic risk. Or we may want to test the
hypothesis that economists’ forecasts of the inflation rate are unbiased (not overestimates or
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underestimates, on average). In each case, does the evidence support the hypothesis? Questions
such as these can be addressed with hypothesis tests within a regression model. Such tests are
often t-tests of the value of the intercept or slope coefficient(s). To understand the concepts
involved in this test, it is useful to first review a simple, equivalent approach based on
confidence intervals.

We can perform a hypothesis test using the confidence interval approach if we know
three things: (1) the estimated parameter value, b̂0 or b̂1, (2) the hypothesized value of
the parameter, b0 or b1, and (3) a confidence interval around the estimated parameter.
A confidence interval is an interval of values that we believe includes the true parameter
value, b1, with a given degree of confidence. To compute a confidence interval, we must
select the significance level for the test and know the standard error of the estimated
coefficient.

Suppose we regress a stock’s returns on a stock market index’s returns and find that the
slope coefficient (b̂1) is 1.5 with a standard error (sb̂1

) of 0.200. Assume we used 62 monthly
observations in our regression analysis. The hypothesized value of the parameter (b1) is 1.0,
the market average slope coefficient. The estimated and the population slope coefficients are
often called beta, because the population coefficient is often represented by the Greek symbol
beta (β) rather than the b1 we use in this text. Our null hypothesis is that b1 = 1.0 and b̂1 is
the estimate for b1. We will use a 95 percent confidence interval for our test, or we could say
that the test has a significance level of 0.05.

Our confidence interval will span the range b̂1 − tcsb̂1
to b̂1 + tc sb̂1

, or

b̂1 ± tc sb̂1
(8-9)

where tc is the critical t value.31 The critical value for the test depends on the number of
degrees of freedom for the t-distribution under the null hypothesis. The number of degrees
of freedom equals the number of observations minus the number of parameters estimated. In
a regression with one independent variable, there are two estimated parameters, the intercept
term and the coefficient on the independent variable. For 62 observations and two parameters
estimated in this example, we have 60 degrees of freedom (62 − 2). For 60 degrees of freedom,
the table of critical values in the back of the book shows that the critical t-value at the 0.05
significance level is 2.00. Substituting the values from our example into Equation 8-9 gives us
the interval

b̂1 ± tcsb̂1
= 1.5 ± 2.00(0.200)

= 1.5 ± 0.400

= 1.10 to 1.90

Under the null hypothesis, the probability that the confidence interval includes b1 is 95
percent. Because we are testing b1 = 1.0 and because our confidence interval does not include
1.0, we can reject the null hypothesis. Therefore, we can be 95 percent confident that the
stock’s beta is different from 1.0.

31We use the t-distribution for this test because we are using a sample estimate of the standard error,
sb, rather than its true (population) value. In the chapter on sampling and estimation, we discussed the
concept of degrees of freedom.
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In practice, the most common way to test a hypothesis using a regression model is with a
t-test of significance. To test the hypothesis, we can compute the statistic

t = b̂1 − b1

sb̂1

(8-10)

This test statistic has a t-distribution with n − 2 degrees of freedom because two parameters
were estimated in the regression. We compare the absolute value of the t-statistic to tc. If the
absolute value of t is greater than tc, then we can reject the null hypothesis. Substituting the
values from the above example into this relationship gives the t-statistic associated with the
probability that the stock’s beta equals 1.0 (b1 = 1.0).

t = b̂1 − b1

sb̂1

= (1.5 − 1.0)/0.200

= 2.50

Because t > tc , we reject the null hypothesis that b1 = 1.0.
The t-statistic in the example above is 2.50, and at the 0.05 significance level, tc = 2.00;

thus we reject the null hypothesis because t > tc. This statement is equivalent to saying that
we are 95 percent confident that the interval for the slope coefficient does not contain the
value 1.0. If we were performing this test at the 0.01 level, however, tc would be 2.66 and
we would not reject the hypothesis because t would not be greater than tc at this significance
level. A 99 percent confidence interval for the slope coefficient does contain the value 1.0.

The choice of significance level is always a matter of judgment. When we use higher
levels of confidence, the tc increases. This choice leads to wider confidence intervals and to
a decreased likelihood of rejecting the null hypothesis. Analysts often choose the 0.05 level
of significance, which indicates a 5 percent chance of rejecting the null hypothesis when, in
fact, it is true (a Type I error). Of course, decreasing the level of significance from 0.05 to
0.01 decreases the probability of Type I error, but it increases the probability of Type II
error—failing to reject the null hypothesis when, in fact, it is false.32

Often, financial analysts do not simply report whether or not their tests reject a particular
hypothesis about a regression parameter. Instead, they report the p-value or probability value
for a particular hypothesis. The p-value is the smallest level of significance at which the null
hypothesis can be rejected. It allows the reader to interpret the results rather than be told
that a certain hypothesis has been rejected or accepted. In most regression software packages,
the p-values printed for regression coefficients apply to a test of null hypothesis that the true
parameter is equal to 0 against the alternative that the parameter is not equal to 0, given the
estimated coefficient and the standard error for that coefficient. For example, if the p-value is
0.005, we can reject the hypothesis that the true parameter is equal to 0 at the 0.5 percent
significance level (99.5 percent confidence).

The standard error of the estimated coefficient is an important input for a hypothesis test
concerning the regression coefficient (and for a confidence interval for the estimated coefficient).
Stronger regression results lead to smaller standard errors of an estimated parameter and result

32For a full discussion of Type I and Type II errors, see the chapter on hypothesis testing.
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in tighter confidence intervals. If the standard error (sb̂1
) in the above example were 0.100

instead of 0.200, the confidence interval range would be half as large and the t-statistic twice
as large. With a standard error this small, we would reject the null hypothesis even at the 0.01
significance level because we would have t = (1.5 − 1)/0.1 = 5.00 and tc = 2.66.

With this background, we can turn to hypothesis tests using actual regression results. The
next three examples illustrate hypothesis tests in a variety of typical investment contexts.

EXAMPLE 8-14 Estimating Beta for General Motors Stock

You are an investor in General Motors stock and want an estimate of its beta. As in the
text example, you hypothesize that GM has an average level of market risk and that its
required return in excess of the risk-free rate is the same as the market’s required excess
return. One regression that summarizes these statements is

(R − RF ) = α + β(RM − RF ) + ε (8-11)

where RF is the periodic risk-free rate of return (known at the beginning of the period),
RM is the periodic return on the market, R is the periodic return to the stock of the
company, and β is the covariance of stock and market return divided by the variance
of the market return, Cov(R, RM )/σM

2. Estimating this equation with linear regression
provides an estimate of β, β̂, which tells us the size of the required return premium for
the security, given expectations about market returns.33

Suppose we want to test the null hypothesis, H0, that β = 1 for GM stock to see
whether GM stock has the same required return premium as the market as a whole.
We need data on returns to GM stock, a risk-free interest rate, and the returns to the
market index. For this example, we use data from January 1998 through December
2002 (n = 60). The return to GM stock is R. The monthly return to 30-day Treasury
bills is RF . The return to the S&P 500 is RM .34 We are estimating two parameters, so
the number of degrees of freedom is n − 2 = 60 − 2 = 58. Table 8-9 shows the results
from the regression (R − RF ) = α + β(RM − RF ) + ε.

We are testing the null hypothesis, H0, that β for GM equals 1 (β = 1) against
the alternative hypothesis that β does not equal 1 (β �= 1). The estimated β̂ from the
regression is 1.1958. The estimated standard error for that coefficient in the regression,
sβ̂ is 0.2354. The regression equation has 58 degrees of freedom (60 − 2), so the
critical value for the test statistic is approximately tc = 2.00 at the 0.05 significance

33Beta (β) is typically estimated using 60 months of historical data, but the data-sample length sometimes
varies. Although monthly data is typically used, some financial analysts estimate β using daily data.
For more information on methods of estimating β, see Reilly and Brown (2003). The expected excess
return for GM stock above the risk-free rate (R − RF ) is β(RM − RF ), given a particular excess return
to the market above the risk-free rate (RM − RF ). This result holds because we regress (R − RF ) against
(RM − RF ). For example, if a stock’s beta is 1.5, its expected excess return is 1.5 times that of the market
portfolio.
34Data on GM stock returns came from Bloomberg. Data on T-bill returns and S&P 500 returns came
from Ibbotson Associates.
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level. Therefore, the 95 percent confidence interval for the data for any particular
hypothesized value of β is shown by the range

β̂ ± tc sβ̂

1.1958 ± 2.00(0.2354)

0.7250 to 1.6666

In this case, the hypothesized parameter value is β = 1, and the value 1 falls inside this
confidence interval, so we cannot reject the hypothesis at the 0.05 significance level.
This means that we cannot reject the hypothesis that GM stock has the same systematic
risk as the market as a whole.

TABLE 8-9 Estimating Beta for GM Stock

Regression Statistics

Multiple R 0.5549
R-squared 0.3079
Standard error of estimate 0.0985
Observations 60

Coefficients Standard Error t-Statistic

Alpha 0.0036 0.0127 0.2840
Beta 1.1958 0.2354 5.0795

Source: Ibbotson Associates and Bloomberg L.P.

Another way of looking at this issue is to compute the t-statistic for the GM beta
hypothesized parameter using Equation 8-10:

t = β̂ − β

sβ̂
= 1.1958 − 1.0

0.2354
= 0.8318

This t-statistic is less than the critical t-value of 2.00. Therefore, neither approach allows
us to reject the null hypothesis. Note that the t-statistic associated with β̂ in the regression
results in Table 8-9 is 5.0795. Given the significance level we are using, we cannot reject
the null hypothesis that β = 1, but we can reject the hypothesis that β = 0.35

Note also that the R2 in this regression is only 0.3079. This result suggests that only
about 31 percent of the total variation in the excess return to GM stock (the return to
GM above the risk-free rate) can be explained by excess return to the market portfolio.
The remaining 69 percent of GM stock’s excess return variation is the nonsystematic
component, which can be attributed to company-specific risk.

35The t-statistics for a coefficient automatically reported by statistical software programs assume that the
null hypothesis states that the coefficient is equal to 0. If you have a different null hypothesis, as we do
in this example (β = 1), then you must either construct the correct test statistic yourself or instruct the
program to compute it.
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In the next example, we show a regression hypothesis test with a one-sided alter-
native.

EXAMPLE 8-15 Explaining Company Value Based on
Returns to Invested Capital

Some financial analysts have argued that one good way to measure a company’s ability
to create wealth is to compare the company’s return on invested capital (ROIC) to its
weighted-average cost of capital (WACC). If a company has an ROIC greater than its
cost of capital, the company is creating wealth; if its ROIC is less than its cost of capital,
it is destroying wealth.36

Enterprise value (EV) is a market-price-based measure of company value defined as
the market value of equity and debt minus the value of cash and investments. Invested
capital (IC) is an accounting measure of company value defined as the sum of the book
values of equity and debt. Higher ratios of EV to IC should reflect greater success at
wealth creation in general. Mauboussin (1996) argued that the spread between ROIC
and WACC helps explains the ratio of EV to IC. Using data on companies in the food-
processing industry, we can test the relationship between EV/IC and (ROIC–WACC)
using the regression model given in Equation 8-12.

EVi/ICi = b0 + b1(ROICi − WACCi) + εi (8-12)

where the subscript i is an index to identify the company. Our null hypothesis
is H0: b1 ≤ 0, and we specify a significance level of 0.05. If we reject the null
hypothesis, we have evidence of a statistically significant relationship between EV/IC
and (ROIC–WACC). We estimate Equation 8-12 using data from nine food-processing
companies for 2001.37 The results of this regression are displayed in Table 8-10 and
Figure 8-11.

TABLE 8-10 Explaining Enterprise Value/Invested Capital by the
ROIC–WACC Spread

Regression Statistics

Multiple R 0.9469
R-squared 0.8966
Standard error of estimate 0.7422
Observations 9

Coefficients Standard Error t-Statistic

Intercept 1.3478 0.3511 3.8391
Spread 30.0169 3.8519 7.7928

Source: Nelson (2003).

36See, for example, Stewart (1991) and Mauboussin (1996).
37Our data come from Nelson (2003). Many sell-side analysts use this type of regression. It is one of the
most frequently used cross-sectional regressions in published analyst reports.
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FIGURE 8-11 Fitted Regression Line Explaining Enterprise Value/Invested Capital Using
ROIC–WACC Spread for the Food Industry
Source: CSFB Food Investors Handbook 2003.

We reject the null hypothesis based on the t-statistic of approximately 7.79 on
estimated slope coefficient. There is a strong positive relationship between the return
spread (ROIC–WACC) and the ratio of EV to IC in our sample of companies.
Figure 8-11 illustrates the strong positive relationship. The R2 of 0.8966 indicates
that the return spread explains about 90 percent of the variation in the ratio of EV
to IC among the food-processing companies in the sample in 2001. The coefficient
on the return spread of 30.0169 implies that the predicted increase in EV/IC is
0.01(30.0169) = 0.3002 or about 30 percent for a 1-percentage-point increase in the
return spread, for our sample of companies.

In the final example of this section, we show that the null hypothesis can involve a slope
coefficient of 1 just as well as a slope of 0.

EXAMPLE 8-16 Testing Whether Inflation Forecasts
Are Unbiased

Example 8-11 introduced the concept of testing for bias in forecasts. That example
showed that if a forecast is unbiased, its expected error is 0. We can examine whether a
time-series of forecasts for a particular economic variable is unbiased by comparing the
forecast at each date with the actual value of the economic variable announced after the
forecast. If the forecasts are unbiased, then, by definition, the average realized forecast
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error should be close to 0. In that case, the value of b0 (the intercept) should be 0 and
the value of b1 (the slope) should be 1, as discussed in Example 8-11.

Refer once again to Figure 8-9, which shows the current-quarter predictions of
percentage change in CPI made by professional economic forecasters and the actual
percentage change from the first quarter of 1983 through the fourth quarter of 2002
(n = 80). To test whether the forecasts are unbiased, we must estimate the regression
shown in Example 8-11. We report the results of this regression in Table 8-11. The
equation to be estimated is

Actual percentage change in CPIt = b0 + b1(Predicted changet ) + εt

This regression estimates two parameters (the intercept and the slope); therefore, the
regression has n − 2 = 80 − 2 = 78 degrees of freedom.

TABLE 8-11 Testing Whether Forecasts of CPI Are Unbiased
(Dependent Variable: CPI Change Expressed in Percent)

Regression Statistics

Multiple R 0.7138
R-squared 0.5095
Standard error of estimate 1.0322
Observations 80

Coefficients Standard Error t-Statistic

Intercept −0.0140 0.3657 −0.0384
Forecast (slope) 0.9637 0.1071 9.0008

Sources: Federal Reserve Banks of Philadelphia and St. Louis.

We can now test two null hypotheses about the parameters in this regression.
Our first null hypothesis is that the intercept in this regression is 0 (H0: b0 = 0). The
alternative hypothesis is that the intercept does not equal 0 (Ha : b0 �= 0). Our second
null hypothesis is that the slope coefficient in this regression is 1 (H0: b1 = 1). The
alternative hypothesis is that the slope coefficient does not equal 1 (Ha : b1 �= 1).

To test the hypotheses about b0 and b1, we must first decide on a critical value
based on a particular significance level and then construct the confidence intervals for
each parameter. If we choose the 0.05 significance level, with 78 degrees of freedom,
the critical value, tc, is approximately 1.99. The estimated value of the parameter b̂0 is
−0.0140, and the estimated value of the standard error for b̂0(sb̂0

) is 0.3657. Let B0

stand for any particular hypothesized value. Therefore, under the null hypothesis that
b0 = B0, a 95 percent confidence interval for b0 is

b̂0 ± tc sb̂0

−0.0140 ± 1.99(0.3657)

−0.7417 to 0.7137



318 Quantitative Investment Analysis

In this case, B0 is 0. The value of 0 falls within this confidence interval, so we cannot
reject the first null hypothesis that b0 = 0. We will explain how to interpret this result
shortly.

Our second null hypothesis is based on the same sample as our first null hypothesis.
Therefore, the critical value for testing that hypothesis is the same as the critical value
for testing the first hypothesis (tc = 1.99). The estimated value of the parameter b̂1 is
0.9637, and the estimated value of the standard error for b̂1, sb̂1

, is 0.1071. Therefore,
the 95 percent confidence interval for any particular hypothesized value of b1 can be
constructed as follows:

b̂1 ± tc sb̂1

0.9637 ± 1.99(0.1071)

0.7506 to 1.1768

In this case, our hypothesized value of b1 is 1. The value 1 falls within this confidence
interval, so we cannot reject the null hypothesis that b1 = 1 at the 0.05 significance
level. Because we did not reject either of the null hypotheses (b0 = 0, b1 = 1) about
the parameters in this model, we cannot reject the hypothesis that the forecasts of CPI
change were unbiased.38

As an analyst, you often will need forecasts of economic growth to help you
make recommendations about asset allocation, expected returns, and other investment
decisions. The hypothesis tests just conducted suggest that you cannot reject the
hypothesis that the CPI predictions in the Survey of Professional Forecasters are
unbiased. If you need an unbiased forecast of future percentage change in CPI for your
asset-allocation decision, you might want to use these forecasts.

3.6. Analysis of Variance in a Regression with
One Independent Variable

Analysis of variance (ANOVA) is a statistical procedure for dividing the total variability
of a variable into components that can be attributed to different sources.39 In regres-
sion analysis, we use ANOVA to determine the usefulness of the independent variable or
variables in explaining variation in the dependent variable. An important statistical test
conducted in analysis of variance is the F -test. The F -statistic tests whether all the slope
coefficients in a linear regression are equal to 0. In a regression with one independent
variable, this is a test of the null hypothesis H0: b1 = 0 against the alternative hypothesis
Ha : b1 �= 0.

To correctly determine the test statistic for the null hypothesis that the slope coefficient
equals 0, we need to know the following:

38Jointly testing the hypothesis b0 = 0 and b1 = 1 would require us to take into account the covariance
of b̂0 and b̂1. For information on testing joint hypotheses of this type, see Greene (2003).
39In this chapter, we focus on regression applications of ANOVA, the most common context in which
financial analysts will encounter this tool. In this context, ANOVA is used to test whether all the
regression slope coefficients are equal to 0. Analysts also use ANOVA to test a hypothesis that the means
of two or more populations are equal. See Daniel and Terrell (1995) for details.
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• the total number of observations (n);
• the total number of parameters to be estimated (in a one-independent-variable regression,

this number is two: the intercept and the slope coefficient);

• the sum of squared errors or residuals,
n∑

i=1

(Yi − Ŷi)
2, abbreviated SSE. This value is also

known as the residual sum of squares; and

• the regression sum of squares,
n∑

i=1

(Ŷi − Y )2, abbreviated RSS. This value is the amount of

total variation in Y that is explained in the regression equation. Total variation (TSS) is
the sum of SSE and RSS.

The F -test for determining whether the slope coefficient equals 0 is based on an F -statistic,
constructed using these four values. The F -statistic measures how well the regression equation
explains the variation in the dependent variable. The F -statistic is the ratio of the average
regression sum of squares to the average sum of the squared errors. The average regression
sum of squares is computed by dividing the regression sum of squares by the number of slope
parameters estimated (in this case, one). The average sum of squared errors is computed by
dividing the sum of squared errors by the number of observations, n, minus the total number of
parameters estimated (in this case, two: the intercept and the slope). These two divisors are the
degrees of freedom for an F -test. If there are n observations, the F -test for the null hypothesis
that the slope coefficient is equal to 0 is here denoted F# slope parameters, n−# parameters = F1,n−2,
and the test has 1 and n − 2 degrees of freedom.

Suppose, for example, that the independent variable in a regression model explains none
of the variation in the dependent variable. Then the predicted value for the regression model,
Ŷi, is the average value of the dependent variable Y . In this case, the regression sum of squares

n∑
i=1

(Ŷi − Y )2 is 0. Therefore, the F -statistic is 0. If the independent variable explains little of

the variation in the dependent variable, the value of the F -statistic will be very small.
The formula for the F -statistic in a regression with one independent variable is

F = RSS/1

SSE/(n − 2)
= Mean regression sum of squares

Mean squared error
(8-13)

If the regression model does a good job of explaining variation in the dependent variable,
then this ratio should be high. The explained regression sum of squares per estimated parameter
will be high relative to the unexplained variation for each degree of freedom. A table of critical
values for this F -statistic is given in the back of this book.

Even though the F -statistic is commonly computed by regression software packages, ana-
lysts typically do not use ANOVA and F -tests in regressions with just one independent variable.
Why not? In such regressions, the F -statistic is the square of the t-statistic for the slope coeffi-
cient. Therefore, the F -test duplicates the t-test for the significance of the slope coefficient. This
relation is not true for regressions with two or more slope coefficients. Nevertheless, the one-
slope coefficient case gives a foundation for understanding the multiple-slope coefficient cases.

Often, mutual fund performance is evaluated based on whether the fund has pos-
itive alpha—significantly positive excess risk-adjusted returns.40 One commonly used

40Note that the Greek letter alpha, α, is traditionally used to represent the intercept in
Equation 8-14 and should not be confused with another traditional usage of α to represent a
significance level.
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method of risk adjustment is based on the capital asset pricing model. Consider the
regression

(Ri − RF ) = αi + βi(RM − RF ) + εi (8-14)

where RF is the periodic risk-free rate of return (known at the beginning of the period),
RM is the periodic return on the market, Ri is the periodic return to Mutual Fund i,
and βi is the fund’s beta. A fund has zero risk-adjusted excess return if αi = 0. If αi = 0,
then (Ri − RF ) = βi(RM − RF ) + εi and taking expectations, E(Ri) = RF + βi(RM − RF ),
implying that βi completely explains the fund’s mean excess returns. If, for example, αi > 0,
the fund is earning higher returns than expected given its beta.

In summary, to test whether a fund has a positive alpha, we must test the null hypothesis
that the fund has no risk-adjusted excess returns (H0: α = 0) against the alternative hypothesis
of nonzero risk-adjusted returns (Ha : α �= 0).

EXAMPLE 8-17 Performance Evaluation: The Dreyfus
Appreciation Fund

Table 8-12 presents results evaluating the excess return to the Dreyfus Appreciation
Fund from January 1998 through December 2002. Note that the estimated beta in this
regression, β̂i, is 0.7902. The Dreyfus Appreciation Fund was estimated to be about 0.8
times as risky as the market as a whole.

TABLE 8-12 Performance Evaluation of Dreyfus Appreciation Fund,
January 1998 to December 2002

Regression Statistics

Multiple R 0.9280
R-squared 0.8611
Standard error of estimate 0.0174
Observations 60

Degrees of Sum of Mean Sum of
ANOVA Freedom (df ) Squares (SS) Squares (MSS) F

Regression 1 0.1093 0.1093 359.64
Residual 58 0.0176 0.0003
Total 59 0.1269

Coefficients Standard Error t-Statistic

Alpha 0.0009 0.0023 0.4036
Beta 0.7902 0.0417 18.9655

Source: Center for Research in Security Prices, University of Chicago.

Note also that the estimated alpha (α̂) in this regression is positive (0.0009). The
value of the coefficient is only a little more than one-third the size of the standard
error for that coefficient (0.0023), so the t-statistic for the coefficient is only 0.4036.
Therefore, we cannot reject the null hypothesis (α = 0) that the fund did not have
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a significant excess return beyond the return associated with the market risk of the fund.
This result means that the returns to the fund were explained by the market risk of the
fund and there was no additional statistical significance to the excess returns to the fund
during this period.41

Because the t-statistic for the slope coefficient in this regression is 18.9655, the
p-value for that coefficient is less than 0.0001 and is approximately zero. Therefore, the
probability that the true value of this coefficient is actually 0 is microscopic.

How can we use an F -test to determine whether the slope coefficient in this
regression is equal to 0? The ANOVA portion of Table 8-12 provides the data we need.
In this case,

• the total number of observations (n) is 60;
• the total number of parameters to be estimated is 2 (intercept and slope);
• the sum of squared errors or residuals, SSE, is 0.0176; and
• the regression sum of squares, RSS, is 0.1093.

Therefore, the F -statistic to test whether the slope coefficient is equal to 0 is

0.1093/1

0.0176/(60 − 2)
= 360.19

(The slight difference from the F -statistic in Table 8-12 is due to rounding.) The
ANOVA output would show that the p-value for this F -statistic is less than 0.0001 and
is exactly the same as the p-value for the t-statistic for the slope coefficient. Therefore,
the F -test tells us nothing more than we already knew from the t-test. Note also that
the F -statistic (359.64) is the square of the t-statistic (18.9655).

3.7. Prediction Intervals

Financial analysts often want to use regression results to make predictions about a dependent
variable. For example, we might ask, ‘‘How fast will the sales of XYZ Corporation grow this
year if real GDP grows by 4 percent?’’ But we are not merely interested in making these
forecasts; we also want to know how certain we should be about the forecasts’ results. For
example, if we predicted that sales for XYZ Corporation would grow by 6 percent this year,
our prediction would mean more if we were 95 percent confident that sales growth would fall
in the interval from 5 percent to 7 percent, rather than only 25 percent confident that this
outcome would occur. Therefore, we need to understand how to compute confidence intervals
around regression forecasts.

We must take into account two sources of uncertainty when using the regression
model Yi = b0 + b1Xi + εi, i = 1, . . . , n and the estimated parameters, b̂0 and b̂1, to make a

41This example introduces a well-known investment use of regression involving the capital asset pricing
model. Researchers, however, recognize qualifications to the interpretation of alpha from a linear
regression. The systematic risk of a managed portfolio is controlled by the portfolio manager. If, as a
consequence, portfolio beta is correlated with the return on the market (as could result from market
timing), inferences on alpha based on least-squares beta, as here, can be mistaken. This advanced subject
is discussed in Dybvig and Ross (1985a) and (1985b).
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prediction. First, the error term itself contains uncertainty. The standard deviation of the error
term, σε, can be estimated from the standard error of estimate for the regression equation. A
second source of uncertainty in making predictions about Y , however, comes from uncertainty
in the estimated parameters b̂0 and b̂1.

If we knew the true values of the regression parameters, b0 and b1, then the variance of
our prediction of Y , given any particular predicted (or assumed) value of X , would simply be
s2, the squared standard error of estimate. The variance would be s2 because the prediction,
Ŷ , would come from the equation Ŷ = b0 + b1X and (Y − Ŷ ) = ε.

Because we must estimate the regression parameters b̂0 and b̂1 however, our prediction
of Y , Ŷ , given any particular predicted value of X , is actually Ŷ = b̂0 + b̂1X . The estimated
variance of the prediction error, s2f of Y , given X , is

s2
f = s2

[
1 + 1

n
+ (X − X )2

(n − 1)s2
x

]
(8-15)

This estimated variance depends on

• the squared standard error of estimate, s2;
• the number of observations, n;
• the value of the independent variable, X , used to predict the dependent variable;
• the estimated mean, X ; and
• variance, s2x of the independent variable.42

Once we have this estimate of the variance of the prediction error, determining a predic-
tion interval around the prediction is very similar to estimating a confidence interval around
an estimated parameter, as shown earlier in this chapter. We need to take the following four
steps to determine the prediction interval for the prediction:

1. Make the prediction.
2. Compute the variance of the prediction error using Equation 8-15.
3. Choose a significance level, α, for the forecast. For example, the 0.05 level, given

the degrees of freedom in the regression, determines the critical value for the forecast
interval, tc.

4. Compute the (1 − α) percent prediction interval for the prediction, namely Ŷ ± tcsf .

EXAMPLE 8-18 Predicting the Ratio of Enterprise Value to
Invested Capital

We continue with the example of explaining the ratio of enterprise value to invested
capital among food-processing companies by the spread between the return to invested
capital and the weighted-average cost of capital (ROIC–WAAC). In Example 8-15, we
estimated the regression given in Table 8-10.

42For a derivation of this equation, see Pindyck and Rubinfeld (1998).
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You are interested in predicting the ratio of enterprise value to invested capital for
a company if the return spread between ROIC and WACC is 10 percentage points.

TABLE 8-10 (repeated) Explaining Enterprise Value/Invested Capital by the
ROIC–WACC Spread

Regression Statistics

Multiple R 0.9469
R-squared 0.8966
Standard error of estimate 0.7422
Observations 9

Coefficients Standard Error t-Statistic

Intercept 1.3478 0.3511 3.8391
Spread 30.0169 3.8519 7.7928

Source: Nelson (2003).

What is the 95 percent confidence interval for the ratio of enterprise value to invested
capital for that company?

Using the data provided in Table 8-10, take the following steps:

1. Make the prediction: Expected EV/IC = 1.3478 + 30.0169(0.10) = 4.3495.
This regression suggests that if the return spread between ROIC and WACC (Xi)
is 10 percent, the EV/IC ratio will be 4.3495.

2. Compute the variance of the prediction error. To compute the variance of the
forecast error, we must know

• the standard error of the estimate of the equation, s = 0.7422 (as shown
in Table 8-10);

• the mean return spread, X = 0.0647 (this computation is not shown in
the table); and

• the variance of the mean return spread in the sample, s2x = 0.004641
(this computation is not shown in the table).

Using these data, you can compute the variance of the forecast error (s2f ) for
predicting EV/IC for a company with a 10 percent spread between ROIC and
WACC.

s2f = 0.74222
[

1 + 1

9
+ (0.10 − 0.0647)2

(9 − 1)0.004641

]

= 0.630556

In this example, the variance of the forecast error is 0.630556, and the standard
deviation of the forecast error is sf = (0.630556)1/2 = 0.7941.
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3. Determine the critical value of the t-statistic. Given a 95 percent confidence
interval and 9 − 2 = 7 degrees of freedom, the critical value of the t-statistic, tc ,
is 2.365 using the tables in the back of the book.

4. Compute the prediction interval. The 95 percent confidence interval for EV/IC
extends from 4.3495 − 2.365(0.7941) to 4.3495 + 2.365(0.7941), or 2.4715 to
6.2275.

In summary, if the spread between the ROIC and the WACC is 10 percent, the 95
percent prediction interval for EV/IC will extend from 2.4715 to 6.2275. The small
sample size is reflected in the relatively large prediction interval.

3.8. Limitations of Regression Analysis

Although this chapter has shown many of the uses of regression models for financial analysis,
regression models do have limitations. First, regression relations can change over time, just as
correlations can. This fact is known as the issue of parameter instability, and its existence
should not be surprising as the economic, tax, regulatory, political, and institutional contexts
in which financial markets operate change. Whether considering cross-sectional or time-
series regression, the analyst will probably face this issue. As one example, cross-sectional
regression relationships between stock characteristics may differ between growth-led and
value-led markets. As a second example, the time-series regression estimating the beta often
yields significantly different estimated betas depending on the time period selected. In both
cross-sectional and time-series contexts, the most common problem is sampling from more
than one population, with the challenge of identifying when doing so is an issue.

A second limitation to the use of regression results specific to investment contexts is that
public knowledge of regression relationships may negate their future usefulness. Suppose, for
example, an analyst discovers that stocks with a certain characteristic have had historically very
high returns. If other analysts discover and act upon this relationship, then the prices of stocks
with that characteristic will be bid up. The knowledge of the relationship may result in the
relation no longer holding in the future.

Finally, if the regression assumptions listed in Section 3.2 are violated, hypothesis tests
and predictions based on linear regression will not be valid. Although there are tests for
violations of regression assumptions, often uncertainty exists as to whether an assumption has
been violated. This limitation will be discussed in detail in the chapter on multiple regression.



CHAPTER 9
MULTIPLE REGRESSION

AND ISSUES IN
REGRESSION ANALYSIS

1. INTRODUCTION

As financial analysts, we often need to use more-sophisticated statistical methods than
correlation analysis or regression involving a single independent variable. For example, a
trading desk interested in the costs of trading Nasdaq stocks might want information on the
determinants of the bid–ask spread on the Nasdaq. A mutual fund analyst might want to
know whether returns to a technology mutual fund behaved more like the returns to a growth
stock index or like the returns to a value stock index. An investor might be interested in the
factors that determine whether analysts cover a stock. We can answer these questions using
linear regression with more than one independent variable—multiple linear regression.

In Sections 2 and 3, we introduce and illustrate the basic concepts and models of multiple
regression analysis. These models rest on assumptions that are sometimes violated in practice.
In Section 4, we discuss three major violations of a regression assumption. We address practical
concerns such as how to diagnose an assumption violation and what remedial steps to take
when a model assumption has been violated. Section 5 outlines some guidelines for building
good regression models and discusses ways that analysts sometimes go wrong in this endeavor.
In a number of investment applications, we are in-terested in the probability that one of two
outcomes occurs: For example, we may be interested in whether a stock has analyst coverage or
not. Section 6 discusses a class of models, qualitative dependent variable models, that addresses
such questions.

2. MULTIPLE LINEAR REGRESSION

As investment analysts, we often hypothesize that more than one variable explains the behavior
of a variable in which we are interested. The variable we seek to explain is called the dependent
variable. The variables that we believe explain the dependent variable are called the independent
variables.1 A tool that permits us to examine the relationship (if any) between the two types of
variables is multiple linear regression. Multiple linear regression allows us to determine the
effect of more than one independent variable on a particular dependent variable.

1Independent variables are also called explanatory variables or regressors.
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To give an example of how we might use this tool, suppose we want to know whether
the bid–ask spread for stocks trading in a dealer market is affected by the number of market
makers (dealers) for that stock and the market capitalization of the stock. We can address this
question using the following multiple linear regression model:

Yi = b0 + b1X1i + b2X2i + εi

where

Yi = the natural logarithm of the bid-ask spread for stock i (the dependent variable)
X1i = the natural logarithm of the number of market makers for stock i
X2i = the natural logarithm of the market capitalization of company i
εi = the error term

Of course, linear regression models can use more than two independent variables to
explain the dependent variable. A multiple linear regression model has the general form

Yi = b0 + b1X1i + b2X2i + · · · + bkXki + εi, i = 1, 2, . . . , n (9-1)

where

Yi = the ith observation of the dependent variable Y
Xji = the ith observation of the independent variable Xj , j = 1, 2, . . . , k
b0 = the intercept of the equation

b1, . . . , bk = the slope coefficients for each of the independent variables
εi = the error term
n = the number of observations

A slope coefficient, bj , measures how much the dependent variable, Y , changes when the
independent variable, Xj , changes by one unit, holding all other independent variables
constant. For example, if b1 = 1 and all of the other independent variables remain constant,
then we predict that if X1 increases by one unit, Y will also increase by one unit. If
b1 = −1 and all of the other independent variables are held constant, then we predict
that if X1 increases by one unit, Y will decrease by one unit. Multiple linear regression
estimates b0, . . . , bk. In this chapter, we will refer to both the intercept, b0, and the slope
co-efficients, b1, . . . , bk, as regression coefficients. As we proceed with our discussion,
keep in mind that a regression equation has k slope coefficients and k + 1 regression
coefficients.

In practice, we use software to estimate a multiple regression model. Example 9-1 presents
an application of multiple regression analysis in investment practice. In the course of discussing
a hypothesis test, Example 9-1 presents typical regression output and its interpretation.

EXAMPLE 9-1 Explaining the Bid–Ask Spread

As the manager of the trading desk at an investment management firm, you have noticed
that the average bid–ask spreads of different Nasdaq-listed stocks can vary widely.
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When the ratio of a stock’s bid–ask spread to its price is higher than for another stock,
your firm’s costs of trading in that stock tend to be higher. You have formulated the
hypothesis that Nasdaq stocks’ percentage bid–ask spreads are related to the number
of market makers and the company’s stock market capitalization. You have decided to
investigate your hypothesis using multiple regression analysis.

You specify a regression model in which the dependent variable measures the
percentage bid–ask spread and the independent variables measure the number of
market makers and the company’s stock market capitalization. The regression is
estimated using data from December 2002 for 1,819 Nasdaq-listed stocks. Based on
earlier published research exploring bid–ask spreads, you express the dependent and
independent variables as natural logarithms, a so-called log-log regression model.
A log-log regression model may be appropriate when one believes that proportional
changes in the dependent variable bear a constant relationship to proportional changes
in the independent variable(s), as we illustrate below. You formulate the multiple
regression:

Yi = b0 + b1X1i + b2X2i + εi (9-2)

where

Yi = the natural logarithm of (bid–ask spread/stock price) for stock i
X1i = the natural logarithm of the number of Nasdaq market makers for stock i
X2i = the natural logarithm of the market capitalization (measured in millions

of dollars) of company i

In a log-log regression such as Equation 9-2, the slope coefficients are interpreted as
elasticities, assumed to be constant. For example, b2 = −0.75 means that for a 1 percent
increase in the market capitalization, we expect bid–ask spread/stock price to decrease
by 0.75 percent, holding all other independent variables constant.2

Reasoning that greater competition tends to lower costs, you suspect that the greater
the number of market makers, the smaller the percentage bid–ask spread. Therefore,
you formulate a first null hypothesis and alternative hypothesis:

H0 : b1 ≥ 0

Ha : b1 < 0

The null hypothesis is the hypothesis that the ‘‘suspected’’ condition is not true. If the
evidence supports rejecting the null hypothesis and accepting the alternative hypothesis,
you have statistically confirmed your suspicion.3

You also believe that the stocks of companies with higher market capitalization may
have more-liquid markets, tending to lower percentage bid–ask spreads. Therefore, you
formulate a second null hypothesis and alternative hypothesis:

2Note that �(ln X ) ≈ �X /X , where � represents ‘‘change in’’ and �X /X is a proportional change in
X . We discuss the model further in Example 9-11.
3An alternative valid formulation is a two-sided test H0 : b1 = 0, versus Ha : b1 �= 0 which reflects the
beliefs of the researcher less strongly. See the chapter on hypothesis testing. A two-sided test could also
be conducted for the hypothesis on market capitalization that we discuss next.
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H0 : b2 ≥ 0

Ha : b2 < 0

For both tests, we use a t-test, rather than a z-test, because we do not know the
population variance of b1 and b2.4 Suppose that you choose a 0.01 significance level
for both tests. Table 9-1 shows the results of estimating this linear regression using data
from December 2002.

TABLE 9-1 Results from Regressing ln(Bid–Ask Spread/Price) on ln(Number of
Market Makers) and ln(Market Cap)

Coefficient Standard Error t-Statistic

Intercept −0.7586 0.1369 −5.5416
ln(Number of Nasdaq market makers) −0.2790 0.0673 −4.1427
ln(Company’s market cap) −0.6635 0.0246 −27.0087

ANOVA df SS MSS F Significance F

Regression 2 2,681.6482 1,340.8241 1,088.8325 0.00
Residual 1,816 2,236.2820 1.2314
Total 1,818 4,917.9302

Residual standard error 1.1097
Multiple R-squared 0.5453
Observations 1,819

Source: FactSet, Nasdaq.

If the regression result is not significant, we follow the useful principle of not proceeding
to interpret the individual regression coefficients. Thus the analyst might look first at
the ANOVA section, which addresses the regression’s overall significance.

• The ANOVA (analysis of variance) section reports quantities related to the overall
explanatory power and significance of the regression. SS stands for sum of squares,
and MSS stands for mean sum of squares (SS divided by df). The F -test reports
the overall significance of the regression. For example, an entry of 0.01 for the
significance of F means that the regression is significant at the 0.01 level. In
Table 9-1, the regression is even more significant becausethe significance of F is 0 at
two decimal places. Later in the chapter, we will present more information on the
F -test.

Having ascertained that the overall regression is highly significant, an analyst might turn
to the first listed column in the first section of the regression output.

4The use of t-tests and z-tests is discussed in the chapter on hypothesis testing.



Chapter 9 Multiple Regression and Issues in Regression Analysis 329

• The Coefficients column gives the estimates of the intercept, b0, and the slope
coefficients, b1 and b2. These estimates are all negative, but are they significantly
negative? The Standard Error column gives the standard error (the standard devi-
ation) of the estimated regression coefficients. The test statistic for hypotheses
concerning the population value of a regression coefficient has the form (Estimated
regression coefficient—Hypothesized population value of the regression coeffi-
cient)/(Standard error of the regression coefficient). This is a t-test. Under the
null hypothesis, the hypothesized population value of the regression coefficient is
0. Thus (Estimated regression coefficient)/(Standard error of the regression coef-
ficient) is the t-statistic given in the third column. For example, the t-statistic
for the intercept is −0.7586/0.1369 = −5.5416, ignoring the effects of round-
ing errors. To evaluate the significance of the t-statistic we need to determine a
quantity called degrees of freedom (df).5 The calculation is Degrees of freedom =
Number of observations—(Number of independent variables + 1) = n − (k + 1).

• The final section of Table 9-1 presents two measures of how well the estimated
regression fits or explains the data. The first is the standard deviation of the regression
residual, the residual standard error. This standard deviation is called the standard
error of estimate (SEE). The second measure quantifies the degree of linear association
between the dependent variable and all of the independent variables jointly. This
measure is known as multiple R2 or simply R2 (the square of the correlation between
predicted and actual values of the dependent variable).6 A value of 0 for R2 indicates
no linear association; a value of 1 indicates perfect linear association. The final item
in Table 9-1 is the number of observations in the sample (1,819).

Having reviewed the meaning of typical regression output, we can return to
complete the hypothesis tests.

The estimated regression supports the hypothesis that the greater the number of
market makers, the smaller the percentage bid–ask spread: We reject H0 : b1 ≥ 0 in
favor of Ha : b1 < 0. The results also support the belief that the stocks of companies
with higher market capitalization have lower percentage bid–ask spreads: We reject
H0 : b2 ≥ 0 in favor of Ha : b2 < 0. To see that the null hypothesis is rejected for both
tests, we can use tables in the back of the book.7 For both tests, df = 1, 819 − 3 = 1, 816.
The tables do not give critical values for degrees of freedom that large. The critical value
for a one-tailed test with df = 200 at the 0.01 significance level is 2.345; for a larger
number of degrees of freedom, the critical value would be even smaller in magnitude.
Therefore, in our one-sided tests, we reject the null hypothesis in favor of the alternative
hypothesis if

t = b̂j − bj

sb̂j

= b̂j − 0

sb̂j

< −2.345

5To calculate the degrees of freedom lost in the regression, we add 1 to the number of independent
variables to account for the intercept term. The t-test and the concept of degrees of freedom are discussed
in the chapter on sampling.
6Multiple R2 is also known as the multiple coefficient of determination, or simply the coefficient of
determination.
7See Appendix B for t-test values.
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where

b̂j = the regression estimate of bj , j = 1, 2
bj = the hypothesized value8 of the coefficient (0)
sb̂j

= the estimated standard error of b̂j

The t-values of −4.1427 and −27.0087 for the estimates of b1 and b2, respectively, are
both less than −2.345.

Before proceeding further, we should address the interpretation of a prediction
stated in natural logarithm terms. We can convert a natural logarithm to the original
units by taking the antilogarithm. To illustrate this conversion, suppose that a particular
stock has five Nasdaq market makers and a market capitalization of $100 million. The
natural logarithm of the number of Nasdaq market makers is equal to ln 5 = 1.6094,
and the natural logarithm of the company’s market cap (in millions) is equal to
ln 100 = 4.6052. With these values, the regression model predicts that the natural log
of the ratio of the bid–ask spread to the stock price will be −0.7586 + (−0.2790 ×
1.6094) + (−0.6635 × 4.6052) = −4.2632. We take the antilogarithm of −4.2632
by raising e to that power: e−4.2632 = 0.0141. The predicted bid–ask spread will be 1.41
percent of the stock price.9 Later we state the assumptions of the multiple regression
model; before using an estimated regression to make predictions in actual practice, we
should assure ourselves that those assumptions are satisfied.

In Table 9-1, we presented output common to most regression software programs. Many
software programs also report p-values for the regression coefficients.10 For each regression
coefficient, the p-value would be the smallest level of significance at which we can reject a null
hypothesis that the population value of the coefficient is 0, in a two-sided test. The lower the
p-value, the stronger the evidence against that null hypothesis. A p-value quickly allows us to
determine if an independent variable is significant at a conventional significance level such as
0.05, or at any other standard we believe is appropriate.

Having estimated Equation 9-1, we can write

Ŷi = b̂0 + b̂1 X1i + b̂2 X2i

= −0.7586 − 0.2790X1i − 0.6635X2i

where Ŷi stands for the predicted value of Yi, and b̂0, b̂1, and b̂2, stand for the estimated
values of b0, b1, and b2, respectively. How should we interpret the estimated slope coefficients
−0.2790 and −0.6635?

Interpreting the slope coefficients in a multiple linear regression model is different than
doing so in the one-independent-variable regressions explored in the chapter on correlation

8To economize on notation in stating test statistics, in this context we use bj to represent the hypothesized
value of the parameter (elsewhere we use it to represent the unknown population parameter).
9The operation illustrated (taking the antilogarithm) recovers the value of a variable in the original units
as eln X = X .
10The entry 0.00 for the significance of F was a p-value for the F -test. See the chapter on hypothesis
testing for more information on the p-value.
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and regression. Suppose we have a one-independent-variable regression that we estimate as
Ŷi = 0.50 + 0.75X1i. The interpretation of the slope estimate 0.75 is that for every 1 unit
increase in X1, we expect Y to increase by 0.75 units. If we were to add a second independent
variable to the equation, we would generally find that the estimated coefficient on X1 is not 0.75
unless the second independent variable were uncorrelated with X1. The slope coefficients in a
multiple regression are known as partial regression coefficients or partial slope coefficients
and need to be interpreted with care.11 Suppose the coefficient on X1 in a regression with the
second independent variable was 0.60. Can we say that for every 1-unit increase in X1, we
expect Y to increase by 0.60 units? Not without qualification. For every 1-unit increase in X1,
we still expect Y to increase by 0.75 units when X2 is not held constant. We would interpret
0.60 as the expected increase in Y for a 1-unit increase X1 holding the second independent
variable constant.

To explain what the shorthand reference ‘‘holding the second independent constant’’
refers to, if we were to regress X1 on X2, the residuals from that regression would represent
the part of X1 that is uncorrelated with X2. We could then regress Y on those residuals in a
1-independent-variable regression. We would find that the slope coefficient on the residuals
would be 0.60; by construction, 0.60 would represent the expected effect on Y of a 1-unit
increase in X1 after removing the part of X1 that is correlated with X2. Consistent with this
explanation, we can view 0.60 as the expected net effect on Y of a 1-unit increase in X1,
after accounting for any effects of the other independent variables on the expected value of Y .
To reiterate, a partial regression coefficient measures the expected change in the dependent
variable for a one-unit increase in an independent variable, holding all the other independent
variables constant.

To apply this process to the regression in Table 9-1, we see that the estimated coeffi-
cient on the natural logarithm of market capitalization is −0.6635. Therefore, the model
predicts that an increase of 1 in the natural logarithm of the company’s market capi-
talization is associated with a −0.6635 change in the natural logarithm of the ratio of
the bid–ask spread to the stock price, holding the natural logarithm of the number of
market makers constant. We need to be careful not to expect that the natural loga-
rithm of the ratio of the bid-ask spread to the stock price would differ by −0.6635 if
we compared two stocks for which the natural logarithm of the company’s market cap-
italization differed by 1, because in all likelihood the number of market makers for the
two stocks would differ as well, which would affect the dependent variable. The value
−0.6635 is the expected net effect of difference in log market capitalizations, net of
the effect of the log number of market makers on the expected value of the dependent
variable.

2.1. Assumptions of the Multiple Linear Regression Model

Before we can conduct correct statistical inference on a multiple linear regression model (a
model with more than one independent variable estimated using ordinary least squares), we
need to know the assumptions underlying that model.12 Suppose we have n observations on

11The terminology comes from the fact that they correspond to the partial derivatives of Y with respect
to the independent variables. Note that in this usage, the term ‘‘regression coefficients’’ refers just to the
slope coefficients.
12Ordinary least squares (OLS) is an estimation method based on the criterion of minimizing the sum
of the squared residuals of a regression.



332 Quantitative Investment Analysis

the dependent variable, Y , and the independent variables, X1, X2, . . . , Xk, and we want to
estimate the equation Yi = b0 + b1X1i + b2X2i + · · · + bkXki + εi.

In order to make a valid inference from a multiple linear regression model, we need to
make the following six assumptions, which as a group define the classical normal multiple
linear regression model:

1. The relationship between the dependent variable, Y , and the independent variables,
X1, X2, . . . , Xk, is linear as described in Equation 9-1.

2. The independent variables (X1, X2, . . . , Xk) are not random.13 Also, no exact linear
relation exists between two or more of the independent variables.14

3. The expected value of the error term, conditioned on the independent variables, is 0:
E(ε|X1, X2, . . . , Xk) = 0.

4. The variance of the error term is the same for all observations:15 E(εi
2) = σ2

ε .
5. The error term is uncorrelated across observations: E(εiεj) = 0, j �= i.
6. The error term is normally distributed.

Note that these assumptions are almost exactly the same as those for the single-variable
linear regression model presented in the chapter on linear regression. Assumption 2 is mod-
ified such that no exact linear relation exists between two or more independent variables
or combinations of independent variables. If this part of Assumption 2 is violated, then
we cannot compute linear regression estimates.16 Also, even if no exact linear relation-
ship exists between two or more independent variables, or combinations of independent
variables, linear regression may encounter problems if two or more of the independent
variables or combinations thereof are highly correlated. Such a high correlation is known
as multicollinearity, which we will discuss later in this chapter. We will also discuss
the consequences of supposing that Assumptions 4 and 5 are met if, in fact, they are
violated.

Although Equation 9-1 may seem to apply only to cross-sectional data because the
notation for the observations is the same (i = 1, . . . , n), all of these results apply to time-series
data as well. For example, if we analyze data from many time periods for one company, we
would typically use the notation Yt , X1t , X2t , . . . , Xkt , in which the first subscript denotes the
variable and the second denotes the tth time period.

13As discussed in the chapter on correlation and regression, even though we assume that independent
variables in the regression model are not random, often that assumption is clearly not true. For example,
the monthly returns to the S&P 500 are not random. If the independent variable is random, then is the
regression model incorrect? Fortunately, no. Even if the independent variable is random but uncorrelated
with the error term, we can still rely on the results of regression models. See, for example, Greene (2003)
or Goldberger (1998).
14No independent variable can be expressed as a linear combination of any set of the other independent
variables. Technically, a constant equal to 1 is included as an independent variable associated with the
intercept in this condition.
15Var(ε) = E(ε2) and Cov(εiεj) = E(εiεj) because E(ε) = 0.
16When we encounter this kind of linear relationship (called perfect collinearity), we cannot compute
the matrix inverse needed to compute the linear regression estimates. See Greene (2003) for a further
description of this issue.
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EXAMPLE 9-2 Factors Explaining Pension
Fund Performance

Ambachtsheer, Capelle, and Scheibelhut (1998) tested to see which factors affect
the performance of pension funds. Specifically, they wanted to know whether the
risk-adjusted net value added (RANVA) of 80 U.S. and Canadian pension funds
depended on the size of the individual fund and the proportion of the fund’s assets
that were passively managed (indexed). Using data from 80 funds for four years
(1993 to 1996), the authors regressed RANVA on the size of the pension fund and
the fraction of pension fund assets that were passively managed.17 They used the
equation

RANVAi = b0 + b1Sizei + b2Passivei + εi

where

RANVAi = the average RANVA (in percent) for fund i from 1993 to 1996
Sizei = the log10 of average assets under management for fund i

Passivei = the fraction (decimal) of passively managed assets in fund i

Table 9-2 shows the results of their analysis.18

TABLE 9-2 Results from Regressing RANVA on Size and
Passive Management

Coefficients Standard Error t-Statistic

Intercept −2.1 0.45 −4.7
Size 0.4 0.14 2.8
Passive management 0.8 0.42 1.9

Source: Ambachtsheer, Capelle, and Scheibelhut (1998).

Suppose we use the results in Table 9-2 to test the null hypothesis that a pension
fund’s size had no effect on its RANVA. Our null hypothesis is that the coefficient
on the size variable equals 0 (H0 : b1 = 0), and our alternative hypothesis is that the
coefficient does not equal 0 (Ha : b1 �= 0). The t-statistic for testing that hypothesis is

b̂1 − b1

sb̂1

= 0.4 − 0

0.14
= 2.8

17As mentioned in an earlier footnote, technically a constant equal to 1 is included as an independent
variable associated with the intercept term in a regression. Because all the regressions reported in this
chapter include an intercept term, we will not separately mention a constant as an independent variable
in the remainder of this chapter.
18Size is the log base 10 of average assets. A log transformation is commonly used for independent
variables that can take a wide range of values; company size and fund size are two such variables. One
reason to use the log transformation is to improve the statistical properties of the residuals. If the authors
had not taken the log of assets and instead used assets as the independent variable, the regression model
probably would not have explained RANVA as well.
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With 80 observations and three coefficients, the t-statistic has 80 − 3 = 77 degrees
of freedom. At the 0.05 significance level, the critical value for t is about 1.99. The
computed t-statistic on the size coefficient is 2.8, which suggests strongly that we can
reject the null hypothesis that size is unrelated to RANVA. The estimated coefficient of
0.4 implies that every 10-fold increase in fund size (an increase of 1 in Sizei) is associated
with an expected 0.4 percentage point increase (40 basis points) in RANVAi holding
constant the fraction of passively managed assets. Because Sizei is the base 10 log of average
assets, an increase of 1 in Size is the same as a 10-fold increase in fund assets.

Of course, no causal relation between size and RANVA is clear: Funds that are
more successful may attract more assets. This regression equation is consistent with that
result, as well as the result that larger funds perform better. On one hand, we could
argue that larger funds are more successful. On the other hand, we could argue that
more successful funds attract more assets and become larger.

Now suppose we want to test the null hypothesis that passive management is not
related to RANVA; we want to test whether the coefficient on the fraction of assets
under passive management equals 0 (H0 : b2 = 0) against the alternative hypothesis that
the coefficient on the fraction of assets under passive management does not equal 0
(Ha : b2 �= 0). The t-statistic to test this hypothesis is

b̂2 − b2

sb̂2

= 0.8 − 0

0.42
= 1.9

The critical value of the t-test is 1.99 at the 0.05 significance level and about 1.66 at the
0.10 level. Therefore, at the 0.10 significance level, we can reject the null hypothesis that
passive management has no effect on fund returns; however, we cannot do so at the 0.05
significance level. Although researchers typically use a significance level of 0.05 or smaller,
these results and others like them are strong enough that many pension plan sponsors
have increased the use of passive management for pension fund assets. We can interpret
the coefficient on passive man-agement of 0.8 as implying that an increase of 0.10 in
the proportion of a fund’s passively managed assets is associated with an expected 0.08
percentage point increase (8 basis points) in RANVA for the fund, holding Size constant.

EXAMPLE 9-3 Explaining Returns to the Fidelity Select
Technology Fund

Suppose you are considering an investment in the Fidelity Select Technology Fund
(FSPTX), a U.S. mutual fund specializing in technology stocks. You want to know
whether the fund behaves more like a large-cap growth fund or a large-cap value fund.19

You decide to estimate the regression

19This regression is related to return-based style analysis, one of the most frequent applications
of regression analysis in the investment profession. For more information, see Sharpe (1988), who
pioneered this field, and Buetow, Johnson, and Runkle (2000).
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Yt = b0 + b1X1t + b2X2t + εt

where

Yt = the monthly return to the FSPTX
X1t = the monthly return to the S&P 500/BARRA Growth Index
X2t = the monthly return to the S&P 500/BARRA Value Index

The S&P 500/BARRA Growth and Value indexes represent predominantly large-cap
growth and value stocks, respectively.

Table 9-3 shows the results of this linear regression using monthly data from
January 1998 through December 2002. The estimated intercept in the regression
is 0.0079. Thus, if both the return to the S&P 500/BARRA Growth Index and
the return to the S&P 500/BARRA Value Index equal 0 in a specific month,
the regression model predicts that the return to the FSPTX will be 0.79 per-
cent. The coefficient on the large-cap growth index is 2.2308, and the coefficient
on the large-cap value index return is −0.4143. Therefore, if in a given month
the return to the S&P 500/BARRA Growth Index was 1 percent and the return
to the S&P 500/BARRA Value Index was −2 percent, the model predicts that
the return to the FSPTX would be 0.0079 + 2.2308(0.01) − 0.4143(−0.02) = 3.85
percent.

TABLE 9-3 Results from Regressing the FSPTX Returns on the S&P 500/BARRA
Growth and Value Indexes

Coefficient Standard Error t-Statistic

Intercept 0.0079 0.0091 0.8635
S&P 500/BARRA Growth Index 2.2308 0.2299 9.7034
S&P 500/BARRA Value Index −0.4143 0.2597 −1.5953

ANOVA df SS MSS F Significance F

Regression 2 0.8649 0.4324 86.4483 5.48E-18
Residual 57 0.2851 0.0050
Total 59 1.1500

Residual standard error 0.0707
Multiple R-squared 0.7521
Observations 60

Source: Ibbotson Associates.

We may want to know whether the coefficient on the returns to the S&P
500/BARRA Value Index is statistically significant. Our null hypothesis states that the
coefficient equals 0 (H0 : b2 = 0); our alternative hypothesis states that the coefficient
does not equal 0 (Ha : b2 �= 0).

Our test of the null hypothesis uses a t-test constructed as follows:

t = b̂2 − b2

sb̂2

= −0.4143 − 0

0.2597
= −1.5953
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where

b̂2 = the regression estimate of b2

b2 = the hypothesized value20 of the coefficient (0)
sb̂2

= the estimated standard error of b̂2

This regression has 60 observations and three coefficients (two independent variables
and the intercept); therefore, the t-test has 60 − 3 = 57 degrees of freedom. At the 0.05
significance level, the critical value for the test statistic is about 2.00.21 The absolute
value of the test statistic is 1.5953. Because the test statistic’s absolute value is less than
the critical value (1.5953 < 2.00), we fail to reject the null hypothesis that b2 = 0.
(Note that the t-tests reported in Table 9-3, as well as the other regression tables, are
tests of the null hypothesis that the population value of a regression coefficient equals 0.)

Similar analysis shows that at the 0.05 significance level, we cannot reject the
null hypothesis that the intercept equals 0 (H0 : b0 = 0) in favor of the alterna-
tive hypothesis that the intercept does not equal 0 (Ha : b0 �= 0). Table 9-3 shows
that the t-statistic for testing that hypothesis is 0.8635, a result smaller in abso-
lute value than the critical value of 2.00. However, at the 0.05 significance level
we can reject the null hypothesis that the coefficient on the S&P 500/BARRA
Growth Index equals 0 (H0 : b1 = 0) in favor of the alternative hypothesis that the
coefficient does not equal 0 (Ha : b1 �= 0). As Table 9-3 shows, the t-statistic for
testing that hypothesis is 9.70, a result far above the critical value of 2.00. Thus
multiple regression analysis suggests that returns to the FSPTX are very closely asso-
ciated with the returns to the S&P 500/BARRA Growth Index, but they are not
related to S&P 500/BARRA Value Index (the t-statistic of −1.60 is not statistically
significant).

2.2. Predicting the Dependent Variable in a Multiple Regression Model

Financial analysts often want to predict the value of the dependent variable in a multiple
regression based on assumed values of the independent variables. We have previously discussed
how to make such a prediction in the case of only one independent variable. The process for
making that prediction with multiple linear regression is very similar.

To predict the value of a dependent variable using a multiple linear regression model, we
follow these three steps:

1. Obtain estimates b̂0, b̂1, b̂2, . . . , b̂k of the regression parameters b0, b1, b2, . . . , bk.
2. Determine the assumed values of the independent variables, X̂1i, X̂2i, . . . , X̂ki.
3. Compute the predicted value of the dependent variable, Ŷi, using the equation

Ŷi = b̂0 + b̂1X̂1i + b̂2X̂2i + · · · + b̂kX̂ki (9-3)

Two practical points concerning using an estimated regression to predict the dependent
variable are in order. First, we should be confident that the assumptions of the regression

20To economize on notation in stating test statistics, in this context we use b2 to represent the hypothesized
value of the parameter (elsewhere we use it to represent the unknown population parameter).
21See Appendix B for t-test values.
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model are met. Second, we should be cautious about predictions based on values of the
independent variables that are outside the range of the data on which the model was estimated;
such predictions are often unreliable.

EXAMPLE 9-4 Predicting a Pension Fund’s RANVA

In Example 9-2, we explained the RANVA for U.S. and Canadian pension funds based
on the log base 10 of the assets under management for a fund (Sizei) and the fraction of
assets in the fund that were passively managed (Passivei).

RANVAi = b0 + b1Sizei + b2Passivei + εi

Now we can use the results of the regression reported in Table 9-2 (excerpted here) to
predict the performance (RANVA) for a pension fund.

TABLE 9-2 (excerpt)

Coefficients

Intercept −2.1
Size 0.4
Passive management 0.8

Suppose that a particular fund has assets under management of $10 million, and
25 percent of the assets are passively managed. The log base 10 of the assets under
management equals log(10, 000, 000) = 7. The fraction of assets in the fund that are
passively managed is 0.25. Accordingly, the predicted RANVA for that fund, based
on the regression, is −2.1 + (0.4 × 7) + (0.8 × 0.25) = 0.9 percent (90 basis points).
The regression predicts that the RANVA will be 90 basis points for a pension fund
with assets under management of $10 million, 25 percent of which are passively
managed.

When predicting the dependent variable using a linear regression model, we encounter
two types of uncertainty: uncertainty in the regression model itself, as reflected in the
standard error of estimate, and uncertainty about the estimates of the regression model’s
parameters. In the chapter on correlation and regression, we presented procedures for
constructing a prediction interval for linear regression with one independent variable.
For multiple regression, however, computing a prediction interval to properly incorpo-
rate both types of uncertainty requires matrix algebra, which is outside the scope of this
book.22

22For more information, see Greene (2003).
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2.3. Testing Whether All Population Regression Coefficients Equal Zero

Earlier, we illustrated how to conduct hypothesis tests on regression coefficients individually.
But what about the significance of the regression as a whole? As a group, do the independent
variables help explain the dependent variable? To address this question, we test the null
hypothesis that all the slope coefficients in a regression are simultaneously equal to 0. In
this section, we discuss analysis of variance (ANOVA), which provides information about a
regression’s explanatory power and the inputs for an F -test of the above null hypothesis.

If none of the independent variables in a regression model helps explain the dependent
variable, the slope coefficients should all equal 0. In a multiple regression, however, we
cannot test the null hypothesis that all slope coefficients equal 0 based on t-tests that each
individual slope coefficient equals 0, because the individual tests do not account for the
effects of interactions among the independent variables. For example, a classic symptom of
multicollinearity is that we can reject the hypothesis that all the slope coefficients equal 0 even
though none of the t-statistics for the individual estimated slope coefficients is significant.
Conversely, we can construct unusual examples in which the estimated slope coefficients are
significantly different from 0 although jointly they are not.

To test the null hypothesis that all of the slope coefficients in the multiple regression
model are jointly equal to 0 (H0 : b1 = b2 = · · · = bk = 0) against the alternative hypothesis
that at least one slope coefficient is not equal to 0 we must use an F -test. The F -test is viewed
as a test of the regression’s overall significance.

To correctly calculate the test statistic for the null hypothesis, we need four inputs:

• total number of observations, n;
• total number of regression coefficients to be estimated, k + 1, where k is the number of

slope coefficients;

• sum of squared errors or residuals,
n∑

i=1
(Yi − Ŷi)2 =

n∑
i=1

ε̂2
i , abbreviated SSE, also known as

the residual sum of squares (unexplained variation);23 and

• regression sum of squares,
n∑

i=1
(Ŷi − Y )2, abbreviated RSS.24 This amount is the variation

in Y from its mean that the regression equation explains (explained variation).

The F -test for determining whether the slope coefficients equal 0 is based on an F -statistic
calculated using the four values listed above.25 The F -statistic measures how well the regression
equation explains the variation in the dependent variable; it is the ratio of the mean regression
sum of squares to the mean squared error.

We compute the mean regression sum of squares by dividing the regression sum of
squares by the number of slope coefficients estimated, k. We compute the mean squared error
by dividing the sum of squared errors by the number of observations, n, minus (k + 1). The
two divisors in these computations are the degrees of freedom for calculating an F -statistic.
For n observations and k slope coefficients, the F -test for the null hypothesis that the slope
coefficients are all equal to 0 is denoted Fk,n−(k+1). The subscript indicates that the test should
have k degrees of freedom in the numerator (numerator degrees of freedom) and n − (k + 1)
degrees of freedom in the denominator (denominator degrees of freedom).

23In a table of regression output, this is the number under the ‘‘SS’’ column in the row ‘‘Residual.’’
24In a table of regression output, this is the number under the ‘‘SS’’ column in the row ‘‘Regression.’’
25F -tests are described in further detail in the chapter on hypothesis testing.
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The formula for the F -statistic is

F =
RSS

k
SSE

[n−(k+1)]

= Mean regression sum of squares

Mean squared error
= MSR

MSE
(9-4)

where MSR is the mean regression sum of squares and MSE is the mean squared error. In our
regression output tables, MSR and MSE are the first and second quantities under the MSS
(mean sum of squares) column in the ANOVA section of the output. If the regression model
does a good job of explaining variation in the dependent variable, then the ratio MSR/MSE
will be large.

What does this F -test tell us when the independent variables in a regression model explain
none of the variation in the dependent variable? In this case, each predicted value in the
regression model, Ŷi, has the average value of the dependent variable, Y , and the regression

sum of squares,
n∑

i=1
(Ŷi − Y )2 is 0. Therefore, the F -statistic for testing the null hypothesis

(that all the slope coefficients are equal to 0) has a value of 0 when the independent variables
do not explain the dependent variable at all.

To specify the details of making the statistical decision when we have calculated F , we
reject the null hypothesis at the α significance level if the calculated value of F is greater than
the upper α critical value of the F distribution with the specified numerator and denominator
degrees of freedom. Note that we use a one-tailed F -test.26 Appendix D provides the critical
values for the F -test.

We can illustrate the test using Example 9-1, in which we investigated whether the
natural log of the number of Nasdaq market makers and the natural log of the stock’s market
capitalization explained the natural log of the bid–ask spread divided by price. Assume that
we set the significance level for this test to α = 0.05 (i.e., a 5 percent probabilitythat we will
mistakenly reject the null hypothesis if it is true). Table 9-1 (excerpted here) presents the
results of variance computations for this regression.

TABLE 9-1 (excerpt)

ANOVA df SS MSS F Significance F

Regression 2 2,681.6482 1,340.8241 1,088.8325 0.00
Residual 1,816 2,236.2820 1.2314
Total 1,818 4,917.9302

This model has two slope coefficients (k = 2), so there are two degrees of freedom in the
numerator of this F -test. With 1,819 observations in the sample, the number of degrees of
freedom in the denominator of the F -test is n − (k + 1) = 1, 819 − 3 = 1, 816. The sum of
the squared errors is 2,236.2820. The regression sum of squares is 2,681.6482. Therefore, the
F -test for the null hypothesis that the two slope coefficients in this model equal 0 is

2681.6482/2

2236.2820/1, 816
= 1, 088.8325

This test statistic is distributed as an F2,1,816 random variable under the null hypothesis that
the slope coefficients are equal to 0. In the table for the 0.05 significance level, we look at the

26We use a one-tailed test because MSR necessarily increases relative to MSE as the explanatory power
of the regression increases.
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second column, which shows F -distributions with two degrees of freedom in the numerator.
Near the bottom of the column, we find that the critical value of the F -test needed to reject the
null hypothesis is between 3.00 and 3.07.27 The actual value of the F -test statistic at 1,088.83
is much greater, so we reject the null hypothesis that coefficients of both independent variables
equal 0. In fact, Table 9-1, under ‘‘Significance F ,’’ reports a p-value of 0. This p-value means
that the smallest level of significance at which the null hypothesis can be rejected is practically
0. The large value for this F -statistic implies a minuscule probability of incorrectly rejecting
the null hypothesis (a mistake known as a Type I error).

2.4. Adjusted R2

In the chapter on correlation and regression, we presented the coefficient of variation, R2, as
a measure of the goodness of fit of an estimated regression to the data. In a multiple linear
regression, however, R2 is less appropriate as a measure of whether a regression model fits the
data well (goodness of fit). Recall that R2 is defined as

Total variation − Unexplained variation

Total variation

The numerator equals the regression sum of squares, RSS. Thus R2 states RSS as a fraction of

the total sum of squares,
n∑

i=1
(Yi − Y )2. If we add regression variables to the model, the amount

of unexplained variation will decrease, and RSS will increase, if the new independent variable
explains any of the unexplained variation in the model. Such a reduction occurs when the
new independent variable is even slightly correlated with the dependent variable and is not a
linear combination of other independent variables in the regression.28 Consequently, we can
increase R2 simply by including many additional independent variables that explain even a
slight amount of the previously unexplained variation, even if the amount they explain is not
statistically significant.

Some financial analysts use an alternative measure of goodness of fit called adjusted R2,
or R

2
. This measure of fit does not automatically increase when another variable is added to a

regression; it is adjusted for degrees of freedom. Adjusted R2 is typically part of the multiple
regression output produced by statistical software packages.

The relation between R2 and R
2

is

R
2 = 1 −

(
n − 1

n − k − 1

)
(1 − R2)

where n is the number of observations and k is the number of independent variables (the number
of slope coefficients). Note that if k ≥ 1, then R2 is strictly greater than adjusted R2. When
a new independent variable is added, R

2
can decrease if adding that variable results in only a

small increase in R2. In fact, R
2

can be negative, although R2 is always nonnegative.29 If we use
R

2
to compare regression models, it is important that the dependent variable be defined the

same way in both models and that the sample sizes used to estimate the models are the same.30

27We see a range of values because the denominator has more than 120 degrees of freedom but less than
an infinite number of degrees of freedom.
28We say that variable y is a linear combination of variables x and z if y = ax + bz for some constants a
and b. A variable can also be a linear combination of more than two variables.
29When R

2
is negative, we can effectively consider its value to be 0.

30See Gujarati (2003). The value of adjusted R2 depends on sample size. These points hold if we are
using R2 to compare two regression models.
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For example, it makes a difference for the value of R
2

if the dependent variable is GDP (gross
domestic product) or ln(GDP), even if the independent variables are identical. Furthermore,
we should be aware that a high R

2
does not necessarily indicate that the regression is well

specified in the sense of including the correct set of variables.31 One reason for caution is that
a high R

2
may reflect peculiarities of the dataset used to estimate the regression. To evaluate a

regression model, we need to take many other factors into account, as we discuss in Section 5.1.

3. USING DUMMY VARIABLES
IN REGRESSIONS

Often, financial analysts need to use qualitative variables as independent variables in a
regression. One type of qualitative variable, called a dummy variable, takes on a value of 1 if
a particular condition is true and 0 if that condition is false.32 For example, suppose we want
to test whether stock returns were different in January than during the remaining months of
a particular year. We include one independent variable in the regression, X1t , that has a value
of 1 for each January and a value of 0 for every other month of the year. We estimate the
regression model

Yt = b0 + b1X1t + εt

In this equation, the coefficient b0 is the average value of Yt in months other than January,
and b1 is the difference between the average value of Yt in January and the average value of Yt

in months other than January.
We need to exercise care in choosing the number of dummy variables in a regression. The

rule is that if we want to distinguish among n categories, we need n − 1 dummy variables.
For example, to distinguish between during January and not during January above (n = 2
categories), we used one dummy variable (n − 1 = 2 − 1 = 1). If we want to distinguish
between each of the four quarters in a year, we would include dummy variables for three of
the four quarters in a year. If we make the mistake of including dummy variables for four
rather than three quarters, we have violated Assumption 2 of the multiple regression model
and cannot estimate the regression. The next example illustrates the use of dummy variables
in a regression with monthly data.

EXAMPLE 9-5 Month-of-the-Year Effects on
Small-Stock Returns

For many years, financial analysts have been concerned about seasonality in stock
returns.33 In particular, analysts have researched whether returns to small stocks
differ during various months of the year. Suppose we want to test whether total

31See Mayer (1975, 1980).
32Not all qualitative variables are simple dummy variables. For example, in a trinomial choice model (a
model with three choices), a qualitative variable might have the value 0, 1, or 2.
33For a discussion of this issue, see Siegel (1998).
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returns to one small-stock index, the Russell 2000 Index, differ by month. Using data
from January 1979 (the first available date for the Russell 2000 data) through the end
of 2002, we can estimate a regression including an intercept and 11 dummy variables,
one for each of the first 11 months of the year. The equation that we estimate is

Returnst = b0 + b1Jant + b2Febt + · · · + b11Novt + εt

where each monthly dummy variable has a value of 1 when the month occurs (e.g.,
Jan1 = Jan13 = 1, as the first observation is a January) and a value of 0 for the other
months. Table 9-4 shows the results of this regression.

TABLE 9-4 Results from Regressing Russell 2000 Returns on Monthly Dummy Variables

Coefficient Standard Error t-Statistic

Intercept 0.0301 0.0116 2.5902
January 0.0003 0.0164 0.0176
February −0.0111 0.0164 −0.6753
March −0.0211 0.0164 −1.2846
April −0.0141 0.0164 −0.8568
May −0.0137 0.0164 −0.8320
June −0.0200 0.0164 −1.2164
July −0.0405 0.0164 −2.4686
August −0.0230 0.0164 −1.4025
September −0.0375 0.0164 −2.2864
October −0.0393 0.0164 −2.3966
November −0.0059 0.0164 −0.3565

ANOVA df SS MSS F Significance F

Regression 11 0.0543 0.0049 1.5270 0.1213
Residual 276 0.8924 0.0032
Total 287 0.9467

Residual standard error 0.0569
Multiple R-squared 0.0574
Observations 288

Source: Ibbotson Associates.

The intercept, b0, measures the average return for stocks in December because there
is no dummy variable for December.34 This equation estimates that the average return
in December is 3.01 percent (b̂0 = 0.0301). Each of the estimated coefficients for the
dummy variables shows the estimated difference between returns in that month and
returns for December. So, for example, the estimated additional return in January is 0.03
percent higher than December (b̂1 = 0.0003). This gives a January return prediction of
3.04 percent (3.01 December + 0.03 additional).

34When Jant = Febt = · · · = Novt = 0, the return is not associated with January through
November so the month is December and the regression equation simplifies to Returnst =
b0 + εt . Because E(Returnst ) = b0 + E(εt) = b0, the intercept b0 represents the mean return for
December.
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The low R2 in this regression (0.0574), however, suggests that a month-of-the-year effect
in small-stock returns may not be very important for explaining small-stock returns.
We can use the F -test to analyze the null hypothesis that jointly, the monthly dummy
variables all equal 0 (H0 : b1 = b2 = · · · = b11 = 0). We are testing for significant
monthly variation in small-stock returns. Table 9-4 shows the data needed to perform
an analysis of variance. The number of degrees of freedom in the numerator of the F -test
is 11; the number of degrees of freedom in the denominator is [288 − (11 + 1)] = 276.
The regression sum of squares equals 0.0543, and the sum of squared errors equals
0.8924. Therefore, the F -statistic to determine whether all of the regression slope
coefficients are jointly equal to 0 is

0.0543/11

0.8924/276
= 1.53

Appendix D shows the critical values for this F -test. If we choose a significance level
of 0.05 and look in Column 11 (because the numerator has 11 degrees of freedom), we
see that the critical value is 1.87 when the denominator has 120 degrees of freedom. The
denominator actually has 276 degrees of freedom, so the critical value of the F -statistic
is smaller than 1.87 (for df = 120) but larger than 1.79 (for an infinite number of
degrees of freedom). The value of the test statistic is 1.53, so we clearly cannot reject the
null hypothesis that all of the coefficients jointly are equal to 0.

The p-value of 0.1213 shown for the F -test in Table 9-4 means that the smallest
level of significance at which we can reject the null hypothesis is roughly 0.12, or 12
percent—above the conventional level of 5 percent. Among the 11 monthly dummy
variables, July, September, and October have a t-statistic with an absolute value
greater than 2. Although the coefficients for these dummy variables are statistically
significant, we have so many insignificant estimated coefficients that we cannot reject
the null hypothesis that returns are equal across the months. This test suggests that the
significance of a few coefficients in this regression model may be the result of random
variation. We may thus want to avoid portfolio strategies calling for differing investment
weights for small stocks in different months.

EXAMPLE 9-6 Determinants of Spreads on New
High-Yield Bonds

Fridson and Garman (1998) used data from 1995 and 1996 to examine variables that
may explain the initial yield spread between a newly issued high-yield bond and a
Treasury bond with similar maturity. They built a model of yield spreads using variables
that affect the creditworthiness and interest-rate risk of the bond. Their model included
the following factors:

• Rating: Moody’s senior-equivalent rating
• Zero-coupon status: Dummy variable (0 = no, 1 = yes)
• BB-B spread: Yield differential (Merrill Lynch Single-B Index minus Double-B

Index, in basis points)
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• Seniority: Dummy variable (0 = senior, 1 = subordinated)
• Callability: Dummy variable (0 = noncallable, 1 = callable)
• Term: Maturity (years)
• First-time issuer: Dummy variable (0 = no, 1 = yes)
• Underwriter type: Dummy variable (0 = investment bank, 1 = commercial bank)
• Interest rate change

Table 9-5 shows the authors’ results.

TABLE 9-5 Multiple Regression Model of New
High-Yield Issue Spread, 1995–96

Coefficient Standard Error t-Statistic

Intercept −213.67 63.03 −3.39
Rating 66.19 4.13 16.02
Zero-coupon status 136.54 32.82 4.16
BB-B spread 95.31 24.82 3.84
Seniority 41.46 11.95 3.47
Callability 51.65 15.42 3.35
Term −8.51 2.71 −3.14
First-time issuer 25.23 10.97 2.30
Underwriter type 28.13 12.67 2.22
Interest rate change 40.44 19.08 2.12

R-squared 0.56
Observations 428

Source: Fridson and Garman (1998).

We can summarize Fridson and Garman’s findings as follows:

• Bond rating has the highest significance level of any coefficient in the regression. This
result should not be surprising, because the rating captures rating agencies’ estimates
of the risk involved with the bond.

• Zero-coupon status increases the yield spread because zero-coupon bonds have more
interest rate risk than coupon bonds of a similar maturity.

• The BB-B spread affects yields because it captures the market’s evaluation of how
much influence rating differentials have on credit risk.

• Seniority affects yields because subordinated debt has a much lower recovery rate in
the case of default.

• Callability increases yields because it limits upside potential on the bond if yields
decline.

• Term actually reduces the yield spread. Perhaps term enters with a negative coefficient
because the market is willing to buy long-term debt only from high-quality companies;
lower-quality companies must issue shorter-term debt.

• First-time issuers must pay a premium because the market does not know much
about them.

• Bonds underwritten by commercial banks have a premium over bonds underwritten
by investment banks, most likely because the market believes that investment banks
have a competitive edge in attracting high-quality corporate clients.
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• Interest-rate increases in Treasuries during the previous month cause yield spreads
to widen, presumably because the market believes that increasing interest rates will
worsen the economic prospects of companies issuing high-yield debt.

Note that all of the coefficients in this regression model are statistically significant at the
0.05 level. The smallest absolute value of a t-statistic in this table is 2.12.

4. VIOLATIONS OF REGRESSION ASSUMPTIONS

In Section 2.1, we presented the assumptions of the multiple linear regression model. Inference
based on an estimated regression model rests on those assumptions being satisfied. In applying
regression analysis to financial data, analysts need to be able to diagnose violations of regression
assumptions, understand the consequences of violations, and know the remedial steps to
take. In the following sections we discuss three regression violations: heteroskedasticity, serial
correlation, and multicollinearity.

4.1. Heteroskedasticity

So far, we have made an important assumption that the variance of error in a regres-
sion is constant across observations. In statistical terms, we assumed that the errors
were homoskedastic. Errors in financial data, however, are often heteroskedastic: the
variance of the errors differs across observations. In this section, we discuss how het-
eroskedasticity affects statistical analysis, how to test for heteroskedasticity, and how to
correct for it.

We can see the difference between homoskedastic and heteroskedastic errors by comparing
two graphs. Figure 9-1 shows the values of the dependent and independent variables and
a fitted regression line for a model with homoskedastic errors. There is no systematic
relationship between the value of the independent variable and the regression residuals (the
vertical distance between a plotted point and the fitted regression line). Figure 9-2 shows
the values of the dependent and independent variables and a fitted regression line for a
model with heteroskedastic errors. Here, a systematic relationship is visually apparent: On
average, the regression residuals grow much larger as the size of the independent variable
increases.

4.1.1. The Consequences of Heteroskedasticity What are the consequences when the
assumption of constant error variance is violated? Although heteroskedasticity does not affect
the consistency35 of the regression parameter estimators, it can lead to mistakes in inference.

35Informally, an estimator of a regression parameter is consistent if the probability that estimates of a
regression parameter differ from the true value of the parameter decreases as the number of observations
used in the regression increases. The regression parameter estimates from ordinary least squares are
consistent regardless of whether the errors are heteroskedastic or homoskedastic. See the chapter on
sampling and, for a more advanced discussion, see Greene (2003).
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FIGURE 9-1 Regression with Homoskedasticity
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FIGURE 9-2 Regression with Heteroskedasticity

When errors are heteroskedastic, the F -test for the overall significance of the regression is
unreliable.36 Furthermore, t-tests for the significance of individual regression coefficients are
unreliable because heteroskedasticity introduces bias into estimators of the standard error of
regression coefficients. If a regression shows significant heteroskedasticity, the standard errors

36This unreliability occurs because the mean squared error is a biased estimator of the true population
variance given heteroskedasticity.
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and test statistics computed by regression programs will be incorrect unless they are adjusted
for heteroskedasticity.

In regressions with financial data, the most likely result of heteroskedasticity is that the
estimated standard errors will be underestimated and the t-statistics will be inflated. When
we ignore heteroskedasticity, we tend to find significant relationships where none actually
exist.37 The consequences in practice may be serious if we are using regression analysis in the
development of investment strategies. As Example 9-7 shows, the issue impinges even on our
understanding of financial models.

EXAMPLE 9-7 Heteroskedasticity and Tests of an
Asset Pricing Model

MacKinlay and Richardson (1991) examined how heteroskedasticity affects tests of
the capital asset pricing model (CAPM).38 These authors argued that if the CAPM is
correct, they should find no significant differences between the risk-adjusted returns
for holding small stocks versus large stocks. To implement their test, MacKinlay and
Richardson grouped all stocks on the New York and American exchanges by market-
value decile with annual reassignment. They then tested for systematic differences in
risk-adjusted returns across market-capitalization-based stock portfolios. They estimated
the following regression:

ri,t = αi + βirm,t + εi,t

where
ri,t = excess return (return above the risk-free rate) to portfolio i in period t

rm,t = excess return to the market as a whole in period t

The CAPM formulation hypothesizes that excess returns on a portfolio are explained
by excess returns on the market as a whole. That hypothesis implies that αi = 0 for
every i; on average, no excess return accrues to any portfolio after taking into account
its systematic (market) risk.

Using data from January 1926 to December 1988 and a market index based on
equal-weighted returns, MacKinlay and Richardson failed to reject the CAPM at the 0.05
level when they assumed that the errors in the regression model are normally distributed
and homoskedastic. They found, however, that they could reject the CAPM when
they corrected their test statistics to account for heteroskedasticity. They rejected the
hypothesis that there are no size-based, risk-adjusted excess returns in historical data.39

We have stated that effects of heteroskedasticity on statistical inference can be severe.
To be more precise about this concept, we should distinguish between two broad kinds of
heteroskedasticity, unconditional and conditional.

37Sometimes, however, failure to adjust for heteroskedasticity results in standard errors that are too large
(and t-statistics that are too small).
38For more on the CAPM, see Bodie, Kane, and Marcus (2001), for example.
39MacKinlay and Richardson also show that when using value-weighted returns, one can reject the
CAPM whether or not one assumes normally distributed returns and homoskedasticity.
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Unconditional heteroskedasticity occurs when heteroskedasticity of the error variance
is not correlated with the independent variables in the multiple regression. Although this form
of heteroskedasticity violates Assumption 4 of the linear regression model, it creates no major
problems for statistical inference.

The type of heteroskedasticity that causes the most problems for statistical inference is
conditional heteroskedasticity—heteroskedasticity in the error variance that is correlated
with (conditional on) the values of the independent variables in the regression. Fortunately,
many statistical software packages easily test and correct for conditional heteroskedasticity.

4.1.2. Testing for Heteroskedasticity Because of conditional heteroskedasticity’s con-
sequences on inference, the analyst must be able to diagnose its presence. The Breusch–Pagan
test is widely used in finance research because of its generality.40

Breusch and Pagan (1979) suggested the following test for conditional heteroskedasticity:
Regress the squared residuals from the estimated regression equation on the independent
variables in the regression. If no conditional heteroskedasticity exists, the independent
variables will not explain much of the variation in the squared residuals. If conditional
heteroskedasticity is present in the original regression, however, the independent variables
will explain a significant portion of the variation in the squared residuals. The independent
variables can explain the variation because each observation’s squared residual will be correlated
with the independent variables if the independent variables affect the variance of the errors.

Breusch and Pagan showed that under the null hypothesis of no conditional heteroskedas-
ticity, nR2 (from the regression of the squared residuals on the independent variables from
the original regression) will be a χ2 random variable with the number of degrees of free-
dom equal to the number of independent variables in the regression.41 Therefore, the null
hypothesis states that the regression’s squared error term is uncorrelated with the independent
variables. The alternative hypothesis states that the squared error term is correlated with
the independent variables. Example 9-8 illustrates the Breusch–Pagan test for conditional
heteroskedasticity.

EXAMPLE 9-8 Testing for Conditional Heteroskedasticity in
the Relation between Interest Rates and Expected Inflation

Suppose an analyst wants to know how closely nominal interest rates are related to
expected inflation to determine how to allocate assets in a fixed income portfolio.
The analyst wants to test the Fisher effect, the hypothesis suggested by Irving Fisher
that nominal interest rates increase by 1 percentage point for every 1 percentage point
increase in expected inflation.42 The Fisher effect assumes the following relation between
nominal interest rates, real interest rates, and expected inflation:

40Some other tests require more-specific assumptions about the functional form of the heteroskedasticity.
For more information, see Greene (2003).
41The Breusch–Pagan test is distributed as a χ2 random variable in large samples. The constant 1
technically associated with the intercept term in a regression is not counted here in computing the
number of independent variables. For more on the Breusch–Pagan test, see Greene (2003).
42For more on the Fisher effect, see, for example, Mankiw (2000).
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i = r + πe

where

i = the nominal interest rate
r = the real interest rate (assumed constant)

πe = the expected rate of inflation

To test the Fisher effect using time-series data, we could specify the following
regression model for the nominal interest rate:

it = b0 + b1πt
e + εt (9-5)

Noting that the Fisher effect predicts that the coefficient on the inflation variable is 1,
we can state the null and alternative hypotheses as

H0 : b1 = 1

Ha : b1 �= 1

We might also specify a 0.05 significance level for the test. Before we estimate
Equation 9-5, we must decide how to measure expected inflation (πt

e) and the nominal
interest rate (it ).

The Survey of Professional Forecasters (SPF) has compiled data on the quarterly
inflation expectations of professional forecasters.43 We use those data as our measure
of expected inflation. We use three-month Treasury bill returns as our measure of the
(risk-free) nominal interest rate.44 We use quarterly data from the fourth quarter of
1968 to the fourth quarter of 2002 to estimate Equation 9-5. Table 9-6 shows the
regression results.

TABLE 9-6 Results from Regressing T-Bill Returns on Predicted Inflation

Coefficient Standard Error t-Statistic

Intercept 0.0304 0.0040 7.6887
Inflation prediction 0.8774 0.0812 10.8096

Residual standard error 0.0220
Multiple R-squared 0.4640
Observations 137
Durbin–Watson statistic 0.4673

Source: Federal Reserve Bank of Philadelphia, U.S. Department of Commerce.

43For this example, we use the annualized median SPF prediction of current-quarter growth in the GDP
deflator (GNP deflator before 1992).
44Our data on Treasury bill returns are based on three-month T-bill yields in the secondary market.
Because those yields are stated on a discount basis, we convert them to a compounded annual rate so
they will be measured on the same basis as our data on inflation expectations. These returns are risk-free
because they are known at the beginning of the quarter and there is no default risk.



350 Quantitative Investment Analysis

To make the statistical decision on whether the data support the Fisher effect, we
calculate the following t-statistic, which we then compare to its critical value.

t = b̂1 − b1

sb̂1

= 0.8774 − 1

0.0812
= −1.5099

With a t-statistic of −1.5099 and 137 − 2 = 135 degrees of freedom, the critical t-value
is about 1.98. If we have conducted a valid test, we cannot reject at the 0.05 significance
level the hypothesis that the true coefficient in this regression is 1 and that the Fisher effect
holds. The t-test assumes that the errors are homoskedastic. Before we accept the validity
of the t-test, therefore, we should test whether the errors are conditionally heteroskedastic.
If those errors prove to be conditionally heteroskedastic, then the test is invalid.

We can perform the Breusch–Pagan test for conditional heteroskedasticity on the
squared residuals from the Fisher effect regression. The test regresses the squared residu-
als on the predicted inflation rate. The R2 in the squared residuals regression (not shown
here) is 0.1651. The test statistic from this regression, nR2, is 137 × 0.1651 = 22.619.
Under the null hypothesis of no conditional heteroskedasticity, this test statistic
is a χ2 random variable with one degree of freedom (because there is only one
independent variable).

We should be concerned about heteroskedasticity only for large values of the test
statistic. Therefore, we should use a one-tailed test to determine whether we can reject
the null hypothesis. Appendix C shows that the critical value of the test statistic for a
variable from a χ2 distribution with one degree of freedom at the 0.05 significance level
is 3.84. The test statistic from the Breusch–Pagan test is 22.619, so we can reject the
hypothesis of no conditional heteroskedasticity at the 0.05 level. In fact, we can even
reject the hypothesis of no conditional heteroskedasticity at the 0.01 significance level,
because the critical value of the test statistic in that case is 6.63. As a result, we conclude
that the error term in the Fisher effect regression is conditionally heteroskedastic. The
standard errors computed in the original regression are not correct, because they do not
account for heteroskedasticity. Therefore, we cannot accept the t-test as valid.

In Example 9-8, we concluded that a t-test that we might use to test the Fisher effect was
not valid. Does that mean that we cannot use a regression model to investigate the Fisher effect?
Fortunately, no. A methodology is available to adjust regression coefficients’ standard error to
correct for heteroskedasticity. Using an adjusted standard error for b̂1, we can reconduct the
t-test. As we shall see in the next section, using this valid t-test we still do not reject the null
hypothesis in Example 9-8.

4.1.3. Correcting for Heteroskedasticity Financial analysts need to know how to cor-
rect for heteroskedasticity, because such a correction may reverse the conclusions about a
particular hypothesis test—and thus affect a particular investment decision. (In Example 9-7,
for instance, MacKinlay and Richardson reversed their investment conclusions after correcting
their model’s significance tests for heteroskedasticity.)

We can use two different methods to correct the effects of conditional heteroskedasticity
in linear regression models. The first method, computing robust standard errors, corrects
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the standard errors of the linear regression model’s estimated coefficients to account for
the conditional heteroskedasticity. The second method, generalized least squares, modifies
the original equation in an attempt to eliminate the heteroskedasticity. The new, modified
regression equation is then estimated under the assumption that heteroskedasticity is no longer
a problem.45 The technical details behind these two methods of correcting for conditional
heteroskedasticity are outside the scope of this book.46 Many statistical software packages can
easily compute robust standard errors, however, and we recommend using them.47

Returning to the subject of Example 9-8 concerning the Fisher effect, recall that we
concluded that the error variance was heteroskedastic. If we correct the regression coefficients’
standard errors for conditional heteroskedasticity, we get the results shown in Table 9-7. In
comparing the standard errors in Table 9-7 with those in Table 9-6, we see that the standard
error for the intercept changes very little but the standard error for the coefficient on predicted
inflation (the slope coefficient) increases by about 25.5 percent (from 0.0812 to 0.1019). Note
also that the regression coefficients are the same in both tables, because the results in Table 9-7
correct only the standard errors in Table 9-6.

TABLE 9-7 Results from Regressing T-Bill Returns on Predicted Inflation
(Standard Errors Corrected for Conditional Heteroskedasticity)

Coefficients Standard Error t-Statistics

Intercept 0.0304 0.0038 8.0740
Inflation prediction 0.8774 0.1019 8.6083

Residual standard error 0.0220
Multiple R-squared 0.4640
Observations 137

Source: Federal Reserve Bank of Philadelphia, U.S. Department of Commerce.

We can now conduct a valid t-test of the null hypothesis that the slope coefficient has a true
value of 1, using the robust standard error for b̂1. We find that t = (0.8774 − 1)/0.1019 =
−1.2031. In absolute value, this number is still much smaller than the critical value of 1.98
needed to reject the null hypothesis that the slope equals 1.48 Thus, in this particular example,
even though conditional heteroskedasticity was statistically significant, correcting for it had no
effect on the result of the hypothesis test about the slope of the predicted inflation coefficient.
In other cases, however, our statistical decision might change based on using robust standard
errors in the t-test. Example 9-7 concerning tests of the CAPM is a case in point.

4.2. Serial Correlation

A more common—and potentially more serious—problem than violation of the homoskedas-
ticity assumption is the violation of the assumption that regression errors are uncorrelated

45Generalized least squares requires econometric expertise to implement correctly on financial data.
See Greene (2003), Hansen (1982), and Keane and Runkle (1998).
46For more details on both methods, see Greene (2003).
47Robust standard errors are also known as heteroskedasticity-consistent standard errors or White-
corrected standard errors.
48Remember, this is a two-tailed test.
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across observations. Trying to explain a particular financial relation over a number of periods
is risky, because errors in financial regression models are often correlated through time.

When regression errors are correlated across observations, we say that they are serially
correlated (or autocorrelated). Serial correlation most typically arises in time-series regressions.
In this section, we discuss three aspects of serial correlation: its effect on statistical inference,
tests for it, and methods to correct for it.

4.2.1. The Consequences of Serial Correlation As with heteroskedasticity, the prin-
cipal problem caused by serial correlation in a linear regression is an incorrect estimate of
the regression coefficient standard errors computed by statistical software packages. As long
as none of the independent variables is a lagged value of the dependent variable (a value of
the dependent variable from a previous period), then the estimated parameters themselves
will be consistent and need not be adjusted for the effects of serial correlation. If, however,
one of the independent variables is a lagged value of the dependent variable—for example,
if the T-bill return from the previous month was an independent variable in the Fisher effect
regression—then serial correlation in the error term will cause all the parameter estimates from
linear regression to be inconsistent and they will not be valid estimates of the true parameters.49

In this chapter, we assume that none of the independent variables is a lagged value of
the dependent variable. When that is the case, the effect of serial correlation appears in the
regression coefficient standard errors. We will examine it here for the positive serial correlation
case, because that case is so common. Positive serial correlation is serial correlation in
which a positive error for one observation increases the chance of a positive error for another
observation. Positive serial correlation also means that a negative error for one observation
increases the chance of a negative error for another observation.50 In examining positive
serial correlation, we make the common assumption that serial correlation takes the form
of first-order serial correlation, or serial correlation between adjacent observations. In a
time-series context, that assumption means the sign of the error term tends to persist from one
period to the next.

Although positive serial correlation does not affect the consistency of the estimated regres-
sion coefficients, it does affect our ability to conduct valid statistical tests. First, the F -statistic
to test for overall significance of the regression may be inflated because the mean squared
error (MSE) will tend to underestimate the population error variance. Second, positive serial
correlation typically causes the ordinary least squares (OLS)standard errors for the regression
coefficients to underestimate the true standard errors. As a consequence, if positive serial
correlation is present in the regression, standard linear regression analysis will typically lead us
to compute artificially small standard errors for the regression coefficient. These small standard
errors will cause the estimated t-statistics to be inflated, suggesting significance where perhaps
there is none. The inflated t-statistics may, in turn, lead us to incorrectly reject null hypotheses
about population values of the parameters of the regression model more often than we would
if the standard errors were correctly estimated. This Type I error could lead to improper
investment recommendations.51

49We address this issue in the chapter on time-series analysis.
50In contrast, with negative serial correlation, a positive error for one observation increases the chance
of a negative error for another observation, and a negative error for one observation increases the chance
of a positive error for another.
51OLS standard errors need not be underestimates of actual standard errors if negative serial correlation
is present in the regression.
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4.2.2. Testing for Serial Correlation We can choose from a variety of tests for serial
correlation in a regression model,52 but the most common is based on a statistic developed
by Durbin and Watson (1951); in fact, many statistical software packages compute the
Durbin–Watson statistic automatically. The equation for the Durbin–Watson test statistic is

DW =

T∑
t=2

(ε̂t − ε̂t−1)2

T∑
t=1

ε̂2
t

(9-6)

where ε̂t is the regression residual for period t. We can rewrite this equation as

1

T − 1

T∑
t=2

(ε̂2
t − 2ε̂t ε̂t−1 + ε̂2

t−1)

1

T − 1

T∑
t=1

ε̂t
2

≈ Var(ε̂t) − 2 Cov(ε̂t , ε̂t−1) + Var(ε̂t−1)

Var(ε̂t )

If the variance of the error is constant through time, then we expect Var(ε̂t ) = σ̂2
ε̂

for all
t, where we use σ2

ε to represent the estimate of the constant error variance. If, in addition,
the errors are also not serially correlated, then we expect Cov(ε̂t , ε̂t−1) = 0. In that case, the
Durbin–Watson statistic is approximately equal to

σ̂2
ε − 0 + σ̂2

ε

σ̂2
ε

= 2

This equation tells us that if the errors are homoskedastic and not serially correlated, then the
Durbin–Watson statistic will be close to 2. Therefore, we can test the null hypothesis that
the errors are not serially correlated by testing whether the Durbin–Watson statistic differs
significantly from 2.

If the sample is very large, the Durbin–Watson statistic will be approximately equal to
2(1 − r), where r is the sample correlation between the regression residuals from one period
and those from the previous period. This approximation is useful because it shows the value
of the Durbin–Watson statistic for differing levels of serial correlation. The Durbin–Watson
statistic can take on values ranging from 0 (in the case of serial correlation of +1) to 4 (in the
case of serial correlation of −1):

• If the regression has no serial correlation, then the regression residuals will be uncorrelated
through time and the value of the Durbin–Watson statistic will be equal to 2(1 − 0) = 2.

• If the regression residuals are positively serially correlated, then the Durbin–Watson statistic
will be less than 2. For example, if the serial correlation of the errors is 1, then the value of
the Durbin–Watson statistic will be 0.

• If the regression residuals are negatively serially correlated, then the Durbin–Watson
statistic will be greater than 2. For example, if the serial correlation of the errors is −1, then
the value of the Durbin–Watson statistic will be 4.

52See Greene (2003) for a detailed discussion of tests of serial correlation.
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Returning to Example 9-8, which explored the Fisher effect, as shown in Table 9-6
the Durbin–Watson statistic for the OLS regression is 0.4673. This result means that the
regression residuals are positively serially correlated:

DW = 0.4673

≈ 2(1 − r)

r ≈ 1 − DW/2

= 1 − 0.4673/2

= 0.766

This outcome raises the concern that OLS standard errors may be incorrect because of positive
serial correlation. Does the observed Durbin–Watson statistic (0.4673) provide enough
evidence to warrant rejecting the null hypothesis of no positive serial correlation?

We should reject the null hypothesis of no serial correlation if the Durbin–Watson
statistic is below a critical value, d∗. Unfortunately, Durbin and Watson also showed that, for
a given sample, we cannot know the true critical value, d∗. Instead, we can determine only
that d∗ lies either between two values, du (an upper value) and dl (a lower value), or outside
those values.53 Figure 9-3 depicts the upper and lower values of d∗ as they relate to the results
of the Durbin–Watson statistic.

Inconclusive

d1 du

Reject hypothesis of
no serial correlation

Fail to reject
null hypothesis

FIGURE 9-3 Value of the Durbin–Watson Statistic

From Figure 9-3, we learn the following:

• When the Durbin–Watson (DW) statistic is less than dl , we reject the null hypothesis of
no positive serial correlation.

• When the DW statistic falls between dl and du, the test results are inconclusive.
• When the DW statistic is greater than du, we fail to reject the null hypothesis of no positive

serial correlation.54

Returning to Example 9-8, the Fisher effect regression has one independent variable and
137 observations. The Durbin–Watson statistic is 0.4673. If we look at Appendix E in the
column marked k = 1, we see that we can reject the null hypothesis of no correlation in
favor of the alternative hypothesis of positive serial correlation at the 0.05 level because the
Durbin–Watson statistic is far below dl for k = 1 and n = 100 (1.65). The level of dl would

53Appendix E tabulates the 0.05 significance levels of du and dl for differing numbers of estimated
parameters (k = 1, 2, . . ., 5) and time periods between 15 and 100.
54Of course, sometimes serial correlation in a regression model is negative rather than positive. For a
null hypothesis of no serial correlation, the null hypothesis is rejected if DW < dl (indicating significant
positive serial correlation) or if DW > 4 − dl (indicating significant negative serial correlation).
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be even higher for a sample of 137 observations. This finding of significant positive serial
correlation suggests that the OLS standard errors in this regression probably significantly
underestimate the true standard errors.

4.2.3. Correcting for Serial Correlation We have two alternative remedial steps when
a regression has significant serial correlation. First, we can adjust the coefficient standard errors
for the linear regression parameter estimates to account for the serial correlation. Second, we
can modify the regression equation itself to eliminate the serial correlation. We recommend
using the first method for dealing with serial correlation; the second method may result in
inconsistent parameter estimates unless implemented with extreme care.

The most prevalent method for adjusting standard errors was developed by Hansen (1982)
and is a standard feature in many statistical software packages.55 An additional advantage of
Hansen’s method is that it simultaneously corrects for conditional heteroskedasticity.56

Table 9-8 shows the results of correcting the standard errors from Table 9-6 for serial
correlation and heteroskedasticity using Hansen’s method. Note that the coefficients for both
the intercept and the slope are exactly the same as in the original regression. The robust standard
errors are now much larger, however—about twice the OLS standard errors. Because of the
severe serial correlation in the regression error, OLS greatly underestimates the uncertainty
about the estimated parameters in the regression.

Note also that the Durbin–Watson statistic has not changed from Table 9-6. The serial
correlation has not been eliminated, but the standard error has been corrected to account for
the serial correlation.

TABLE 9-8 Results from Regressing T-Bill Returns on Predicted
Inflation (Standard Errors Corrected for Conditional Heteroskedasticity
and Serial Correlation)

Coefficient Standard Error t-Statistic

Intercept 0.0304 0.0069 4.4106
Inflation prediction 0.8774 0.1729 5.0730

Residual standard error 0.0220
Multiple R-squared 0.4640
Observations 137
Durbin–Watson statistic 0.4673

Source: Federal Reserve Bank of Philadelphia, U.S. Department of
Commerce.

Now suppose we want to test our original null hypothesis (the Fisher effect) that the coefficient
on the predicted inflation term equals 1 (H0 : b1 = 1) against the alternative that the coefficient
on the inflation term is not equal to 1 (Ha : b1 �= 1). With the corrected standard errors, the
value of the test statistic for this null hypothesis is

55This correction is known by various names, including serial-correlation consistent standard errors, serial
correlation and heteroskedasticity adjusted standard errors, robust standard errors, and Hansen–White
standard errors. Analysts may also say that they use the Newey–West method for computing robust
standard errors.
56We do not always use Hansen’s method to correct for serial correlation and heteroskedasticity because
sometimes the errors of a regression are not serially correlated.
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b̂1 − b1

sb̂1

= 0.8774 − 1

0.1729
= −0.7091

The critical values for both the 0.05 and 0.01 significance level are much larger than 0.7091
(absolute value of the t-test statistic), so we cannot reject the null hypothesis.

In this particular case, our conclusion about the Fisher effect was not affected by
serial correlation, but the standard error on the slope coefficient after taking into account
serial correlation and conditional heteroskedasticity (0.1729) is more than double the OLS
standard error (0.0812). Therefore, for some hypotheses, serial correlation and conditional
heteroskedasticity could have had a big effect on whether we accepted or rejected those
hypotheses.57

4.3. Multicollinearity

The second assumption of the multiple linear regression model is that no exact linear
relationship exists between two or more of the independent variables. When one of the
independent variables is an exact linear combination of other independent variables, it
becomes mechanically impossible to estimate the regression. That case, known as perfect
collinearity, is much less of a practical concern than multicollinearity.58 Multicollinearity
occurs when two or more independent variables (or combinations of independent variables)
are highly (but not perfectly) correlated with each other. With multicollinearity we can
estimate the regression, but the interpretation of the regression output becomes problematic.
Multicollinearity is a serious practical concern because approximate linear relationships among
financial variables are common.

4.3.1. The Consequences of Multicollinearity Although the presence of multi-
collinearity does not affect the consistency of the OLS estimates of the regression coefficients,
the estimates become extremely imprecise and unreliable. Furthermore, it becomes practically
impossible to distinguish the individual impacts of the independent variables on the dependent
variable. These consequences are reflected in inflated OLS standard errors for the regression
coefficients. With inflated standard errors, t-tests on the coefficients have little power (ability
to reject the null hypothesis).

4.3.2. Detecting Multicollinearity In contrast to the cases of heteroskedasticity and
serial correlation, we shall not provide a formal statistical test for multicollinearity. In practice,
multicollinearity is often a matter of degree rather than of absence or presence.59

The analyst should be aware that using the magnitude of pairwise correlations among
the independent variables to assess multicollinearity, as has occasionally been suggested, is
generally not adequate. Although very high pairwise correlations among independent variables
can indicate multicollinearity, it is not necessary for such pairwise correlations to be high for

57Serial correlation can also affect forecast accuracy. We discuss this issue in the chapter on time series.
58To give an example of perfect collinearity, suppose we tried to explain a company’s credit ratings with
a regression that included net sales, cost of goods sold, and gross profit as independent variables. Because
Gross profit = Net sales − Cost of goods sold by definition, there is an exact linear relationship between
these variables. This type of blunder is relatively obvious (and easy to avoid).
59See Kmenta (1986).
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there to be a problem of multicollinearity.60 Stated another way, high pairwise correlations
among the independent variables are not a necessary condition for multicollinearity, and
low pairwise correlations do not mean that multicollinearity is not a problem. The only
case in which correlation between independent variables may be a reasonable indicator of
multicollinearity occurs in a regression with exactly two independent variables.

The classic symptom of multicollinearity is a high R2 (and significant F -statistic) even
though the t-statistics on the estimated slope coefficients are not significant. The insignificant
t-statistics reflect inflated standard errors. Although the coefficients might be estimated with
great imprecision, as reflected in low t-statistics, the independent variables as a group may do a
good job of explaining the dependent variable, and a high R2 would reflect this effectiveness.
Example 9-9 illustrates this diagnostic.

EXAMPLE 9-9 Multicollinearity in Explaining Returns
to the Fidelity Select Technology Fund

In Example 9-3 we regressed returns to the Fidelity Select Technology Fund (FSPTX)
on returns to the S&P 500/BARRA Growth Index and the S&P 500/BARRA Value
Index. Table 9-9 shows the results of our regression, which uses data from January 1998
through December 2002. The t-statistic of 9.7034 on the growth index return is greater
than 2.0, indicating that the coefficient on the growth index differs significantly from
0 at standard significance levels. On the other hand, the t-statistic on the value index
return is −1.5953 and thus is not statistically significant. This result suggests that the
returns to the FSPTX are linked to the returns to the growth index and not closely
associated with the returns to the value index. The coefficient on the growth index,
however, is 2.23. This result implies that returns on the FSPTX are more volatile than
are returns on the growth index.

TABLE 9-9 Results from Regressing the FSPTX Returns on the S&P 500/BARRA
Growth and Value Indexes

Coefficient Standard Error t-Statistic

Intercept 0.0079 0.0091 0.8635
S&P 500/BARRA Growth Index 2.2308 0.2299 9.7034
S&P 500/BARRA Value Index −0.4143 0.2597 −1.5953

ANOVA df SS MSS F Significance F

Regression 2 0.8649 0.4324 86.4483 5.48E-18
Residual 57 0.2851 0.0050
Total 59 1.1500

Residual standard error 0.0707
Multiple R-squared 0.7521
Observations 60

Source: Ibbotson Associates.

60Even if pairs of independent variables have low correlation, there may be linear combinations of the
independent variables that are very highly correlated, creating a multicollinearity problem.
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Note also that this regression explains a significant amount of the variation in
the returns to the FSPTX. Specifically, the R2 from this regression is 0.7521. Thus
approximately 75 percent of the variation in the returns to the FSPTX is explained by
returns to the S&P 500/BARRA growth and value indexes.

Now suppose we run another linear regression that adds returns to the S&P 500
itself to the returns to the S&P 500/BARRA Growth and Value indexes. The S&P 500
includes the component stocks of these two style indexes, so we are introducing a severe
multicollinearity problem.

Table 9-10 shows the results of that regression. Note that the R2 in this regression
has changed almost imperceptibly from the R2 in the previous regression (increasing
from 0.7521 to 0.7539), but now the standard errors of the coefficients are much larger.
Adding the return to the S&P 500 to the previous regression does not explain any
more of the variance in the returns to the FSPTX than the previous regression did,
but now none of the coefficients is statistically significant. This is the classic case of
multicollinearity mentioned in the text.

TABLE 9-10 Results from Regressing the FSPTX Returns on Returns to the
S&P 500/BARRA Growth and Value Indexes and the S&P 500 Index

Coefficient Standard Error t-Statistic

Intercept 0.0072 0.0092 0.7761
S&P 500/BARRA Growth Index −1.1324 5.2443 −0.2159
S&P 500/BARRA Value Index −3.4912 4.8004 −0.7273
S&P 500 Index 6.4436 10.0380 0.6419

ANOVA df SS MSS F Significance F

Regression 3 0.8670 0.2890 57.1751 4.73E-17
Residual 56 0.2830 0.0051
Total 59 1.1500

Residual standard error 0.0711
Multiple R-squared 0.7539
Observations 60

Source: Ibbotson Associates.

Multicollinearity may be a problem even when we do not observe the classic symptom of
insignificant t-statistics but a highly significant F -test. Advanced textbooks provide further
tools to help diagnose multicollinearity.61

4.3.3. Correcting for Multicollinearity The most direct solution to multicollinearity is
excluding one or more of the regression variables. In the example above, we can see that the
S&P 500 total returns should not be included if both the S&P 500/BARRA Growth and Value
Indexes are included, because the returns to the entire S&P 500 Index are a weighted average
of the return to growth stocks and value stocks. In many cases, however, no easy solution is

61See Greene (2003).
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available to the problem of multicollinearity, and you will need to experiment with including
or excluding different independent variables to determine the source of multicollinearity.

4.4. Heteroskedasticity, Serial Correlation, Multicollinearity:
Summarizing the Issues
We have discussed some of the problems that heteroskedasticity, serial correlation, and
multicollinearity may cause in interpreting regression results. These violations of regression
assumptions, we have noted, all lead to problems in making valid inferences. The analyst
should check that model assumptions are fulfilled before interpreting statistical tests.

Table 9-11 gives a summary of these problems, the effect they have on the linear regression
results (an analyst can see these effects using regression software), and the solutions to these
problems.

TABLE 9-11 Problems in Linear Regression and Their Solutions

Problem Effect Solution

Heteroskedasticity Incorrect standard errors Use robust standard errors
(corrected for
conditional
heteroskedasticity)

Serial Correlation Incorrect standard errors
(additional problems if a
lagged value of the
dependent variable is
used as an independent
variable)

Use robust standard errors
(corrected for serial
correlation)

Multicollinearity High R2 and low t-statistics Remove one or more
independent variables;
often no solution based
in theory

5. MODEL SPECIFICATION AND ERRORS
IN SPECIFICATION

Until now, we have assumed that whatever regression model we estimate is correctly specified.
Model specification refers to the set of variables included in the regression and the regression
equation’s functional form. In the following, we first give some broad guidelines for correctly
specifying a regression. Then we turn to three types of model misspecification: misspecified
functional form, regressors that are correlated with the error term, and additional time-series
misspecification. Each of these types of misspecification invalidates statistical inference using
OLS; most of these misspecifications will cause the estimated regression coefficients to be
inconsistent.

5.1. Principles of Model Specification
In discussing the principles of model specification, we need to acknowledge that there are
competing philosophies about how to approach model specification. Furthermore, our purpose
for using regression analysis may affect the specification we choose. The following principles
have fairly broad application, however.
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• The model should be grounded in cogent economic reasoning. We should be able to supply the
economic reasoning behind the choice of variables, and the reasoning should make sense.
When this condition is fulfilled, we increase the chance that the model will have predictive
value with new data. This approach contrasts to thevariable-selection process known as
data mining, discussed in the chapter on sampling. With data mining, the investigator
essentially develops a model that maximally exploits the characteristics of a specific dataset.

• The functional form chosen for the variables in the regression should be appropriate given the
nature of the variables. As one illustration, consider studying mutual fund market timing
based on fund and market returns alone. One might reason that for a successful timer, a plot
of mutual fund returns against market returns would show curvature, because a successful
timer would tend to increase (decrease) beta when market returns were high (low). The
model specification should reflect the expected nonlinear relationship.62 In other cases, we
may transform the data such that a regression assumption is better satisfied.

• The model should be parsimonious. In this context, ‘‘parsimonious’’ means accomplishing a
lot with a little. We should expect each variable included in a regression to play an essential
role.

• The model should be examined for violations of regression assumptions before being accepted.
We have already discussed detecting the presence of heteroskedasticity, serial correlation,
and multicollinearity. As a result of such diagnostics, we may conclude that we need to
revise the set of included variables and/or their functional form.

• The model should be tested and be found useful out of sample before being accepted. The
term ‘‘out of sample’’ refers to observations outside the dataset on which the model was
estimated. A plausible model may not perform well out of sample because economic
relationships have changed since the sample period. That possibility is itself useful to know.
A second explanation, however, may be that relationships have not changed but that the
model explains only a specific dataset.

Having given some broad guidance on model specification, we turn to a discussion of specific
model specification errors. Understanding these errors will help an analyst develop better
models and be a more informed consumer of investment research.

5.2. Misspecified Functional Form

Whenever we estimate a regression, we must assume that the regression has the correct
functional form. This assumption can fail in several ways:

• One or more important variables could be omitted from regression.
• One or more of the regression variables may need to be transformed (for example, by taking

the natural logarithm of the variable) before estimating the regression.
• The regression model pools data from different samples that should not be pooled.

First, consider the effects of omitting an important independent variable from a regression
(omitted variable bias). If the true regression model was

62This example is based on Treynor and Mazuy (1966), an early regression study of mutual fund timing.
To capture curvature, they included a term in the squared market excess return, which does not violate
the assumption of the multiple linear regression model that relationship between the dependent and
independent variables is linear in the coefficients.
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Yi = b0 + b1X1i + b2X2i + εi (9-7)

but we estimate the model63

Yi = a0 + a1X1i + εi

then our regression model would be misspecified. What is wrong with the model?
If the omitted variable (X2) is correlated with the remaining variable (X1), then the error

term in the model will be correlated with (X1), and the estimated values of the regression
coefficients a0 and a1 would be biased and inconsistent. In addition, the estimates of the
standard errors of those coefficients will also be inconsistent, so we can use neither the
coefficients estimates nor the estimated standard errors to make statistical tests.

EXAMPLE 9-10 Omitted Variable Bias and the
Bid–Ask Spread

In this example, we extend our examination of the bid–ask spread to show the effect of
omitting an important variable from a regression. In Example 9-1, we showed that the
natural logarithm of the ratio [(Bid–ask spread)/Price] was significantly related to both
the natural logarithm of the number of market makers and the natural logarithm of the
market capitalization of the company. We repeat Table 9-1 from Example 9-1 below.

TABLE 9-1 (repeated) Results from Regressing ln(Bid–Ask Spread/Price) on
ln(Number of Market Makers) and ln(Market Cap)

Coefficients Standard Error t-Statistic

Intercept −0.7586 0.1369 −5.5416
ln(Number of Nasdaq market makers) −0.2790 0.0673 −4.1427
ln(Company’s market cap) −0.6635 0.0246 −27.0087

ANOVA df SS MSS F Significance F

Regression 2 2,681.6482 1,340.8241 1,088.8325 0.00
Residual 1,816 2,236.2820 1,2314
Total 1,818 4,917.9302

Residual standard error 1.1097
Multiple R-squared 0.5453
Observations 1,819

Source: FactSet, Nasdaq.

If we did not include the natural log of market capitalization as an independent
variable in the regression, and we regressed the natural logarithm of the ratio [(Bid–ask
spread)/Price] only on the natural logarithm of the number of market makers for the
stock, the results would be as shown in Table 9-12.

63We use a different regression coefficient notation when X2i is omitted, because the intercept term and
slope coefficient on X1i will generally not be the same as when X2i is included.
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TABLE 9-12 Results from Regressing ln(Bid–Ask Spread/Price) on
ln (Number of Market Makers)

Coefficients Standard Error t-Statistic

Intercept −0.1229 0.1596 −0.7698
ln(Number of Nasdaq market makers) −1.6629 0.0517 −32.1519

ANOVA df SS MSS F Significance F

Regression 1 1,783.3549 1,783.3549 1,033.7464 0.00
Residual 1,817 3,134.5753 1.7251
Total 1,818 4,917.9302

Residual standard error 1.3134
Multiple R-squared 0.3626
Observations 1,819

Source: FactSet, Nasdaq.

Note that the coefficient on ln(Number of Nasdaq market makers) fell from −0.2790
in the original (correctly specified) regression to −1.6629 in the misspecified regression.
Also, the intercept rose from −0.7586 in the correctly specified regression to −0.1229
in the misspecified regression. These results illustrate that omitting an independent
variable that should be in the regression can cause the remaining regression coefficients
to be inconsistent.

A second common cause of misspecification in regression models is the use of the wrong
form of the data in a regression, when a transformed version of the data is appropriate. For
example, sometimes analysts fail to account for curvature or nonlinearity in the relationship
between the dependent variable and one or more of the independent variables, instead
specifying a linear relation among variables. When we are specifying a regression model,
we should consider whether economic theory suggests a nonlinear relation. We can often
confirm the nonlinearity by plotting the data, as we will illustrate in Example 9-11 below.
If the relationship between the variables becomes linear when one or more of the variables
is represented as a proportional change in the variable, we may be able to correct the
misspecification by taking the natural logarithm of the variable(s) we want to represent as a
proportional change. Other times, analysts use unscaled data in regressions, when scaled data
(such as dividing net income or cash flow by sales) are more appropriate. In Example 9-1, we
scaled the bid–ask spread by stock price because what a given bid–ask spread means in terms
of transactions costs for a given size investment depends on the price of the stock; if we had
not scaled the bid–ask spread, the regression would have been misspecified.

EXAMPLE 9-11 Nonlinearity and the Bid–Ask Spread

In Example 9-1, we showed that the natural logarithm of the ratio [(Bid–ask spread)/
Price] was significantly related to both the natural logarithm of the number of market
makers and the natural logarithm of the company’s market capitalization. But why did
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we take the natural logarithm of each of the variables in the regression? We began a
discussion of this question in Example 9-1, which we continue now.

What does theory suggest about the nature of the relationship between the ratio
(Bid–ask spread)/Price, or the percentage bid–ask spread, and its determinants (the
independent variables)? Stoll (1978) builds a theoretical model of the determinants of
percentage bid–ask spread in a dealer market. In his model, the determinants enter
multiplicatively in a particular fashion. In terms of the independent variables introduced
in Example 9-1, the functional form assumed is

[(Bid-ask spread)/Price]i = c(Number of market makers)ib1

× (Market capitalization)b2
i

where c is a constant. The relationship of the percentage bid–ask spread with the number
of market makers and market capitalization is not linear in the original variables.64 If we
take natural log of both sides of the above model, however, we have a log-log regression
that is linear in the transformed variables:65

Yi = b0 + b1X1i + b2X2i + εi

where

Yi = the natural logarithm of the ratio (Bid-ask spread)/Price for stock i
b0 = a constant that equals ln(c)

X1i = the natural logarithm of the number of market makers for stock i
X2i = the natural logarithm of the market capitalization of company i
εi = the error term

As mentioned in Example 9-1, a slope coefficient in the log-log model is interpreted as
an elasticity, precisely, the partial elasticity of the dependent variable with respect to the
independent variable (‘‘partial’’ means holding the other independent variables constant).

We can plot the data to assess whether the variables are linearly related after the
logarithmic transformation. For example, Figure 9-4 shows a scatterplot of the natural
logarithm of the number of market makers for a stock (on the X axis) and the natural
logarithm of (Bid–ask spread)/Price (on the Y axis), as well as a regression line showing
the linear relation between the two transformed variables. The relation between the two
transformed variables is clearly linear.

If we do not take log of the ratio (Bid–ask spread)/Price, the plot is not linear.
Figure 9-5 shows a plot of the natural logarithm of the number of market makers for
a stock (on the X axis) and the ratio (Bid–ask spread)/Price (on the Y axis), as well
as a regression line that attempts to show a linear relation between the two variables.
We see that the relation between the two variables is very nonlinear.66 Consequently,
we should not estimate a regression with (Bid–ask spread)/Price as the dependent

64The form of the model is analogous to the Cobb–Douglas production function in economics.
65We have added an error term to the model.
66The relation between (Bid–ask spread)/Price and ln(Market cap) is also nonlinear, while the relation
between ln(Bid–ask spread)/Price and ln(Market cap) is linear. We omit these scatterplots to save space.
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variable. Consideration of the need to assure that predicted bid–ask spreads are positive
would also lead us to not use (Bid–ask spread)/Price as the dependent variable. If we
use the nontransformed ratio (Bid–ask spread)/Price as the dependent variable, the
estimated model could predict negative values of the bid–ask spread. This result would
be nonsensical; in reality, no bid–ask spread is negative (it is hard to motivate traders
to simultaneously buy high and sell low), so a model that predicts negative bid–ask
spreads is certainly misspecified.67 We illustrate the problem of negative values of the
predicted bid–ask spreads now.

Table 9-13 shows the results of a regression with (Bid–ask spread)/Price as the
dependent variable and the natural logarithm of the number of market makers and the
natural logarithm of the company’s market capitalization as the independent variables.
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FIGURE 9-4 Linear Regression When Two Variables Have a Linear Relation

Suppose that for a particular Nasdaq-listed stock, the number of market makers is
20 and the market capitalization is $5 billion. Therefore, the natural log of the number
of market makers equals ln 20 = 2.9957 and the natural log of the stock’s market
capitalization (in millions) is ln 5, 000 = 8.5172. In this case, the predicted ratio of
bid–ask spread to price is 0.0658 + (2.9957 × −0.0045) + (−0.0068 × 8.5172) =
−0.0056. Therefore, the model predicts that the ratio of bid–ask spread to stock price
is −0.0056 or −0.56 percent of the stock price. Thus the predicted bid–ask spread
is negative, which does not make economic sense. This problem could be avoided by
using log of (Bid–ask spread)/Price as the dependent variable.68

67In our data sample, the bid–ask spread for each of the 1,819 companies is positive.
68Whether the natural log of the percentage bid–ask spread, Y , is positive or negative, the percentage
bid–ask spread found as eY is positive, because a positive number raised to any power is positive. The
constant e is positive (e ≈ 2.7183).
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FIGURE 9-5 Linear Regression When Two Variables Have a Nonlinear Relation

TABLE 9-13 Results from Regressing Bid–Ask Spread/Price on
ln(Number of Market Makers) and ln(Market Cap)

Coefficient Standard Error t-Statistic

Intercept 0.0658 0.0024 27.6430
ln(Number of Nasdaq market makers) −0.0045 0.0012 −3.8714
ln(Company’s market cap) −0.0068 0.0004 −15.8679

ANOVA df SS MSS F Significance F

Regression 2 0.3185 0.1592 427.8174 0.00
Residual 1816 0.6760 0.0004
Total 1818 0.9944

Residual standard error 0.0193
Multiple R-squared 0.3203
Observations 1,819

Source: FactSet, Nasdaq.

Often, analysts must decide whether to scale variables before they compare data across
companies. For example, in financial statement analysis, analysts often compare companies
using common size statements. In a common size income statement, all the line items
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in a company’s income statement are divided by the company’s revenues.69 Common size
statements make comparability across companies much easier. An analyst can use common size
statements to quickly compare trends in gross margins (or other income statement variables)
for a group of companies.

Issues of comparability also appear for analysts who want to use regression analysis to
compare the performance of a group of companies. Example 9-12 illustrates this issue.

EXAMPLE 9-12 Scaling and the Relation between Cash Flow
from Operations and Free Cash Flow

Suppose an analyst wants to explain free cash flow to the firm as a function of cash flow
from operations in 2001 for 11 family clothing stores in the United States with market
capitalizations of more than $100 million as of the end of 2001.

To investigate this issue, the analyst might use free cash flow as the dependent
variable and cash flow from operations as the independent variable in single-independent-
variable linear regression. Table 9-14 shows the results of that regression. Note that the
t-statistic for the slope coefficient for cash flow from operations is quite high (6.5288),
the significance level for the F -statistic for the regression is very low (0.0001), and the
R-squared is quite high. We might be tempted to believe that this regression is a success
and that for a family clothing store, if cash flow from operations increased by $1.00, we
could confidently predict that free cash flow to the firm would increase by $0.3579.

TABLE 9-14 Results from Regressing the Free Cash Flow on Cash Flow from
Operations for Family Clothing Stores

Coefficient Standard Error t-Statistic

Intercept 0.7295 27.7302 0.0263
Cash flow from operations 0.3579 0.0548 6.5288

ANOVA df SS MSS F Significance F

Regression 1 245,093.7836 245,093.7836 42.6247 0.0001
Residual 9 51,750.3139 5,750.0349
Total 10 296,844.0975

Residual standard error 75.8290
Multiple R-squared 0.8257
Observations 11

Source: Compustat.

But is this specification correct? The regression does not account for size differences
among the companies in the sample.

69For more on common size statements, see White, Sondhi, and Fried (2003). Free cash flow and cash
flow from operations are discussed in Stowe, Robinson, Pinto, and McLeavey (2002).
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We can account for size differences by using common size cash flow results across
companies. We scale the variables by dividing cash flow from operations and free
cash flow to the firm by the company’s sales before using regression analysis. We
will use (Free cash flow to the firm/Sales) as the dependent variable and (Cash flow
from operations/Sales) as the independent variable. Table 9-15 shows the results of
this regression. Note that the t-statistic for the slope coefficient on (Cash flow from
operations/Sales) is 1.6262, so it is not significant at the 0.05 level. Note also that the
significance level of the F -statistic is 0.1383, so we cannot reject at the 0.05 level the
hypothesis that the regression does not explain variation in (Free cash flow/Sales) among
family clothing stores. Finally, note that the R-squared in this regression is much lower
than that of the previous regression.

TABLE 9-15 Results from Regressing the Free Cash Flow/Sales on Cash Flow from
Operations/Sales for Family Clothing Stores

Coefficient Standard Error t-Statistic

Intercept −0.0121 0.0221 −0.5497
Cash flow from operations/Sales 0.4749 0.2920 1.6262

ANOVA df SS MSS F Significance F

Regression 1 0.0030 0.0030 2.6447 0.1383
Residual 9 0.0102 0.0011
Total 10 0.0131

Residual standard error 0.0336
Multiple R-squared 0.2271
Observations 11

Source: Compustat.

Which regression makes more sense? Usually, the scaled regression makes more sense.
We want to know what happens to free cash flow (as a fraction of sales) if a change
occurs in cash flow from operations (as a fraction of sales). Without scaling, the results
of the regression can be based solely on scale differences across companies, rather than
based on the companies’ underlying economics.

A third common form of misspecification in regression models is pooling data from different
samples that should not be pooled. This type of misspecification can best be illustrated
graphically. Figure 9-6 shows two clusters of data on variables X and Y , with a fitted regression
line. The data could represent the relationship between two financial variables at two stages of
a company’s growth, for example.

In each cluster of data on X and Y , the correlation between the two variables is virtually 0.
Because the means of both X and Y are different for the two clusters of data in the combined
sample, X and Y are highly correlated. The correlation is spurious (misleading), however,
because it reflects scale differences across companies.
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FIGURE 9-6 Plot of Two Series with Changing Means

5.3. Time-Series Misspecification (Independent Variables Correlated
with Errors)

In the previous section, we discussed the misspecification that arises when a relevant indepen-
dent variable is omitted from a regression. In this section, we discuss problems that arise from
the kinds of variables included in the regression, particularly in a time-series context. In models
that use time-series data to explain the relations among different variables, it is particularly
easy to violate Regression Assumption 3, that the error term has mean 0, conditioned on the
independent variables. If this assumption is violated, the estimated regression coefficients will
be biased and inconsistent.

Three common problems that create this type of time-series misspecification are

• including lagged dependent variables as independent variables in regressions with serially
correlated errors,

• including a function of a dependent variable as an independent variable, sometimes as a
result of the incorrect dating of variables, and

• independent variables that are measured with error.

The next examples demonstrate these problems.
Suppose that an analyst has estimated a linear regression with significant serial correlation

in the errors. That serial correlation could be corrected by the methods discussed previously
in this chapter. Nevertheless, suppose that the analyst includes as an additional independent
variable the first lagged value of the dependent variable. For example, the analyst might use
the regression equation

Yt = b0 + b1X1t + b2Yt−1 + εt (9-8)
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Because we assume that the error term is serially correlated, by definition the error term is
correlated with the dependent variable. Consequently, the lagged dependent variable, Yt−1,
will be correlated with the error term, violating the assumption that the independent variables
are uncorrelated with the error term. As a result, the estimates of the regression coefficients
will be biased and inconsistent.

EXAMPLE 9-13 Fisher Effect with a Lagged
Dependent Variable

In our discussion of serial correlation, we concluded from a test using the Durbin–
Watson test that the error term in the Fisher effect equation (Equation 9-5) showed-
positive (first-order) serial correlation, using three-month T-bill returns as the dependent
variable and inflation expectations of professional forecasters as the independent variable.
Observations on the dependent and independent variables were quarterly. Table 9-16
modifies that regression by including the previous quarter’s three-month T-bill returns
as an additional independent variable.

TABLE 9-16 Results from Regressing T-Bill Returns on Predicted Inflation
and Lagged T-Bill Returns

Coefficient Standard Error t-Statistic

Intercept 0.0046 0.0040 1.5718
Inflation prediction 0.2753 0.0631 4.3610
Lagged T-bill return 0.7553 0.0495 15.2510

Residual standard error 0.0134
Multiple R-squared 0.8041
Observations 137

Source: Federal Reserve Bank of Philadelphia, U.S. Department of Commerce.

At first glance, these regression results look very interesting—the coefficient on the
lagged T-bill return appears to be highly significant. But on closer consideration, we
must ignore these regression results, because the regression is fundamentally misspecified.
As long as the error term is serially correlated, including lagged T-bill returns as an
independent variable in the regression will cause all the coefficient estimates to be biased
and inconsistent. Therefore, this regression is not useable for either testing a hypothesis
or for forecasting.

A second common time-series misspecification in investment analysis is to forecast the past.
What does that mean? If we forecast the future (say we predict at time t the value of variable Y
in period t + 1), we must base our predictions on information we knew at time t. We could
use a regression to make that forecast using the equation

Yt+1 = b0 + b1X1t + εt+1 (9-9)
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In this equation, we predict the value of Y in time t + 1 using the value of X in time t. The
error term, εt+1, is unknown at time t and thus should be uncorrelated with X1t .

Unfortunately, analysts sometimes use regressions that try to forecast the value of a
dependent variable at time t + 1 based on independent variable(s) that are functions of
the value of the dependent variable at time t + 1. In such a model, the independent
variable(s) would be correlated with the error term, so the equation would be misspecified.
As an example, an analyst may try to explain the cross-sectional returns for a group
of companies during a particular year using the market-to-book ratio and the market
capitalization for those companies at the end of the year.70 If the analyst believes that such
a regression predicts whether companies with high market-to-book ratios or high market
capitalizations will have high returns, the analyst is mistaken. For any given period, the
higher the return during the period, the higher the market capitalization at the end of
the period. It is also true that the higher the return during the period, the higher the
market-to-book ratio at the end of the period. So in this case, if all the cross-sectional
data come from period t + 1, a high value of the dependent variable (returns) actually
causes a high value of the independent variables (market cap and market-to-book), rather
than the other way around. In this type of misspecification, the regression model effectively
includes the dependent variable on both the right- and left-hand sides of the regression
equation.

The third common time-series misspecification arises when an independent variable is
measured with error. Suppose a financial theory tells us that a particular variable Xt , such as
expected inflation, should be included in the regression model. We do not observe Xt ; instead,
we observe actual inflation, Zt = Xt + ut , where ut is an error term that is uncorrelated with
Xt . Even in this best of circumstances, using Zt in the regression instead of Xt will cause the
regression coefficient estimates to be biased and inconsistent. Let’s see why. If we want to
estimate the regression

Yt = b0 + b1Xt + εt

but we observe Zt not Xt , then we would estimate

Yt = b0 + b1Zt + (−b1ut + εt )

But because Zt = Xt + ut , Zt is correlated with the error term (−b1ut + εt ). Therefore,
our estimated model violates the assumption that the error term is uncorrelated with the
independent variable. Consequently, the estimated regression coefficients will be biased and
inconsistent.

EXAMPLE 9-14 The Fisher Effect with Measurement Error

Recall from Example 9-8 on the Fisher effect that we could not reject the hypothesis
that three-month T-bill returns moved one-for-one with expected inflation.

70‘‘Market-to-book ratio’’ is the ratio of price per share divided by book value per share.
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TABLE 9-16 (repeated) Results from Regressing T-Bill Returns on
Predicted Inflation

Coefficient Standard Error t-Statistic

Intercept 0.0304 0.0040 7.6887
Inflation prediction 0.8774 0.0812 10.8096

Residual standard error 0.0220
Multiple R-squared 0.4640
Observations 137
Durbin–Watson statistic 0.4673

Source: Federal Reserve Bank of Philadelphia, U.S. Department of Commerce.

What if we used actual inflation instead of expected inflation as the independent
variable? Note first that

π = πe + ν

where

π = actual rate of inflation
πe = expected rate of inflation
ν = the difference between actual and expected inflation

Because actual inflation measures expected inflation with error, the estimators of the
regression coefficients using T-bill yields as the dependent variable and actual inflation
as the dependent variable will not be consistent.71

Table 9-17 shows the results of using actual inflation as the independent variable.
The estimates in this table are quite different from those presented in the previous table.
Note that the slope coefficient on actual inflation is much lower than the slope coefficient
on predicted inflation in the previous regression. This result is an illustration of a general
proposition: In a single-independent-variable regression, if we select a version of that
independent variable that is measured with error, the estimated slope coefficient on that
variable will be biased toward 0.72

TABLE 9-17 Results from Regressing T-Bill Returns on Actual Inflation

Coefficient Standard Error t-Statistic

Intercept 0.0432 0.0034 12.7340
Actual inflation 0.5066 0.0556 9.1151

Residual standard error 0.0237
Multiple R-squared 0.3810
Observations 137

Source: Federal Reserve Bank of Philadelphia, U.S. Department of Commerce.

71A consistent estimator is one for which the probability of estimates close to the value of the population
parameter increases as sample size increases.
72This proposition does not generalize to regressions with more than one independent variable. Of
course, we ignore serially-correlated errors in this example, but because the regression coefficients are
inconsistent (due to measurement error), testing or correcting for serial correlation is not worthwhile.
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5.4. Other Types of Time-Series Misspecification

By far the most frequent source of misspecification in linear regressions that use time series
from two or more different variables is nonstationarity. Very roughly, nonstationarity means
that a variable’s properties, such as mean and variance, are not constant through time. We will
postpone our discussion about stationarity until Chapter 10, but we can list some examples in
which we need to use stationarity tests before we use regression statistical inference.73

• Relations among time series with trends (for example, the relation between consumption
and GDP).

• Relations among time series that may be random walks (time series for which the best
predictor of next period’s value is this period’s value). Exchange rates are often random
walks.

The time-series examples in this chapter were carefully chosen such that nonstationarity was
unlikely to be an issue for any of them. But nonstationarity can be a very severe problem for
analyzing the relations among two or more time series in practice. Analysts must understand
these issues before they apply linear regression to analyzing the relations among time series.
Otherwise, they may rely on invalid statistical inference.

6. MODELS WITH QUALITATIVE
DEPENDENT VARIABLES

Financial analysts often need to be able to explain the outcomes of a qualitative dependent
variable. Qualitative dependent variables are dummy variables used as dependent variables
instead of as independent variables.

For example, to predict whether or not a company will go bankrupt, we need to use a
qualitative dependent variable (bankrupt or not) as the dependent variable and use data on the
company’s financial performance (e.g., return on equity, debt-to-equity ratio, or debt rating)
as independent variables. Unfortunately, linear regression is not the best statistical method
to use for estimating such a model. If we use the qualitative dependent variable bankrupt
(1) or not bankrupt (0) as the dependent variable in a regression with financial variables as the
independent variables, the predicted value of the dependent variable could be much greater
than 1 or much lower than 0. Of course, these results would be invalid. The probability of
bankruptcy (or of anything, for that matter) cannot be greater than 100 percent or less than
0 percent. Instead of a linear regression model, we should use probit, logit, or discriminant
analysis for this kind of estimation.

Probit and logit models estimate the probability of a discrete outcome given the values
of the independent variables used to explain that outcome. The probit model, which is based
on the normal distribution, estimates the probability that Y = 1 (a condition is fulfilled) given
the value of the independent variable X . The logit model is identical, except that it is based on
the logistic distribution rather than the normal distribution.74 Both models must be estimated
using maximum likelihood methods.75

73We include both unit root tests and tests for cointegration in the term ‘‘stationarity tests.’’ These tests
will be discussed in Chapter 10.
74The logistic distribution e(b0+b1X )/[1 + e(b0+b1X )] is easier to compute than the cumulative normal
distribution. Consequently, logit models gained popularity when computing power was expensive.
75For more on probit and logit models, see Greene (2003).
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Another technique to handle qualitative dependent variables is discriminant analysis. In
his Z-score and Zeta analysis, Altman (1968, 1977) reported on the results of discriminant
analysis. Altman uses financial ratios to predict the qualitative dependent variable bankruptcy.
Discriminant analysis yields a linear function, similar to a regression equation, which can then
be used to create an overall score. Based on the score, an observation can be classified into the
bankrupt or not bankrupt category.

Qualitative dependent variable models can be useful not only for portfolio management
but also for business management. For example, we might want to predict whether a client is
likely to continue investing in a company or to withdraw assets from the company. We might
also want to explain how particular demographic characteristics might affect the probability
that a potential investor will sign on as a new client, or evaluate the effectiveness of a
particular direct-mail advertising campaign based on the demographic characteristics of the
target audience. These issues can be analyzed with either probit or logit models.

EXAMPLE 9-15 Explaining Analyst Coverage

Suppose we want to investigate what factors determine whether at least one analyst covers
a company. We can employ a probit model to address the question. The sample consists
of 2,047 observations on public companies in 1999. All data comefrom Disclosure, Inc.
The analyst coverage data on Disclosure come from I/B/E/S.

The variables in the probit model are as follows:

ANALYSTS = the discrete dependent variable, which takes on a value
of 1 if at least one analyst covers the company and a
value of 0 if no analysts cover the company

LNVOLUME = the natural log of trading volume in the most recent week
LNMV = the natural log of market value

ESTABLISHED = a dummy independent variable that takes on a value of 1
if the company’s financial data has been audited for at
least five years

LNTA = the natural log of total assets(book value)
LNSALES = the natural log of net sales

In this attempt to explain analyst coverage, the market (volume and value) and the
book (value and sales) variables might be expected to explain coverage through various
dimensions of size and, hence, importance.76 The audit history variable reflects a
possible comfort level that analysts could be expected to have with audited statements.
The model includes three variables (LNMV, LNTA, and LNSALES) that we may expect

76For more information on tests of multicollinearity, see Greene (2003).
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to be correlated. Based on analysis not shown here, our probit regression did not exhibit
the classic symptom of multicollinearity. Table 9-18 shows the results of the probit
estimation.

TABLE 9-18 Explaining Analyst Coverage Using a Probit Model

Coefficient Standard Error t-Statistic

Intercept −7.9738 0.4362 −18.2815
LNVOLUME 0.1574 0.0158 9.9482
LNMV 0.4442 0.0369 12.0268
ESTABLISHED 0.3168 0.1045 3.0320
LNTA 0.0548 0.0296 1.8494
LNSALES 0.0507 0.0266 1.9059

Percent correctly predicted 73.67

Source: Disclosure, Inc.

As Table 9-18 shows, three coefficients (besides the intercept) have t-statistics with
an absolute value greater than 2.0. The coefficient on LNVOLUME has a t-statistic
of 9.95. That value is far above the critical value at the 0.05 level for the t-statistic
(1.96), so we can reject at the 0.05 level of significance the null hypothesis that the
coefficient on LNVOLUME equals 0, in favor of the alternative hypothesis that the
coefficient is not equal to 0. The second coefficient with an absolute value greater than
2 is LNMV, which has a t-statistic of 12.03. We can also reject at the 0.05 level of
significance the null hypothesis that the coefficient on LNMV is equal to 0, in favor of
the alternative hypothesis that the coefficient is not equalto 0. Finally, the coefficient on
ESTABLISHED has a t-statistic of 3.03. We can reject at the 0.05 level of significance
the null hypothesis that the coefficient on ESTABLISHED is equal to 0.

Neither of the two remaining independent variables is statistically significant at the
0.05 level in this probit analysis. Neither of the t-statistics on these two variables is larger
in absolute value than 1.91, so neither one reaches the critical value of 1.96 needed to
reject the null hypothesis (that the associated coefficient is significantly different from
0). This result shows that once we take into account a company’s market value, trading
volume, and the existence of a five-year audit history, the other factors—book value of
assets and value of sales—have no power to explain whether at least one analyst will
cover the company.



CHAPTER 10
TIME-SERIES ANALYSIS

1. INTRODUCTION

As financial analysts, we often use time-series data to make investment decisions. A time series
is a set of observations on a variable’s outcomes in different time periods: the quarterly sales for
a particular company during the past five years, for example, or the daily returns on a traded
security. In this chapter, we explore the two chief uses of time-series models: to explain the past
and to predict the future of a time series. We also discuss how to estimate time-series models,
and we examine how a model describing a particular time series can change over time. The
following two examples illustrate the kinds of questions we might want to ask about time series.

Suppose it is the beginning of 2003 and we are managing a U.S.-based investment
portfolio that includes Swiss stocks. Because the value of this portfolio would decrease if the
Swiss franc depreciates with respect to the dollar, and vice-versa, holding all else constant, we
are considering whether to hedge the portfolio’s exposure to changes in the value of the franc.
To help us in making this decision, we decide to model the time series of the franc/dollar
exchange rate. Figure 10-1 shows monthly data on the franc/dollar exchange rate. (The data
are monthly averages of daily exchange rates.) Has the exchange rate been more stable since
1987 than it was in previous years? Has the exchange rate shown a long-term trend? How can
we best use past exchange rates to predict future exchange rates?

As another example, suppose it is the beginning of 2001. We cover retail stores for a
sell-side firm and want to predict retail sales for the coming year. Figure 10-2 shows monthly
data on U.S. real retail sales. The data are inflation adjusted but not seasonally adjusted, hence
the spikes around the holiday season at the turn of each year. Because the reported sales in
the stores financial statements are not seasonally adjusted, we model seasonally unadjusted
retail sales. How can we model the trend in retail sales? How can we adjust for the extreme
seasonality reflected in the peaks and troughs occurring at regular intervals? How can we best
use past retail sales to predict future retail sales?

Some fundamental questions arise in time-series analysis: How do we model trends? How
do we predict the future value of a time series based on its past values? How do we model
seasonality? How do we choose among time-series models? And how do we model changes in
the variance of time series over time? We address each of these issues in this chapter.

2. CHALLENGES OF WORKING WITH
TIME SERIES

Throughout the chapter, our objective will be to apply linear regression to a given time
series. Unfortunately, in working with time series we often find that the assumptions of the
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FIGURE 10-1 Swiss Franc/U.S. Dollar Exchange Rate, Monthly Average of Daily Data
Source: Board of Governors of the Federal Reserve System.
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FIGURE 10-2 Monthly U.S. Real Retail Sales
Source: U.S. Department of Commerce, Census Bureau.

linear regression model are not satisfied. To apply time-series analysis, we need to assure
ourselves that the linear regression model assumptions are met. When those assumptions are
not satisfied, in many cases we can transform the time series, or specify the regression model
differently, so that the assumptions of the linear regression model are met.

We can illustrate assumption difficulties in the context of a common time-series model,
an autoregressive model. Informally, an autoregressive model is one in which the independent
variable is a lagged (that is, past) value of the dependent variable, such as the model
xt = b0 + b1xt−1 + εt .1 Specific problems that we often encounter in dealing with time series
include the following:

1We could also write the equation as yt = b0 + b1yt−1 + εt .
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• The residual errors are correlated instead of being uncorrelated.
In the calculated regression, the difference between xt and b0 + b1xt−1 is called the residual
error. The linear regression assumes that this error term is not correlated across observations.
The violation of that assumption is frequently more critical in terms of its consequences
in the case of time-series models involving past values of the time series as independent
variables than for other models (such as cross-sectional) in which the dependent and
independent variables are distinct. As we discussed in the chapter on multiple regression,
in a regression in which the dependent and independent variables are distinct, serial
correlation of the errors in this model does not affect the consistency of our estimates
of intercept or slope coefficients. By contrast, in an autoregressive time-series regression
such as xt = b0 + b1xt−1 + εt , serial correlation in the error term causes estimates of the
intercept (b0) and slope coefficient (b1) to be inconsistent.

• The mean and/or variance of the time series changes over time.
Regression results are invalid if we estimate an autoregressive model for a time series with
mean and/or variance that changes over time.

Before we try to use time series for forecasting, we may need to transform the time-series
model so that it is well specified for linear regression. With this objective in mind, you will
observe that time-series analysis is relatively straightforward and logical.

3. TREND MODELS

Estimating a trend in a time series and using that trend to predict future values of the time
series is the simplest method of forecasting. For example, we saw in Figure 10-2 that monthly
U.S. real retail sales show a long-term pattern of upward movement—that is, a trend. In this
section, we examine two types of trends, linear trends and log-linear trends, and discuss how
to choose between them.

3.1. Linear Trend Models
The simplest type of trend is a linear trend, one in which the dependent variable changes at
a constant rate with time. If a time series, yt , has a linear trend, then we can model the series
using the following regression equation:

yt = b0 + b1t + εt , t = 1, 2, . . . , T (10-1)

where

yt = the value of the time series at time t (value of the dependent variable)
b0 = the y-intercept term
b1 = the slope coefficient

t = time, the independent or explanatory variable
εt = a random-error term

In Equation 10-1, the trend line, b0 + b1t, predicts the value of the time series at time
t (where t takes on a value of 1 in the first period of the sample and increases by 1 in each
subsequent period). Because the coefficient b1 is the slope of the trend line, we refer to b1 as
the trend coefficient. We can estimate the two coefficients, b0 and b1, using ordinary least
squares, denoting the estimated coefficients as b̂0 and b̂1.2

2Recall that ordinary least squares is an estimation method based on the criterion of minimizing the sum
of a regression’s squared residuals.
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Now we demonstrate how to use these estimates to predict the value of the time series in
a particular period. Recall that t takes on a value of 1 in Period 1. Therefore, the predicted or
fitted value of yt in Period 1 is ŷ1 = b̂0 + b̂1(1). Similarly, in a subsequent period, say the sixth
period, the fitted value is ŷ6 = b̂0 + b̂1(6). Now suppose that we want to predict the value of
the time series for a period outside the sample, say period T + 1. The predicted value of yt for
period T + 1 is ŷT+1 = b̂0 + b̂1(T + 1). For example, if b̂0 is 5.1 and b̂1 is 2, then at t = 5
the predicted value of y5 is 15.1 and at t = 6 the predicted value of y6 is 17.1. Note that each
consecutive observation in this time series increases by b̂1 = 2 irrespective of the level of the
series in the previous period.

EXAMPLE 10-1 The Trend in the U.S. Consumer Price Index

It is January 2001. As a fixed income analyst in the trust department of a bank, Lisette
Miller is concerned about the future level of inflation and how it might affect portfolio
value. Therefore, she wants to predict future inflation rates. For this purpose, she
first needs to estimate the linear trend in inflation. To do so, she uses the monthly
U.S. Consumer Price Index (CPI) inflation data, expressed as an annual percentage
rate,3 shown in Figure 10-3. The data include 192 months from January 1985 to
December 2000, and the model to be estimated is yt = b0 + b1t + εt , t = 1, 2, . . . , 192.
Table 10-1 shows the results of estimating this equation. With 192 observations and
two parameters, this model has 190 degrees of freedom. At the 0.05 significance level,
the critical value for a t-statistic is 1.97. Both the intercept (b̂0 = 4.1342) and the trend
coefficient (b̂1 = −0.0095) are statistically significant because the absolute values of
t-statistics for both coefficients are well above the critical value. The estimated regression
equation can be written as

yt = 4.1342 − 0.0095t
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FIGURE 10-3 Monthly CPI Inflation, Not Seasonally Adjusted
Source: Bureau of Labor Statistics.

3In these data, 1 percent is represented as 1.0.
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TABLE 10-1 Estimating a Linear Trend in Inflation
Monthly Observations, January 1985–December 2000

Regression Statistics

R-squared 0.0408
Standard error 2.5544
Observations 192
Durbin–Watson 1.38

Coefficient Standard Error t-Statistic

Intercept 4.1342 0.3701 11.1693
Trend −0.0095 0.0033 −2.8445

Source: U.S. Bureau of Labor Statistics.

Because the trend line slope is estimated to be −0.0095, Miller concludes that the linear
trend model’s best estimate is that the annualized rate of inflation declined at a rate of
about one one-hundredth of a percentage point per month during the sample time period.

In January 1985, the first month of the sample, the predicted value of inflation
is ŷ1 = 4.1342 − 0.0095(1) = 4.1247 percent. In December 2000, the 192nd or last
month of the sample, the predicted value of inflation is ŷ192 = 4.1342 − 0.0095(192) =
2.3177 percent.4 Note, though, that these predicted values are for in-sample periods.
A comparison of these values with the actual values indicates how well Miller’s model
fits the data; however, a main purpose of the estimated model is to predict the level
of inflation for out-of-sample periods. For example, for December 2001 (12 months
after the end of the sample), t = 192 + 12 = 204, and the predicted level of inflation
is ŷ204 = 4.1342 − 0.0095(204) = 2.2041 percent.
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FIGURE 10-4 Monthly CPI Inflation with Trend
Source: U.S. Bureau of Labor Statistics.

4In reporting the final result (here, 2.3177), we use estimated regression coefficients without rounding;
in stating the calculation, we use the regression coefficients with rounding, so carrying out the calculation
with the rounded coefficients often results in slightly different answers.
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Figure 10-4 shows the inflation data along with the fitted trend. Note that inflation
does not appear to be above or below the trend line for a long period of time. No
persistent differences exist between the trend and actual inflation. The residuals (actual
minus trend values) appear to be unpredictable and uncorrelated in time. Therefore, it
is reasonable to use a linear trend line to model inflation rates from 1985 through 2000.
Furthermore, we can conclude that inflation has been steadily decreasing during that
time period. Note also that the R2 in this model is quite low, indicating great uncertainty
in the inflation forecasts from this model. In fact, the trend explains only 4.08 percent
of the variation in monthly inflation. Later in this chapter, we will examine whether we
can build a better model of inflation than a model that uses only a trend line.

3.2. Log-Linear Trend Models

Sometimes a linear trend does not correctly model the growth of a time series. In those
cases, we often find that fitting a linear trend to a time series leads to persistent rather than
uncorrelated errors. If the residuals from a linear trend model are persistent, we then need to
employ an alternative model satisfying the conditions of linear regression. For financial time
series, an important alternative to a linear trend is a log-linear trend. Log-linear trends work
well in fitting time series that have exponential growth.

Exponential growth means constant growth at a particular rate. So, annual growth at a
constant rate of 5 percent is exponential because the series continues to increase without an
upper bound. How does exponential growth work? Suppose we describe a time series by the
following equation:

yt = eb0+b1t , t = 1, 2, . . . , T (10-2)

Exponential growth is growth at a constant rate (eb1 − 1) with continuous compounding. For
instance, consider values of the time series in two consecutive periods. In Period 1, the time series
has the value y1 = eb0+b1(1), and in Period 2, it has the value y2 = eb0+b1(2). The resulting ratio
of the values of the time series in the first two periods is y2/y1 = (eb0+b1(2))/(eb0+b1(1)) = eb1(1).
Generally, in any period t, the time series has the value yt = eb0+b1(t). In period t + 1, the time
series has the value yt+1 = eb0+b1(t+1). The ratio of the values in the periods (t + 1) and t is
yt+1/yt = eb0+b1(t+1)/eb0+b1(t) = eb1(1). Thus, the proportional rate of growth in the time series
over two consecutive periods is always the same: (yt+1 − yt)/yt = yt+1/yt − 1 = eb1 − 1.5

Therefore, exponential growth is growth at a constant rate. Continuous compounding is a
mathematical convenience that allows us to restate the equation in a form that is easy to estimate.

If we take the natural log of both sides of Equation 10-2, the result is the following
equation:

ln yt = b0 + b1t, t = 1, 2, . . . , T

Therefore, if a time series grows at an exponential rate, we can model the natural log of that
series using a linear trend.6 Of course, no time series grows exactly at an exponential rate.

5For example, if we use annual periods and eb1 = 1.04 for a particular series, then that series grows by
1.04 − 1 = 0.04, or 4 percent a year.
6An exponential growth rate is a compound growth rate with continuous compounding. We discussed
continuous compounding in the chapter on the time value of money.
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Consequently, if we want to use a log-linear model, we must estimate the following equation:

ln yt = b0 + b1t + εt , t = 1, 2, . . . , T (10-3)

Note that this equation is linear in the coefficients b0 and b1. In contrast to a linear trend
model, in which the predicted trend value of yt is b̂0 + b̂1t, the predicted trend value of yt in
a log-linear trend model is eb̂0+b̂1t because eln yt = yt .

Examining Equation 10-3, we see that a log-linear model predicts that ln yt will increase
by b1 from one time period to the next. The model predicts a constant growth rate in yt

of eb1 − 1. For example, if b1 = 0.05, then the predicted growth rate of yt in each period is
e0.05 − 1 = 0.051271 or 5.13 percent. In contrast, the linear trend model (Equation 10-1)
predicts that yt grows by a constant amount from one period to the next.

Example 10-2 illustrates the problem of nonrandom residuals in a linear trend model,
and Example 10-3 shows a log-linear regression specification fit to the same data.

EXAMPLE 10-2 A Linear Trend Regression for
Quarterly Sales at Intel

In January 2000, technology analyst Ray Benedict wants to use Equation 10-1 to fit
the data on quarterly sales for Intel Corporation shown in Figure 10-5. He uses 60
observations on Intel’s sales from the first quarter of 1985 to the fourth quarter of
1999 to estimate the linear trend regression model yt = b0 + b1t + εt , t = 1, 2, . . . , 60.
Table 10-2 shows the results of estimating this equation.
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FIGURE 10-5 Intel Quarterly Sales
Source: Compustat.

At first glance, the results shown in Table 10-2 seem quite reasonable: Both the
intercept and the trend coefficient are highly statistically significant. When Benedict
plots the data on Intel’s sales and the trend line, however, he sees a different picture. As
Figure 10-6 shows, before 1989 the trend line is persistently below sales. Between 1989
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and 1996, the trend line is persistently above sales, but after 1996, the trend line is once
again persistently below sales.

TABLE 10-2 Estimating a Linear Trend in Intel Sales

Regression Statistics

R-squared 0.8774
Standard error 871.6858
Observations 60
Durbin–Watson 0.13

Coefficient Standard Error t-Statistic

Intercept −1,318.7729 227.9585 −5.7852
Trend 132.4005 6.4994 20.3712

Source: Compustat.
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FIGURE 10-6 Intel Quarterly Sales with Trend
Source: Compustat.

Recall a key assumption underlying the regression model: that the regression errors
are not correlated across observations. If a trend is persistently above or below the value
of the time series, however, the residuals (the difference between the time series and the
trend) are serially correlated. Figure 10-7 shows the residuals (the difference between
sales and the trend) from estimating a linear trend model with the raw sales data. The
figure shows that the residuals are persistent. Because of this persistent serial correlation
in the errors of the trend model, using a linear trend to fit sales at Intel would be
inappropriate, even though the R2 of the equation is high (0.88). The assumption of
uncorrelated residual errors has been violated. Because the dependent and independent
variables are not distinct, as in cross-sectional regressions, this assumption violation is
serious and causes us to search for a better model.



Chapter 10 Time-Series Analysis 383

$ Millions

2,000

1,500

0

�1,500

1,000

�1,000

�500

500

�2,000
85 87 88 89 90 91 92 93 95 96 97 98 9986 94

Year

FIGURE 10-7 Residual from Predicting Intel Sales with a Trend
Source: Compustat.

EXAMPLE 10-3 A Log-Linear Regression for
Quarterly Sales at Intel

Having rejected a linear trend model in Example 10-2, technology analyst Benedict
now tries a different model for the quarterly sales for Intel Corporation from the first
quarter of 1985 to the fourth quarter of 1999. The curvature in the data plot shown
in Figure 10-5 is a hint that an exponential curve may fit the data. Consequently, he
estimates the following linear equation:

ln yt = b0 + b1t + εt , t = 1, 2, . . . , 60

This equation seems to fit the sales data much better than did Equation 10-1. As
Table 10-3 shows, the R2 for this equation is 0.98 (the R2 with Equation 10-1 was
0.88). An R2 of 0.98 means that 98 percent of the variation in the natural log of Intel’s
sales is explained solely by a linear trend.

Figure 10-8 shows how well a linear trend fits the natural log of Intel’s sales. The
natural logs of the sales data lie very close to the linear trend during the sample period,
and log sales are not above or below the trend for long periods of time. Thus, a log-linear
trend model seems much better suited for modeling Intel’s sales than does a linear
trend model.

How can Benedict use the results of estimating Equation 10-3 to predict Intel’s
sales in the future? Suppose Benedict wants to predict Intel’s sales for the first quarter of
2000 (t = 61). The estimated value b̂0 is 5.5529, and the estimated value b̂1 is 0.0609.
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Therefore, the estimated model predicts that ln ŷ61 = 5.5529 + 0.0609(61) = 9.2673
and that predicted sales are ŷ61 = eln̂ ŷ61 = e9.2673 = $10, 585.63 million.7

TABLE 10-3 Estimating a Linear Trend in Lognormal Intel Sales

Regression Statistics

R-squared 0.9831
Standard error 0.1407
Observations 60
Durbin–Watson 0.30

Coefficient Standard Error t-Statistic

Intercept 5.5529 0.0368 150.9809
Trend 0.0609 0.0010 58.0680

Source: Compustat.
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FIGURE 10-8 Natural Log of Intel Quarterly Sales
Source: Compustat.

How much different is this forecast from the prediction of the linear trend model?
Table 10-2 showed that for the linear trend model, the estimated value of b̂0 is
−1318.7729 and the estimated value of b̂1 is 132.4005. Thus, if we predict Intel’s
sales for the first quarter of 2000 (t = 61) using the linear trend model, the forecast
is ŷ61 = −1318.7729 + 132.4005(61) = $6, 757.66 million. This forecast is far below
the prediction made by the log-linear regression model. Later in this chapter, we will
examine whether we can build a better model of Intel’s quarterly sales than a model that
uses only a log-linear trend.

7Note that b̂1 = 0.0609 implies that the exponential growth rate per quarter in Intel’s sales will be 6.28
percent (e0.0609 − 1 = 0.062793).
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3.3. Trend Models and Testing for Correlated Errors

Both the linear trend model and the log-linear trend model are single-variable regression
models. If they are to be correctly specified, the regression-model assumptions must be
satisfied. In particular, the regression error for one period must be uncorrelated with the
regression error for all other periods.8 In Example 10-2 in the previous section, we could
infer an obvious violation of that assumption from a visual inspection of a plot of residuals
(Figure 10-7). The log-linear trend model of Example 10-3 appeared to fit the data much
better, but we still need to confirm that the uncorrelated errors assumption is satisfied.
To address that question formally, we must carry out a Durbin–Watson test on the
residuals.

In the chapter on regression analysis, we showed how to test whether regression errors are
serially correlated using the Durbin–Watson statistic. For example, if the trend models shown
in Examples 10-1 and 10-3 really capture the time-series behavior of inflation and the log of
Intel’s sales, then the Durbin–Watson statistic for both of those models should not differ
significantly from 2.0. Otherwise, the errors in the model are either positively or negatively
serially correlated, and that correlation can be used to build a better forecasting model for
those time series.

In Example 10-1, estimating a linear trend in the monthly CPI inflation yielded a
Durbin–Watson statistic of 1.38. Is this result significantly different from 2.0? To find out,
we need to test the null hypothesis of no positive serial correlation. For a sample with 192
observations and one independent variable, the critical value, dl , for the Durbin–Watson test
statistic at the 0.05 significance level is above 1.65. Because the value of the Durbin–Watson
statistic (1.38) is below this critical value, we can reject the hypothesis of no positive serial
correlation in the errors. We can conclude that a regression equation that uses a linear trend to
model inflation has positive serial correlation in the errors.9 We will need a different kind of
regression model because this one violates the least-squares assumption of no serial correlation
in the errors.

In Example 10-3, estimating a linear trend with the natural logarithm of sales for the
Intel example yielded a Durbin–Watson statistic of 0.30. Suppose we wish to test the null
hypothesis of no positive serial correlation. The critical value, dl , is 1.55 at the 0.05 significance
level. The value of the Durbin–Watson statistic (0.30) is below this critical value, so we can
reject the null hypothesis of no positive serial correlation in the errors. We can conclude that
a regression equation that uses a trend to model the log of Intel’s quarterly sales has positive
serial correlation in the errors. So, for this series as well, we need to build a different kind
of model.

Overall, we conclude that the trend models sometimes have the limitation that errors are
serially correlated. Existence of serial correlation suggests that we can build better forecasting
models for such time series than trend models.

8Note that time-series observations, in contrast to cross-sectional observations, have a logical ordering:
They must be processed in chronological order of the time periods involved. For example, we should
not make a prediction of the inflation rate using a CPI series in which the order of the observations had
been scrambled, because time patterns such as growth in the independent variables can negatively affect
the statistical properties of the estimated regression coefficients.
9Significantly small values of the Durbin–Watson statistic indicate positive serial correlation; significantly
large values point to negative serial correlation. Here the DW statistic of 1.38 indicates positive serial
correlation. For more information, see the chapter on regression analysis.
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4. AUTOREGRESSIVE (AR)
TIME-SERIES MODELS

A key feature of the log-linear model’s depiction of time series and a key feature of time series in
general is that current-period values are related to previous-period values. For example, Intel’s
sales for the current period are related to its sales in the previous period. An autoregressive
model (AR), a time series regressed on its own past values, represents this relationship
effectively. When we use this model, we can drop the normal notation of y as the dependent
variable and x as the independent variable because we no longer have that distinction to make.
Here we simply use xt . For example, Equation 10-4 shows a first-order autoregression, AR(1),
for the variable xt :

xt = b0 + b1xt−1 + εt (10-4)

Thus, in an AR(1) model, we use only the most recent past value of xt to predict the current
value of xt . In general, a pth-order autoregression, AR(p), for the variable xt is shown by

xt = b0 + b1xt−1 + b2xt−2 + · · · + bpxt−p + εt (10-5)

In this equation, p past values of xt are used to predict the current value of xt . In the next
section we discuss a key assumption of time-series models that include lagged values of the
dependent variable as independent variables.

4.1. Covariance-Stationary Series
Note that the independent variable (xt−1) in Equation 10-4 is a random variable. This fact
may seem like a mathematical subtlety, but it is not. If we use ordinary least squares to estimate
Equation 10-4 when we have a randomly distributed independent variable that is a lagged
value of the dependent variable, our statistical inference may be invalid. To conduct valid
statistical inference, we must make a key assumption in time-series analysis: We must assume
that the time series we are modeling is covariance stationary.10

What does it mean for a time series to be covariance stationary? The basic idea is that a
time series is covariance stationary if its properties, such as mean and variance, do not change
over time. A covariance stationary series must satisfy three principal requirements.11 First,
the expected value of the time series must be constant and finite in all periods: E( yt ) = µ

and |µ| < ∞, t = 1, 2, . . . , T . Second, the variance of the time series must be constant and
finite in all periods. Third, the covariance of the time series with itself for a fixed number of
periods in the past or future must be constant and finite in all periods. The second and third
requirements can be summarized as follows:12

Cov( yt , yt−s) = λ, |λ| < ∞, t = 1, 2, . . . , T ; s = 0, ±1, ±2, . . . , ±T

10‘‘Weakly stationary’’ is a synonym for covariance stationary. Note that the terms ‘‘stationary’’ or
‘‘stationarity’’ are often used to mean ‘‘covariance stationary’’ or ‘‘covariance stationarity,’’ respectively.
You may also encounter the more restrictive concept of ‘‘strictly’’ stationary, which has little practical
application. For details, see Diebold (2004).
11In the first requirement, we will use the absolute value to rule out the case in which the mean is
negative without limit (minus infinity).
12When s in this equation equals 0, then this equation imposes the condition that the variance of the
time series is finite. This is so because the covariance of a random variable with itself is its variance:
Cov( yt , yt ) = Var( yt ).
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where λ signifies a constant. What happens if a time series is not covariance stationary but
we model it using Equation 10-4? The estimation results will have no economic meaning. For
a non-covariance-stationary time series, estimating the regression in Equation 10-4 will yield
spurious results. In particular, the estimate of b1 will be biased and any hypothesis tests will be
invalid.

How can we tell if a time series is covariance stationary? We can often answer this question
by looking at a plot of the time series. If the plot shows roughly the same mean and variance
through time without any significant seasonality, then we may want to assume that the time
series is covariance stationary.

Some of the time series we looked at in Figures 10-1 to 10-4 appear to be covariance
stationary. For example, the inflation data shown in Figure 10-3 appear to have roughly the
same mean and variance over the sample period. Many of the time series one encounters in
business and investments, however, are not covariance stationary. For example, many time
series appear to grow (or decline) steadily through time and so have a mean that is nonconstant,
which implies that they are nonstationary. As an example, the time series of Intel’s quarterly
sales in Figure 10-5 clearly shows the mean increasing as time passes. Thus Intel’s quarterly
sales are not covariance stationary.13 Macroeconomic time series such as those relating to
income and consumption are often strongly trending as well. A time series with seasonality
(regular patterns of movement with the year) also has a nonconstant mean, as do other types
of time series that we discuss later.14

Figure 10-2 showed that monthly retail sales (not seasonally adjusted) are also not
covariance stationary. Sales in December are always much higher than sales in other months
(these are the regular large peaks), and sales in January are always much lower (these are the
regular large drops after the December peaks). On average, sales also increase over time, so the
mean of sales is not constant.

Later in the chapter, we will show that we can often transform a nonstationary time series
into a stationary time series. But whether a stationary time series is original or transformed, a
caution applies: Stationarity in the past does not guarantee stationarity in the future. There is
always the possibility that a well-specified model will fail when the state of the world changes
and yields a different underlying model that generates the time series.

4.2. Detecting Serially Correlated Errors in an Autoregressive Model
We can estimate an autoregressive model using ordinary least squares if the time series is
covariance stationary and the errors are uncorrelated. Unfortunately, our previous test for
serial correlation, the Durbin–Watson statistic, is invalid when the independent variables
include past values of the dependent variable. Therefore, for most time-series models, we
cannot use the Durbin–Watson statistic. Fortunately, we can use other tests to determine
whether the errors in a time-series model are serially correlated. One such test reveals whether
the autocorrelations of the error term are significantly different from 0. This test is a t-test
involving a residual autocorrelation and the standard error of the residual autocorrelation. As
background for the test, we next discuss autocorrelation in general before moving to residual
autocorrelation.

The autocorrelations of a time series are the correlations of that series with its own past
values. The order of the correlation is given by k where k represents the number of periods

13In general, any time series accurately described with a linear or log-linear trend model is not covariance
stationary, although a transformation of the original series might be covariance stationary.
14In particular, random walks are not covariance stationary.
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lagged. When k = 1, the autocorrelation shows the correlation of the variable in one period
to its occurrence in the previous period. For example, the kth order autocorrelation (ρk) is

ρk = Cov(xt , xt−k)

σ2
x

= E(xt − µ)(xt−k − µ)]

σ2
x

Note that we have the relationship Cov(xt , xt−k) ≤ Var(xt) with equality holding when k = 0.
This means that the absolute value of ρk is less than or equal to 1.

Of course, we can never directly observe the autocorrelations, ρk. Instead, we must
estimate them. Thus we replace the expected value of xt , µ, with its estimated value, x, to
compute the estimated autocorrelations. The kth order estimated autocorrelation of the time
series xt , which we denote ρ̂k, is

ρ̂k =

T∑
t=k+1

[(xt − x)(xt−k − x)]

T∑
t=1

(xt − x)2

Analogous to the definition of autocorrelations for a time series, we can define the
autocorrelations of the error term for a time-series model as15

ρε,k = Cov(εt , εt−k)

σ2
ε

= E[(εt − 0)(εt−k − 0)]

σ2
ε

= E(εtεt−k)

σ2
ε

where E stands for the expected value. We assume that the expected value of the error term in
a time-series model is 0.16

We can determine whether we are using the correct time-series model by testing whether
the autocorrelations of the error term (error autocorrelations) differ significantly from 0. If
they do, the model is not specified correctly. We estimate the error autocorrelation using the
sample autocorrelations of the residuals (residual autocorrelations) and their sample variance.

A test of the null hypothesis that an error autocorrelation at a specified lag equals 0
is based on the residual autocorrelation for that lag and the standard error of the residual
correlation, which is equal to 1/

√
T , where T is the number of observations in the time

series.17 Thus, if we have 100 observations in a time series, the standard error for each of the
estimated autocorrelations is 0.1. We can compute the t-test of the null hypothesis that the
error correlation at a particular lag equals 0, by dividing the residual autocorrelation at that
lag by its standard error (1/

√
T ).

15Whenever we refer to autocorrelation without qualification, we mean autocorrelation of the time series
itself rather than autocorrelation of the error term or residuals.
16This assumption is similar to the one made in the previous two chapters about the expected value of
the error term.
17This calculation is derived in Diebold (2004).



Chapter 10 Time-Series Analysis 389

How can we use information about the error autocorrelations to determine whether
an autoregressive time-series model is correctly specified? We can use a simple three-step
method. First, estimate a particular autoregressive model, say an AR(1) model. Second,
compute the autocorrelations of the residuals from the model.18 Third, test to see whether the
residual autocorrelations differ significantly from 0. If significance tests show that the residual
autocorrelations differ significantly from 0, the model is not correctly specified; we may need
to modify it in ways that we will discuss shortly.19 We now present an example to demonstrate
how this three-step method works.

EXAMPLE 10-4 Predicting Gross Margins
for Intel Corporation

Having investigated the time-series modeling of Intel Corporation’s sales, analyst
Ray Benedict decides to use a time-series model to predict Intel’s gross margin
[(Sales − Cost of goods sold)/Sales]. His observations on the dependent variable are
2Q:1985 through 4Q:1999. He does not know the best model for gross margin
but believes that the current-period value will be related to the previous-period
value. He decides to start out with a first-order autoregressive model, AR(1): Gross
margint = b0 + b1(Gross margint−1) + εt . Table 10-4 shows the results of estimating
this AR(1) model, along with the autocorrelations of the residuals from that model.

The first thing to note about Table 10-4 is that both the intercept (b̂0 = 0.0834)
and the coefficient on the first lag (b̂1 = 0.8665) of the gross margin are highly significant
in the regression equation.20 The t-statistic for the intercept is about 2.3, whereas the
t-statistic for the first lag of the gross margin is more than 14. With 59 observations
and two parameters, this model has 57 degrees of freedom. At the 0.05 significance
level, the critical value for a t-statistic is about 2.0. Therefore, Benedict must reject the
null hypotheses that the intercept is equal to 0 (b0 = 0) and the coefficient on the first
lag is equal to 0 (b1 = 0) in favor of the alternative hypothesis that the coefficients,
individually, are not equal to 0. But are these statistics valid? We will know when we
test whether the residuals from this model are serially correlated.

At the bottom of Table 10-4, the first four autocorrelations of the residual are
displayed along with the standard error and the t-statistic for each of those autocor-
relations.21 The sample has 59 observations, so the standard error for each of the

18We can compute these residual autocorrelations easily with most statistical software packages. In
Microsoft Excel, for example, to compute the first-order residual autocorrelation, we compute the
correlation of the residuals from observations 1 through T − 1 with the residuals from observations 2
through T .
19Often, econometricians use additional tests for the significance of residual autocorrelations. For example,
the Box–Pierce Q-statistic is frequently used to test the joint hypothesis that all autocorrelations of the
residuals are equal to 0. For further discussion, see Diebold (2004).
20The first lag of a time series is the value of the time series in the previous period.
21For seasonally unadjusted data, analysts often compute the same number of autocorrelations as there are
observations in a year (for example, four for quarterly data). The number of autocorrelations computed
also often depends on sample size, as discussed in Diebold (2004).
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autocorrelations is 1/
√

59 = 0.1302. Table 10-4 shows that none of the first four auto-
correlations has a t-statistic larger than 1.50 in absolute value. Therefore, Benedict can
conclude that none of these autocorrelations differs significantly from 0. Consequently,
he can assume that the residuals are not serially correlated and that the model is correctly
specified, and he can validly use ordinary least squares to estimate the parameters and
the parameters’ standard errors in the autoregressive model.22

Now that Benedict has concluded that this model is correctly specified, how can
he use it to predict Intel’s gross margin in the next period? The estimated equation is
Gross margint = 0.0834 + 0.8665(Gross margint−1) + εt . The expected value of the
error term is 0 in any period. Therefore, this model predicts that gross margin in period
t + 1 will be Gross margint+1 = 0.0834 + 0.8665(Gross margint ). For example, if
gross margin is 55 percent in this quarter (0.55), the model predicts that in the next
quarter gross margin will increase to 0.0834 + 0.8665(0.55) = 0.5600 or 56.0 percent.
On the other hand, if gross margin is currently 65 percent (0.65), the model predicts
that in the next quarter, gross margin will fall to 0.0834 + 0.8665(0.65) = 0.6467
or 64.67 percent. As we show in the following section, the model predicts that gross
margin will increase if it is below a certain level (62.50 percent) and decrease if it is
above that level.

TABLE 10-4 Autoregression: AR(1) Model Gross Margin of Intel
Quarterly Observations, April 1985–December 1999

Regression Statistics

R-squared 0.7784
Standard error 0.0402
Observations 59
Durbin–Watson 1.8446

Coefficient Standard Error t-Statistic

Intercept 0.0834 0.0367 2.2705
Lag 1 0.8665 0.0612 14.1493

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 0.0677 0.1302 0.5197
2 −0.1929 0.1302 −1.4814
3 0.0541 0.1302 0.4152
4 −0.1498 0.1302 −1.1507

Source: Compustat.

22Statisticians have many other tests for serial correlation of the residuals in a time-series model. For
details, see Diebold (2004).
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4.3. Mean Reversion

We say that a time series shows mean reversion if it tends to fall when its level is above its
mean and rise when its level is below its mean. Much like the temperature in a room controlled
by a thermostat, a mean-reverting time series tends to return to its long-term mean. How
can we determine the value that the time series tends toward? If a time series is currently at
its mean-reverting level, then the model predicts that the value of the time series will be the
same in the next period. At its mean-reverting level, we have the relationship xt+1 = xt . For
an AR(1) model (xt+1 = b0 + b1xt ), the equality xt+1 = xt implies the level xt = b0 + b1xt ,
or that the mean-reverting level, xt , is given by

xt = b0

1 − b1

So the AR(1) model predicts that the time series will stay the same if its current value is
b0/(1 − b1), increase if its current value is below b0/(1 − b1), and decrease if its current value
is above b0/(1 − b1).

In the case of gross margins for Intel, the mean-reverting level for the model shown in
Table 10-4 is 0.0834/(1 − 0.8665) = 0.6250. If the current gross margin is above 0.6250,
the model predicts that the gross margin will fall in the next period. If the current gross margin
is below 0.6250, the model predicts that the gross margin will rise in the next period. As we
will discuss later, all covariance-stationary time series have a finite mean-reverting level.

4.4. Multiperiod Forecasts and the Chain Rule of Forecasting

Often, financial analysts want to make forecasts for more than one period. For example, we
might want to use a quarterly sales model to predict sales for a company for each of the next
four quarters. To use a time-series model to make forecasts for more than one period, we must
examine how to make multiperiod forecasts using an AR(1) model. The one-period-ahead
forecast of xt from an AR(1) model is as follows:

x̂t+1 = b̂0 + b̂1xt (10-6)

If we want to forecast xt+2 using an AR(1) model, our forecast will be based on

x̂t+2 = b̂0 + b̂1xt+1 (10-7)

Unfortunately, we do not know xt+1 in period t, so we cannot use Equation 10-7 directly
to make a two-period-ahead forecast. We can, however, use our forecast of xt+1 and the AR(1)
model to make a prediction of xt+2. The chain rule of forecasting is a process in which the
next period’s value, predicted by the forecasting equation, is substituted into the equation to
give a predicted value two periods ahead. Using the chain rule of forecasting, we can substitute
the predicted value of xt+1 into Equation 10-7 to get x̂t+2 = b̂0 + b̂1x̂t+1. We already know
x̂t+1 from our one-period-ahead forecast in Equation 10-6. Now we have a simple way of
predicting xt+2.

Multiperiod forecasts are more uncertain than single-period forecasts because each forecast
period has uncertainty. For example, in forecasting xt+2, we first have the uncertainty associated
with forecasting xt+1 using xt , and then we have the uncertainty associated with forecasting
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xt+2 using the forecast of xt+1. In general, the more periods a forecast has, the more uncertain
it is.23

EXAMPLE 10-5 Multiperiod Prediction of
Intel’s Gross Margin

Suppose that at the beginning of 2000, we want to predict Intel’s gross margin in two
periods using the model shown in Table 10-4. Assume that Intel’s gross margin in the
current period is 65 percent. The one-period-ahead forecast of Intel’s gross margin from
this model is 0.6467 = 0.0834 + 0.8665(0.65). By substituting the one-period-ahead
forecast, 0.6467, back into the regression equation, we can derive the following two-
period-ahead forecast: 0.6438 = 0.0834 + 0.8665(0.6467). Therefore, if the current
gross margin for Intel is 65 percent, the model predicts that Intel’s gross margin in two
quarters will be 64.38 percent.

EXAMPLE 10-6 Modeling U.S. CPI Inflation

Analyst Lisette Miller has been directed to build a time-series model for monthly U.S.
inflation. Inflation and expectations about inflation, of course, have a significant effect
on bond returns. Beginning with January 1971, she selects as data the annualized
monthly percentage change in the CPI. Which model should Miller use?

The process of model selection parallels that of Example 10-4 relating to Intel’s gross
margins. The first model Miller estimates is an AR(1) model, using the previous month’s
inflation rate as the independent variable: Inflationt = b0 + b1 Inflationt−1 + εt , t =
1, 2, . . . , 359. To estimate this model, she uses monthly CPI inflation data from January
1971 to December 2000 (t = 1 denotes February 1971). Table 10-5 shows the results
of estimating this model.

As Table 10-5 shows, both the intercept (b̂0 = 1.9658) and the coefficient on the
first lagged value of inflation (b̂1 = 0.6175) are highly statistically significant, with large
t-statistics. With 359 observations and two parameters, this model has 357 degrees of
freedom. The critical value for a t-statistic at the 0.05 significance level is about 1.97.
Therefore, Miller can reject the individual null hypotheses that the intercept is equal
to 0 (b0 = 0) and the coefficient on the first lag is equal to 0 (b1 = 0) in favor of the
alternative hypothesis that the coefficients, individually, are not equal to 0.

Are these statistics valid? Miller will know when she tests whether the residuals
from this model are serially correlated. With 359 observations in this sample, the

23If a forecasting model is well specified, the prediction errors from the model will not be serially
correlated. If the prediction errors for each period are not serially correlated, then the variance of a
multiperiod forecast will be higher than the variance of a single-period forecast.
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TABLE 10-5 Monthly CPI Inflation at an Annual Rate: AR(1) Model
Monthly Observations, February 1971–December 2000

Regression Statistics

R-squared 0.3808
Standard error 3.4239
Observations 359
Durbin–Watson 2.3059

Coefficient Standard Error t-Statistic

Intercept 1.9658 0.2803 7.0119
Lag 1 0.6175 0.0417 14.8185

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.1538 0.0528 −2.9142
2 0.1097 0.0528 2.0782
3 0.0657 0.0528 1.2442
4 0.0920 0.0528 1.7434

Source: U.S. Bureau of Labor Statistics.

standard error for each of the estimated autocorrelations is 1/
√

359 = 0.0528. The
critical value for the t-statistic is 1.97. Because both the first and the second estimated
autocorrelation have t-statistics larger than 1.97 in absolute value, Miller concludes that
the autocorrelations are significantly different from 0. This model is thus misspecified
because the residuals are serially correlated.

If the residuals in an autoregressive model are serially correlated, Miller can
eliminate the correlation by estimating an autoregressive model with more lags of the
dependent variable as explanatory variables. Table 10-6 shows the result of estimating
a second time-series model, an AR(2) model using the same data as in the analysis
shown in Table 10-5.24 With 358 observations and three parameters, this model has
355 degrees of freedom. Because the degrees of freedom are almost the same as those
for the estimates shown in Table 10-5, the critical value of the t-statistic at the 0.05
significance level also is almost the same (1.97). If she estimates the equation with two
lags, Inflationt = b0 + b1 Inflationt−1 + b2 Inflationt−2 + εt , Miller finds that all three
of the coefficients in the regression model (an intercept and the coefficients on two lags
of the dependent variable) differ significantly from 0. The bottom portion of Table 10-6
shows that none of the first four autocorrelations of the residual has a t-statistic greater
in absolute value than the critical value of 1.97. Therefore, Miller fails to reject the
hypothesis that the individual autocorrelations of the residual are significantly different
from 0. She concludes that this model is correctly specified because she finds no evidence
of serial correlation in the residuals.

24Note that Table 10-6 shows only 358 observations in the regression because the extra lag of inflation
requires the estimation sample to start one month later than the regression in Table 10-5. (With two
lags, inflation for January and February 1971 must be known in order to estimate the equation starting
in March 1971.)
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TABLE 10-6 Monthly CPI Inflation at an Annual Rate: AR(2) Model
Monthly Observations, March 1971–December 2000

Regression Statistics

Multiple R 0.6479
R-squared 0.4197
Standard error 3.3228
Observations 358
Durbin–Watson 2.0582

Coefficient Standard Error t-Statistic

Intercept 1.4609 0.2913 5.0147
Lag 1 0.4634 0.0514 9.0117
Lag 2 0.2515 0.0514 4.8924

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0320 0.0529 −0.6048
2 −0.0982 0.0529 −1.8574
3 −0.0114 0.0529 −0.2150
4 0.0320 0.0529 0.6053

Source: U.S. Bureau of Labor Statistics.

In the previous example, the analyst selected an AR(2) model because the residuals
from the AR(1) model were serially correlated. Suppose that in a given month, inflation had
been 4 percent at an annual rate in the previous month and 3 percent in the month before
that. The AR(1) model shown in Table 10-5 predicted that inflation in the next month
would be 1.9658 + 0.6175(4) = 4.44 percent approximately, whereas the AR(2) model
shown in Table 10-6 predicts that inflation in the next month will be 1.4609 + 0.4634(4) +
0.2515(3) = 4.07 percent approximately. If the analyst had used the incorrect AR(1) model,
she would have predicted inflation to be 37 basis points higher (4.44 percent versus 4.07
percent) than using the AR(2) model. This incorrect forecast could have adversely affected the
quality of her company’s investment choices.

4.5. Comparing Forecast Model Performance

One way to compare the forecast performance of two models is to compare the variance
of the forecast errors that the two models make. The model with the smaller forecast error
variance will be the more accurate model, and it will also have the smaller standard error of
the time-series regression. (This standard error usually is reported directly in the output for
the time-series regression.)

In comparing forecast accuracy among models, we must distinguish between in-sample
forecast errors and out-of-sample forecast errors. In-sample forecast errors are the residuals
from a fitted time-series model. For example, when we estimated a linear trend with raw
inflation data from January 1971 to December 2000, the in-sample forecast errors were the
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residuals from January 1971 to December 2000. If we use this model to predict inflation
outside this period, the differences between actual and predicted inflation are out-of-sample
forecast errors.

EXAMPLE 10-7 In-Sample Forecast Comparisons of
U.S. CPI Inflation

In Example 10-6, the analyst compared an AR(1) forecasting model of monthly U.S.
inflation with an AR(2) model of monthly U.S. inflation and decided that the AR(2)
model was preferable. Table 10-5 showed that the standard error from the AR(1) model
of inflation is 3.4239, and Table 10-6 showed that the standard error from the AR(2)
model is 3.3228. Therefore, the AR(2) model had a lower in-sample forecast error
variance than the AR(1) model, which is consistent with our belief that the AR(2) model
was preferable. Its standard error is 3.3228/3.4239 = 97.05 percent of the forecast
error of the AR(1) model.

Often, we want to compare the forecasting accuracy of different models after the sample
period for which they were estimated. We wish to compare the out-of-sample forecast accuracy
of the models. Out-of-sample forecast accuracy is important because the future is always out
of sample. Although professional forecasters distinguish between out-of-sample and in-sample
forecasting performance, many articles that analysts read contain only in-sample forecast
evaluations. Analysts should be aware that out-of-sample performance is critical for evaluating
a forecasting model’s real-world contribution.

Typically, we compare the out-of-sample forecasting performance of forecasting models
by comparing their root mean squared error (RMSE), which is the square root of the average
squared error. The model with the smallest RMSE is judged most accurate. The following
example illustrates the computation and use of RMSE in comparing forecasting models.

EXAMPLE 10-8 Out-of-Sample Forecast Comparisons of
U.S. CPI Inflation

Suppose we want to compare the forecasting accuracy of the AR(1) and AR(2) models of
U.S. inflation estimated over 1971 to 2000, using data on U.S. inflation from January
2001 to December 2002.

For each month from January 2001 to December 2002, the first column of numbers
in Table 10-7 shows the actual annualized inflation rate during the month. The second
and third columns show the rate of inflation in the previous two months. The fourth
column shows the out-of-sample errors from the AR(1) model shown in Table 10-5.
The fifth column shows the squared errors from the AR(1) model. The sixth column
shows the out-of-sample errors from the AR(2) model shown in Table 10-6. The final
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column shows the squared errors from the AR(2) model. The bottom of the table
displays the average squared error and the RMSE. According to these measures, the
AR(1) model was slightly more accurate than the AR(2) model in its out-of-sample
forecasts of inflation from January 2001 to December 2002. The RMSE from the
AR(1) model was only 3.7474/3.8116 = 98.32 percent as large as the RMSE from the
AR(2) model. Therefore, even though the AR(2) model was more accurate in-sample,
the AR(1) model was slightly more accurate out of sample. Of course, this was a small
sample to use in evaluating out-of-sample forecasting performance. Although we seem to
have conflicting information about whether to choose an AR(1) or an AR(2) model here,
we must also consider regression coefficient stability. We will continue the comparison
between these two models in the following section.

4.6. Instability of Regression Coefficients
One of the important issues an analyst faces in modeling a time series is the sample period to
use. The estimates of regression coefficients of the time-series model can change substantially
across different sample periods used for estimating the model. Often, the regression coefficient
estimates of a time-series model estimated using an earlier sample period can be quite different
from those of a model estimated using a later sample period. Similarly, the estimates can
be different between models estimated using relatively shorter and longer sample periods.
Further, the choice of model for a particular time series can also depend on the sample period.
For example, an AR(1) model may be appropriate for the sales of a company in one particular
sample period, but an AR(2) model may be necessary for an earlier or later sample period (or
for a longer or shorter sample period). Thus the choice of a sample period is an important
decision in modeling a financial time series.

Unfortunately, there is usually no clear-cut basis in economic or financial theory
for determining whether to use data from a longer or shorter sample period to esti-
mate a time-series model. We can get some guidance, however, if we remember that
our models are valid only for covariance-stationary time series. For example, we should
not combine data from a period when exchange rates were fixed with data from a
period when exchange rates were floating. The exchange rates in these two periods
would not likely have the same variance because exchange rates are usually much more
volatile under a floating-rate regime than when rates are fixed. Similarly, many U.S. ana-
lysts consider it inappropriate to model U.S. inflation or interest-rate behavior since the
1960s as a part of one sample period, because the Federal Reserve had distinct policy
regimes during this period. The best way to determine appropriate samples for time-series
estimation is to look at graphs of the data to see if the time series looks stationary
before estimation begins. If we know that a government policy changed on a specific
date, we might also test whether the time-series relation was the same before and after
that date.

In the following example, we illustrate how the choice of a longer versus a shorter period
can affect the decision of whether to use, for example, a first- or second-order time-series
model. We then show how the choice of the time-series model (and the associated regression
coefficients) affects our forecast. Finally, we discuss which sample period, and accordingly
which model and corresponding forecast, is appropriate for the time series analyzed in the
example.
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EXAMPLE 10-9 Instability in Time-Series Models
of U.S. Inflation

In Example 10-6, analyst Lisette Miller concluded that U.S. CPI inflation should
be modeled as an AR(2) time series. A colleague examined her results and ques-
tioned estimating one time-series model for inflation in the United States since
1971, given that Federal Reserve policy changed dramatically in the late 1970s
and early 1980s. He argues that the inflation time series from 1971 to 2000 has
two regimes or underlying models generating the time series: one running from
1971 through 1984, and another starting in 1985. Therefore, the colleague suggests
that Miller estimate a new time-series model for U.S. inflation starting in 1985.
Because of his suggestion, Miller first estimates an AR(1) model for inflation using
data for a shorter sample period from 1985 to 2000. Table 10-8 shows her AR(1)
estimates.

The bottom part of Table 10-8 shows that the first four autocorrelations of the
residuals from the AR(1) model are quite small. None of these autocorrelations has
a t-statistic larger than 1.97, the critical value for significance. Consequently, Miller
cannot reject the null hypothesis that the residuals are serially uncorrelated. The AR(1)
model is correctly specified for the sample period from 1985 to 2000, so there is no
need to estimate the AR(2) model. This conclusion is very different from that reached in
Example 10-6 using data from 1971 to 2000. In that example, Miller initially rejected
the AR(1) model because its residuals exhibited serial correlation. When she used a
larger sample, an AR(2) model initially appeared to fit the data much better than did an
AR(1) model.

TABLE 10-8 Autoregression: AR(1) Model Monthly CPI Inflation
at an Annual Rate February 1985–December 2000

Regression Statistics

R-squared 0.1540
Standard error 2.4641
Observations 191
Durbin–Watson 1.9182

Coefficient Standard Error t-Statistic

Intercept 2.1371 0.2859 7.4747
Lag 1 0.3359 0.0690 4.8716

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 0.0284 0.0724 0.3922
2 −0.0900 0.0724 −1.2426
3 −0.0141 0.0724 −0.1955
4 −0.0297 0.0724 −0.4103

Source: U.S. Bureau of Labor Statistics.
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How deeply does our choice of sample period affect our forecast of future inflation?
Suppose that in a given month, inflation was 4 percent at an annual rate, and the
month before that it was 3 percent. The AR(1) model shown in Table 10-8 predicts
that inflation in the next month will be 2.1371 + 0.3359(4) = approximately 3.48
percent. Therefore, the forecast of the next month’s inflation using the 1985 to 2000
sample is 3.48 percent. Remember from the analysis following Example 10-6 that
the AR(2) model for the 1971 to 2000 sample predicts inflation of 4.07 percent in
the next month. Thus, using the correctly specified model for the shorter sample
produces an inflation forecast almost 0.6 percentage points below the forecast made
from the correctly specified model for the longer sample period. Such a difference might
substantially affect a particular investment decision.

Which model is correct? Figure 10-9 suggests an answer. Monthly U.S. inflation
was, on average, so much higher and so much more volatile during the mid-1970s to
early 1980s than it was after 1984 that inflation is probably not a covariance-stationary
time series from 1971 to 2000. Therefore, we can reasonably believe that the data have
more than one regime and Miller should estimate a separate model for inflation from
1985 to 2000, as shown above. As the example shows, judgment and experience (such as
knowledge of government policy changes) play a vital role in determining how to model
a time series. Simply relying on autocorrelations of the residuals from a time-series
model cannot tell us the correct sample period for our analysis.
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FIGURE 10-9 Monthly CPI Inflation
Source: U.S. Bureau of Labor Statistics.

5. RANDOM WALKS AND UNIT ROOTS

So far, we have examined those time series in which the time series has a tendency to revert to
its mean level as the change in a variable from one period to the next follows a mean-reverting
pattern. In contrast, there are many financial time series in which the changes follow a random
pattern. We discuss these ‘‘random walks’’ in the following section.
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5.1. Random Walks

A random walk is one of the most widely studied time-series models for financial data. A
random walk is a time series in which the value of the series in one period is the value of
the series in the previous period plus an unpredictable random error. A random walk can be
described by the following equation:

xt = xt−1 + εt , E(εt ) = 0, E(εt
2) = σ2, E(εtεs) = 0 if t �= s (10-8)

Equation 10-8 means that the time series xt is in every period equal to its value in the previous
period plus an error term, εt , that has constant variance and is uncorrelated with the error
term in previous periods. Note two important points. First, this equation is a special case of an
AR(1) model with b0 = 0 and b1 = 1.25 Second, the expected value of εt is zero. Therefore,
the best forecast of xt that can be made in period t − 1 is xt−1. In fact, in this model, xt−1 is
the best forecast of x in every period after t − 1.

Random walks are quite common in financial time series. For example, many studies
have tested and found that currency exchange rates follow a random walk. Consistent with the
second point made above, some studies have found that sophisticated exchange rate forecasting
models cannot outperform forecasts made using the random walk model, and that the best
forecast of the future exchange rate is the current exchange rate.

Unfortunately, we cannot use the regression methods we have discussed so far to estimate
an AR(1) model on a time series that is actually a random walk. To see why this is so, we must
determine why a random walk has no finite mean-reverting level or finite variance. Recall
that if xt is at its mean-reverting level, then xt = b0 + b1xt , or xt = b0/(1 − b1). In a random
walk, however, b0 = 0 and b1 = 1, so b0/(1 − b1) = 0/0. Therefore, a random walk has an
undefined mean-reverting level.

What is the variance of a random walk? Suppose that in Period 1, the value of x1 is
0. Then we know that x2 = 0 + ε2. Therefore, the variance of x2 = Var(ε2) = σ2. Now
x3 = x2 + ε3 = ε2 + ε3. Because the error term in each period is assumed to be uncorrelated
with the error terms in all other periods, the variance of x3 = Var(ε2) + Var(ε3) = 2σ2. By a
similar argument, we can show that for any period t, the variance of xt = (t − 1)σ2. But this
means that as t grows large, the variance of xt grows without an upper bound: It approaches
infinity. This lack of upper bound, in turn, means that a random walk is not a covariance-
stationary time series, because a covariance-stationary time series must have a finite variance.

What is the practical implication of these issues? We cannot use standard regression analysis
on a time series that is a random walk. We can, however, attempt to convert the data to
a covariance-stationary time series if we suspect that the time series is a random walk. In
statistical terms, we can difference it.

We difference a time series by creating a new time series, say yt , that in each period is
equal to the difference between xt and xt−1. This transformation is called first-differencing
because it subtracts the value of the time series in the first prior period from the current value
of the time series. Sometimes the first difference of xt is written as �xt = xt − xt−1. Note that
the first difference of the random walk in Equation 10-8 yields

yt = xt − xt−1 = εt , E(εt ) = 0, E(εt
2) = σ2, E(εtεs) = 0 for t �= s

25Equation 10-8 with a nonzero intercept added (as in Equation 10-9 given later) is sometimes referred
to as a random walk with drift.
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The expected value of εt is 0. Therefore, the best forecast of yt that can be made in period
t − 1 is 0. This implies that the best forecast is that there will be no change in the value of the
current time series, xt−1.

The first-differenced variable, yt , is covariance stationary. How is this so? First, note
that this model (yt = εt ) is an AR(1) model with b0 = 0 and b1 = 0. We can compute the
mean-reverting level of the first-differenced model as b0/(1 − b1) = 0/1 = 0. Therefore, a
first-differenced random walk has a mean-reverting level of 0. Note also that the variance of
yt in each period is Var(εt) = σ2. Because the variance and the mean of yt are constant and
finite in each period, yt is a covariance-stationary time series and we can model it using linear
regression.26 Of course, modeling the first-differenced series with an AR(1) model does not
help us predict the future, as b0 = 0 and b1 = 0. We simply conclude that the original time
series is, in fact, a random walk.

Had we tried to estimate an AR(1) model for a time series that was a random walk,
our statistical conclusions would have been incorrect because AR models cannot be used to
estimate random walks or any time series that is not covariance stationary. The following
example illustrates this issue with exchange rates.

EXAMPLE 10-10 The Yen/U.S. Dollar Exchange Rate

Financial analysts often assume that exchange rates are random walks. Consider an
AR(1) model for the Japanese yen/U.S. dollar exchange rate. Table 10-9 shows the
results of estimating the model using month-end observations from January 1975 to
December 2002.

The results in Table 10-9 suggest that the yen/U.S. dollar exchange rate is a random
walk because the estimated intercept does not appear to be significantly different from 0
and the estimated coefficient on the first lag of the exchange rate is very close to 1. Can
we use the t-statistics in Table 10-9 to test whether the exchange rate is a random walk?
Unfortunately, no, because the standard errors in an AR model are invalid if the model
is estimated on a random walk (remember, a random walk is not covariance stationary).
If the exchange rate is, in fact, a random walk, we might come to an incorrect conclusion
based on faulty statistical tests and then invest incorrectly. We can use a test presented
in the next section to test whether the time-series is a random walk.

Suppose the exchange rate is a random walk, as we now suspect. If so, the first-
differenced series, yt = xt − xt−1, will be covariance stationary. We present the results
from estimating yt = b0 + b1yt−1 + εt in Table 10-10. If the exchange rate is a random
walk, then b0 = 0 and b1 = 0 and the error term will not be serially correlated.

In Table 10-10, neither the intercept nor the coefficient on the first lag of the first-
differenced exchange rate differs significantly from 0, and no residual autocorrelations
differ significantly from 0.27 These findings are consistent with the yen/U.S. dollar
exchange rate being a random walk.

26All the covariances are finite, for two reasons: The variance is finite, and the covariance of a time series
with its own past value can be no greater than the variance of the series.
27See Greene (2003) for a test of the joint hypothesis that both regression coefficients are equal to 0.
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TABLE 10-9 Yen/U.S. Dollar Exchange Rate: AR(1) Model
Month-End Observations, January 1975–December 2002

Regression Statistics

R-squared 0.9914
Standard error 5.9006
Observations 336
Durbin–Watson 1.8492

Coefficient Standard Error t-Statistic

Intercept 1.0223 0.9268 1.1092
Lag 1 0.9910 0.0050 196.4517

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 0.0706 0.0546 1.2930
2 0.0364 0.0546 0.6667
3 0.0864 0.0546 1.5824
4 0.0566 0.0546 1.0366

Source: U.S. Federal Reserve Board of Governors.

TABLE 10-10 First-Differenced Yen/U.S. Dollar
Exchange Rate: AR(1) Model
Month-End Observations, January 1975–December 2002

Regression Statistics

R-squared 0.0053
Standard error 5.9133
Observations 336
Durbin–Watson 1.9980

Coefficient Standard Error t-Statistic

Intercept −0.4963 0.3244 −1.5301
Lag 1 0.0726 0.0547 1.3282

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0045 0.0546 −0.0824
2 0.0259 0.0546 0.4744
3 0.0807 0.0546 1.4780
4 0.0488 0.0546 0.8938

Source: U.S. Federal Reserve Board of Governors.

We have concluded that the differenced regression is the model to choose. Now
we can see that we would have been seriously misled if we had based our model choice
on an R2 comparison. In Table 10-9, the R2 is 0.9914, whereas in Table 10-10 the R2
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is 0.0053. How can this be, if we just concluded that the model in Table 10-10 is
the one that we should use? In Table 10-9, the R2 measures how well the exchange
rate in one period predicts the exchange rate in the next period. If the exchange rate
is a random walk, its current value will be an extremely good predictor of its value
in the next period, and thus the R2 will be extremely high. At the same time, if the
exchange rate is a random walk, then changes in the exchange rate should be completely
unpredictable. Table 10-10 estimates whether changes in the exchange rate from one
month to the next can be predicted by changes in the exchange rate over the previous
month. If they cannot be predicted, the R2 in Table 10-10 should be very low. In fact,
it is low (0.0053). This comparison provides a good example of the general rule that we
cannot necessarily choose which model is correct solely by comparing the R2 from the
two models.

The exchange rate is a random walk, and changes in a random walk are by definition
unpredictable. Therefore, we cannot profit from an investment strategy that predicts
changes in the exchange rate.

To this point, we have discussed only simple random walks; that is, random walks without
drift. In a random walk without drift, the best predictor of the time series in the next period is
its current value. A random walk with drift, however, should increase or decrease by a constant
amount in each period. The equation describing a random walk with drift is a special case of
the AR(1) model:

xt = b0 + b1xt−1 + εt

b1 = 1, b0 �= 0, or

xt = b0 + xt−1 + εt , E(εt) = 0 (10-9)

A random walk with drift has b0 �= 0 compared to a simple random walk, which has b0 = 0.
We have already seen that b1 = 1 implies an undefined mean-reversion level and thus

nonstationarity. Consequently, we cannot use an AR model to analyze a time series that is a
random walk with drift until we transform the time series by taking first differences. If we
first-difference Equation 10-9, the result is yt = xt − xt−1, yt = b0 + εt , b0 �= 0.

5.2. The Unit Root Test of Nonstationarity

In this section, we discuss how to use random walk concepts to determine whether a time series
is covariance stationary. This approach focuses on the slope coefficient in the random-walk-
with-drift case of an AR(1) model in contrast with the traditional autocorrelation approach
which we discuss first.

The examination of the autocorrelations of a time series at various lags is a well-known
prescription for inferring whether or not a time-series is stationary. Typically, for a stationary
time series, either autocorrelations at all lags are statistically indistinguishable from zero, or the
autocorrelations drop off rapidly to zero as the number of lags becomes large. Conversely, the
autocorrelations of a nonstationary time series do not exhibit those characteristics. However,
this approach is less definite than a currently more popular test for nonstationarity known as
the Dickey–Fuller test for a unit root.



404 Quantitative Investment Analysis

We can explain what is known as the unit root problem in the context of an AR(1) model.
If a time series comes from an AR(1) model, then to be covariance stationary the absolute
value of the lag coefficient, b1, must be less than 1.0. We could not rely on the statistical
results of an AR(1) model if the absolute value of the lag coefficient were greater than or equal
to 1.0 because the time series would not be covariance stationary. If the lag coefficient is equal
to 1.0, the time series has a unit root: It is a random walk and is not covariance stationary.28

By definition, all random walks, with or without a drift term, have unit roots.
How do we test for unit roots in a time series? If we believed that a time series, xt , was

a random walk with drift, it would be tempting to estimate the parameters of the AR(1)
model xt = b0 + b1xt−1 + εt using linear regression and conduct a t-test of the hypothesis
that b1 = 1. Unfortunately, if b1 = 1, then xt is not covariance stationary and the t-value of
the estimated coefficient, b̂1, does not actually follow the t-distribution; consequently, at-test
would be invalid.

Dickey and Fuller (1979) developed a regression-based unit root test based on a
transformed version of the AR(1) model xt = b0 + b1xt−1 + εt . Subtracting xt−1 from both
sides of the AR(1) model produces

xt − xt−1 = b0 + (b1 − 1)xt−1 + εt

or
xt − xt−1 = b0 + g1xt−1 + εt , E(εt) = 0 (10-10)

where g1 = (b1 − 1). If b1 = 1, then g1 = 0 and thus a test of g1 = 0 is a test of b1 = 1. If
there is a unit root in the AR(1) model, then g1 will be 0 in a regression where the dependent
variable is the first difference of the time series and the independent variable is the first lag of
the time series. The null hypothesis of the Dickey–Fuller test is H0 : g1 = 0—that is, that the
time series has a unit root and is nonstationary—and the alternative hypothesis is Ha : g1 �= 0,
that the time series does not have a unit root and is stationary. To conduct the test, one
calculates a t-statistic in the conventional manner for g1 but instead of using conventional
critical values for a t-test, one uses a revised set of values computed by Dickey and Fuller; the
revised set of critical values are larger in absolute value than the conventional critical values. A
number of software packages incorporate Dickey–Fuller tests.29

EXAMPLE 10-11 Intel’s Quarterly Sales (1)

Earlier, we concluded that we could not model the log of Intel’s quarterly sales using
only a time-trend line (as shown in Example 10-3). Recall that the Durbin–Watson
statistic from the log-linear regression caused us to reject the hypothesis that the
errors in the regression were serially uncorrelated. Suppose, instead, that the analyst

28When b1 is greater than 1 in absolute value, we say that there is an explosive root. For details,
see Diebold (2004).
29Dickey and Fuller developed three separate tests of the hypothesis that g1 = 0 assuming the following
models: random walk, random walk with drift, or random walk with drift and trend. The critical values
for the Dickey–Fuller tests for the three models are different. For more on this topic, see Greene (2003)
or Hamilton (1994).
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decides to model the log of Intel’s quarterly sales using an AR(1) model. He uses ln
Salest = b0 + b1 ln Salest−1 + εt .

Before he estimates this regression, the analyst should use the Dickey–Fuller test
to determine whether there is a unit root in the log of Intel’s quarterly sales. If he uses
the sample of quarterly data on Intel’s sales from the first quarter of 1985 through the
fourth quarter of 1999, takes the natural log of each observation, and computes the
Dickey–Fuller t-test statistic, the value of that statistic might cause him to fail to reject
the null hypothesis that there is a unit root in the log of Intel’s quarterly sales.

If a time series appears to have a unit root, how should we model it? One method that is
often successful is to first-difference the time series (as discussed previously) and try to model
the first-differenced series as an autoregressive time series. The following example demonstrates
this method.

EXAMPLE 10-12 Intel’s Quarterly Sales (2)

Suppose you are convinced—from looking at the plot of the time series—that the log
of Intel’s quarterly sales is not covariance stationary (it has a unit root). So you create a
new series, yt , that is the first difference of the log of Intel’s quarterly sales. Figure 10-10
shows that series.

If you compare Figure 10-10 to Figures 10-6 and 10-8, you will see that first-
differencing the log of Intel’s quarterly sales eliminates the strong upward trend that
was present in both Intel’s sales and the log of Intel’s sales. Because the first-differenced
series has no strong trend, you are better off assuming that the differenced series is
covariance stationary rather than assuming that Intel’s sales or the log of Intel’s sales is a
covariance-stationary time series.

Now suppose you decide to model the new series using an AR(1) model. You use
ln (Salest) − ln (Salest−1) = b0 + b1[ln (Salest−1) − ln (Salest−2)] + εt . Table 10-11
shows the results of that regression.

The lower part of Table 10-11 shows that the first four autocorrelations of residuals
in this model are quite small. With 60 observations and two parameters, this model has
58 degrees of freedom. The critical value for a t-statistic in this model is about 2.0 at the
0.05 significance level. None of the t-statistics for these autocorrelations has an absolute
value larger than 2.0. Therefore, we fail to reject the null hypotheses that each of these
autocorrelations is equal to 0 and conclude instead that no significant autocorrelation is
present in the residuals.

This result suggests that the model is well specified and that we could use the
estimates. Both the intercept (b̂0 = 0.0352) and the coefficient (b̂1 = 0.3064) on the
first lag of the new first-differenced series are statistically significant. How can we interpret
the estimated coefficients in the model? The value of the intercept (0.0352) implies
that if sales have not changed in the current quarter ( yt = ln Salest − ln Salest−1 = 0),
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sales will grow by 3.52 percent next quarter.30 If sales have changed during this quarter,
however, the model predicts that sales will grow by 3.52 percent plus 0.3064 times the
sales growth in this quarter.
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FIGURE 10-10 Log Difference, Intel Quarterly Sales
Source: Compustat.

Suppose we wanted to use this model at the end of the fourth quarter of 1999 to
predict Intel’s sales for the first quarter of 2000. Let us say that t is the fourth quarter
of 1999, so t − 1 is the third quarter of 1999 and t + 1 is the first quarter of 2000.
Then we would have to compute ŷt+1 = 0.0352 + 0.3064 yt . To compute ŷt+1, we
need to know yt = ln Salest − ln Salest−1. In the third quarter of 1999, Intel’s sales
were $7,328 million, so ln (Salest−1) = ln 7, 328 = 8.8995. In the fourth quarter of
1999, Intel’s sales were $8,212 million, so ln (Salest) = ln 8, 212 = 9.0134. Thus yt =
9.0134 − 8.8995 = 0.1139. Therefore, ŷt+1 = 0.0352 + 0.3064(0.1139) = 0.0701.
If ŷt+1 = 0.0701, then 0.0701 = ln (Salest+1) − ln (Salest) = ln (Salest+1/Salest ). If
we exponentiate both sides of this equation, the result is

e0.0701 = (Salest+1/Salest)

Salest+1 = Salest e0.0701

= $8, 212 million × 1.0726

= $8, 808 million

30Note that 3.52 percent is the exponential growth rate, not [(Current quarter sales/Previous quarter
sales) − 1]. The difference between these two methods of computing growth is usually small.
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Thus, in the fourth quarter of 1999, this model would have predicted that Intel’s sales
in the first quarter of 2000 would be $8,808 million. This sales forecast might have
affected our decision to buy Intel’s stock at the time.

TABLE 10-11 Log Differenced Sales: AR(1) Model Intel Corporation
Quarterly Observations, January 1985–December 1999

Regression Statistics

R-squared 0.0946
Standard error 0.0758
Observations 60
Durbin–Watson 1.9709

Coefficient Standard Error t-Statistic

Intercept 0.0352 0.0114 3.0875
Lag 1 0.3064 0.1244 2.4620

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0140 0.1291 −0.1088
2 −0.0855 0.1291 −0.6624
3 −0.0582 0.1291 −0.4506
4 0.2125 0.1291 1.6463

Source: Compustat.

6. MOVING-AVERAGE TIME-SERIES MODELS

So far, many of the forecasting models we have used have been autoregressive models. Because
most financial time series have the qualities of an autoregressive process, auto-regressive
time-series models are probably the most frequently used time-series models in financial
forecasting. Some financial time series, however, seem to follow more closely another kind of
time-series model called a moving-average model. For example, as we will see later, returns on
the Standard & Poor’s 500 Index can be better modeled as a moving-average process than as
an autoregressive process.

In this section, we present the fundamentals of moving-average models so that you can
ask the right questions when presented with them. We first discuss how to smooth past values
with a moving average and then how to forecast a time series using a moving-average model.
Even though both methods include the words ‘‘moving average’’ in the name, they are very
different.

6.1. Smoothing Past Values with an n-Period Moving Average

Suppose you are analyzing the long-term trend in the past sales of a company. In order to focus
on the trend, you may find it useful to remove short-term fluctuations or noise by smoothing
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out the time series of sales. One technique to smooth out period-to-period fluctuations in the
value of a time series is an n-period moving average. An n-period moving average of the
current and past n − 1 values of a time series, xt , is calculated as

xt + xt−1 + · · · + xt−(n−1)

n
(10-11)

The following example demonstrates how to compute a moving average of Intel’s quar-
terly sales.

EXAMPLE 10-13 Intel’s Quarterly Sales (3)

Suppose we want to compute the four-quarter moving average of Intel’s sales at the end
of the fourth quarter of 1999. Intel’s sales in the previous four quarters were 1Q:1999,
$7,103 million; 2Q:1999, $6,746 million; 3Q:1999, $7,328 million; and 4Q:1999,
$8,212 million. The four-quarter moving average of sales as of the first quarter of 2000
is thus (7, 103 + 6, 746 + 7, 328 + 8, 212)/4 = $7, 347.25 million.

We often plot the moving average of a series with large fluctuations to help discern any
patterns in the data. Figure 10-11 shows monthly real (inflation-adjusted) retail sales for the
United States from January 1972 to December 2000, along with a 12-month moving average
of the data.31

As Figure 10-11 shows, each year has a very strong peak in retail sales (December)
followed by a sharp drop in sales (January). Because of the extreme seasonality in the data,
a 12-month moving average can help us focus on the long-term movements in retail sales
instead of seasonal fluctuations. Note that the moving average does not have the sharp seasonal
fluctuations of the original retail sales data. Rather, the moving average of retail sales grows
steadily, for example, from 1985 through 1990, then declines until 1993, and grows steadily
thereafter. We can see that trend more easily by looking at a 12-month moving average than
by looking at the time series itself.

Figure 10-12 shows monthly crude oil prices in the United States along with a 12-month
moving average of oil prices. Although these data do not have the same sharp regular seasonality
displayed in the retail sales data in Figure 10-11, the moving average smoothes out the monthly
fluctuations in oil prices to show the longer-term movements.

Figure 10-12 also shows one weakness with a moving average: It always lags large
movements in the actual data. For example, when oil prices fell sharply in late 1985 and
remained relatively low, the moving average fell only gradually. When oil prices rose quickly
in 1999, the moving average also lagged. Consequently, a simple moving average of the recent
past, though often useful in smoothing out a time series, may not be the best predictor of
the future. A main reason for this is that a simple moving average gives equal weight to all

31A 12-month moving average is the average value of a time series over each of the last 12 months.
Although the sample period starts in 1972, data from 1971 are used to compute the 12-month moving
average for the months of 1972.
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FIGURE 10-11 Monthly U.S. Real Retail Sales and a 12-Month Moving Average of Retail Sales
Source: U.S. Department of Commerce, Census Bureau.
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FIGURE 10-12 Monthly Oil Price and 12-Month Moving Average of Prices
Source: Dow Jones Energy Service.

the periods in the moving average. In order to forecast the future values of a time series, it is
often better to use a more sophisticated moving-average time-series model. We discuss such
models below.

6.2. Moving-Average Time-Series Models for Forecasting

Suppose that a time series, xt , is consistent with the following model:

xt = εt + θεt−1, E(εt) = 0, E(εt
2) = σ2, E(εtεs) = 0 for t �= s (10-12)
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This equation is called a moving-average model of order 1, or simply an MA(1) model. Theta
(θ) is the parameter of the MA(1) model.32

Equation 10-12 is a moving-average model because in each period, xt is a moving average
of εt and εt−1, two uncorrelated random variables that each have an expected value of zero.
Unlike the simple moving-average model of Equation 10-11, this moving-average model
places different weights on the two terms in the moving average (1 on εt , and θ on εt−1).

We can see if a time series fits an MA(1) model by looking at its autocorrelations to
determine whether xt is correlated only with its preceding and following values. First, we
examine the variance of xt in Equation 10-12 and its first two autocorrelations. Because the
expected value of xt is 0 in all periods and εt is uncorrelated with its own past values, the first
autocorrelation is not equal to 0, but the second and higher autocorrelations are equal to 0.
Further analysis shows that all autocorrelations except for the first will be equal to 0 in an MA(1)
model. Thus for an MA(1) process, any value xt is correlated with xt−1 and xt+1 but with no
other time-series values; we could say that an MA(1) model has a memory of one period.

Of course, an MA(1) model is not the most complex moving-average model. A qth order
moving-average model, denoted MA(q) and with varying weights on lagged terms, can be
written as

xt = εt + θ1εt−1 + . . . + θqεt−q, E(εt) = 0, E(εt
2) = σ2, (10-13)

E(εtεs) = 0 for t �= s

How can we tell whether an MA(q) model fits a time series? We examine the autocorre-
lations. For an MA(q) model, the first q autocorrelations will be significantly different from 0,
and all autocorrelations beyond that will be equal to 0; an MA(q) model has a memory of q
periods. This result is critical for choosing the right value of q for an MA model. We discussed
this result above for the specific case of q = 1 that all autocorrelations except for the first will
be equal to 0 in an MA(1) model.

How can we distinguish an autoregressive time series from a moving-average time
series? Once again, we do so by examining the autocorrelations of the time series itself. The
autocorrelations of most autoregressive time series start large and decline gradually, whereas the
autocorrelations of an MA(q) time series suddenly drop to 0 after the first q autocorrelations.
We are unlikely to know in advance whether a time series is autoregressive or moving average.
Therefore, the autocorrelations give us our best clue about how to model the time series. Most
time series, however, are best modeled with an autoregressive model.

EXAMPLE 10-14 A Time-Series Model for Monthly Returns
on the S&P 500

Are monthly returns on the S&P autocorrelated? If so, we may be able to devise an
investment strategy to exploit the autocorrelation. What is an appropriate time-series
model for S&P 500 monthly returns?

32Note that a moving-average time-series model is very different from a simple moving average, as
discussed in Section 6.1. The simple moving average is based on observed values of a time series. In a
moving-average time-series model, we never directly observe εt or any other εt−j , but we can infer how a
particular moving-average model will imply a particular pattern of serial correlation for a time series, as
we discuss below.
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Table 10-12 shows the first six autocorrelations of returns to the S&P 500 using
monthly data from January 1991 to December 2002. Note that all of the autocorrelations
are quite small. Do they reach significance? With 144 observations, the critical value
for a t-statistic in this model is about 1.98 at the 0.05 significance level. None of
the autocorrelations has a t-statistic larger in absolute value than the critical value of
1.98. Consequently, we fail to reject the null hypothesis that those autocorrelations,
individually, do not differ significantly from 0.

TABLE 10-12 Annualized Monthly Returns to the S&P 500,
January 1991–December 2002

Autocorrelations

Lag Autocorrelation Standard Error t-Statistic

1 −0.0090 0.0833 −0.1083
2 −0.0207 0.0833 −0.2481
3 0.0020 0.0833 0.0240
4 −0.0730 0.0833 −0.8756
5 0.1143 0.0833 1.3717
6 −0.0007 0.0833 −0.0082

Observations 144

Source: Ibbotson Associates.

If returns on the S&P 500 were an MA(q) time series, then the first q autocorrelations
would differ significantly from 0. None of the autocorrelations is statistically significant,
however, so returns to the S&P 500 appear to come from an MA(0) time series. An
MA(0) time series in which we allow the mean to be nonzero takes the following form:33

xt = µ + εt , E(εt) = 0, E(εt
2) = σ2, E(εtεs) = 0 for t �= s (10-14)

which means that the time series is not predictable. This result should not be too
surprising, as most research suggests that short-term returns to stock indexes are difficult
to predict.

We can see from this example how examining the autocorrelations allowed us to
choose between the AR and MA models. If returns to the S&P 500 had come from an
AR(1) time series, the first autocorrelation would have differed significantly from 0 and
the autocorrelations would have declined gradually. Not even the first autocorrelation is
significantly different from 0, however. Therefore, we can be sure that returns to the S&P
500 do not come from an AR(1) model—or from any higher-order AR model, for that
matter. This finding is consistent with our conclusion that the S&P 500 series is MA(0).

33On the basis of investment theory and evidence, we expect that the mean monthly return on the S&P
500 is positive (µ > 0). We can also generalize Equation 10-13 for an MA(q) time series by adding a
constant term, µ. Including a constant term in a moving-average model does not change the expressions
for the variance and autocovariances of the time series. A number of early studies of weak-form market
efficiency used Equation 10-14 as the model for stock returns. See Garbade (1982).



412 Quantitative Investment Analysis

7. SEASONALITY IN TIME-SERIES MODELS

As we analyze the results of the time-series models in this chapter, we encounter com-
plications. One common complication is significant seasonality, a case in which the series
shows regular patterns of movement within the year. At first glance, seasonality might
appear to rule out using autoregressive time-series models. After all, autocorrelations will
differ by season. This problem can often be solved, however, by using seasonal lags in an
autoregressive model.

A seasonal lag is usually the value of the time series one year before the current period,
included as an extra term in an autoregressive model. Suppose, for example, that we model
a particular quarterly time series using an AR(1) model, xt = b0 + b1xt−1 + εt . If the time
series had significant seasonality, this model would not be correctly specified. The seasonality
would be easy to detect because the seasonal autocorrelation (in the case of quarterly data,
the fourth autocorrelation) of the error term would differ significantly from 0. Suppose this
quarterly model has significant seasonality. In this case, we might include a seasonal lag in the
autoregressive model and estimate

xt = b0 + b1xt−1 + b2xt−4 + εt (10-15)

to test whether including the seasonal lag would eliminate statistically significant autocorrela-
tion in the error term.

In Examples 10-15 and 10-16, we illustrate how to test and adjust for seasonality in a
time-series model. We also illustrate how to compute a forecast using an autoregressive model
with a seasonal lag.

EXAMPLE 10-15 Seasonality in Sales at Medtronic

We want to predict sales for Medtronic, Inc. Based on the previous results in this chapter,
we determine that the first difference of the log of sales is probably covariance stationary.
Using quarterly data from the first quarter of 1985 to the last quarter of 2001, we estimate
an AR(1) model using ordinary least squares on the first-differenced data. We estimate the
following equation: (ln Salest − ln Salest−1) = b0 + b1(ln Salest−1 − ln Salest−2) + εt .
Table 10-13 shows the results of the regression.

The first thing to note in Table 10-13 is the strong seasonal autocorrelation of the
residuals. The bottom portion of the table shows that the fourth autocorrelation has
a value of 0.4072 and a t-statistic of 3.36. With 68 observations and two parameters,
this model has 66 degrees of freedom.34 The critical value for a t-statistic is about 2.0
at the 0.05 significance level. Given this value of the t-statistic, we must reject the null
hypothesis that the fourth autocorrelation is equal to 0 because the t-statistic is larger
than the critical value of 2.0.

34Although the sample period begins in 1985, we use prior observations for the lags. Otherwise, the
model would have fewer degrees of freedom because the sample size would be reduced with each increase
in the number of lags.
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In this model, the fourth autocorrelation is the seasonal autocorrelation because
this AR(1) model is estimated with quarterly data. Table 10-13 shows the strong and
statistically significant seasonal autocorrelation that occurs when a time series with
strong seasonality is modeled without taking the seasonality into account. Therefore,
the AR(1) model is misspecified, and we should not use it for forecasting.

TABLE 10-13 Log Differenced Sales: AR(1) Model Medtronic, Inc.
Quarterly Observations, January 1985–December 2001

Regression Statistics

R-squared 0.1619
Standard error 0.0693
Observations 68
Durbin–Watson 2.0588

Coefficient Standard Error t-Statistic

Intercept 0.0597 0.0091 6.5411
Lag 1 −0.4026 0.1128 −3.5704

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0299 0.1213 −0.2463
2 −0.1950 0.1213 −1.6077
3 −0.1138 0.1213 −0.9381
4 0.4072 0.1213 3.3581

Source: Compustat.

Suppose we decide to use an autoregressive model with a seasonal lag because of the
seasonal autocorrelation. We are modeling quarterly data, so we estimate Equation 10-
15: (ln Salest − ln Salest−1) = b0 + b1(ln Salest−1 − ln Salest−2) + b2(ln Salest−4 −
ln Salest−5) + εt . The estimates of this equation appear in Table 10-14.

Note the autocorrelations of the residual shown at the bottom of Table 10-14.
When we include a seasonal lag in the regression, none of the t-statistics on the first four
autocorrelations remains significant.

Now that we know that the residuals of this model do not have significant se-
rial correlation, we can assume that the model is correctly specified. How can we
interpret the coefficients in this model? To predict the current quarter’s sales growth
at Medtronic, we need to know two things: sales growth in the previous quarter
and sales growth four quarters ago. If sales remained constant in each of those two
quarters, the model in Table 10-14 predicts that sales will grow by 0.0403 (4.03
percent) in the current quarter. If sales grew by 1 percent last quarter and by 2 percent
four quarters ago, then the model predicts that sales growth this quarter will be
0.0403 − 0.2955(0.01) + 0.3896(0.02) = 0.0451 or 4.51 percent.35 Notice also that
the R2 in the model with the seasonal lag (0.3219 in Table 10-14) was almost two times

35Note that all of these growth rates are exponential growth rates.
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higher than the R2 in the model without the seasonal lag (0.1619 in Table 10-13).
Again, the seasonal lag model does a much better job of explaining the data.

TABLE 10-14 Log Differenced Sales: AR(1) Model with
Seasonal Lag Medtronic, Inc.
Quarterly Observations, January 1985–December 2001

Regression Statistics

R-squared 0.3219
Standard error 0.0580
Observations 68
Durbin–Watson 2.0208

Coefficient Standard Error t-Statistic

Intercept 0.0403 0.0096 4.1855
Lag 1 −0.2955 0.1058 −2.7927
Lag 4 0.3896 0.0995 3.9159

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0108 0.1213 −0.0889
2 −0.0957 0.1213 −0.7889
3 0.0075 0.1213 0.0621
4 −0.0340 0.1213 −0.2801

Source: Compustat.

EXAMPLE 10-16 Retail Sales Growth

We want to predict the growth in U.S. monthly retail sales so that we can decide
whether to recommend discount store stocks. We decide to use non-seasonally adjusted
data on retail sales, adjusted for inflation. To begin with, we estimate an AR(1) model
with observations on the annualized monthly growth in real retail sales from February
1972 to December 2000. We estimate the following equation: Sales growtht = b0 + b1

Sales growtht−1 + εt . Table 10-15 shows the results from this model.
The autocorrelations of the residuals from this model, shown at the bottom of

Table 10-15, indicate that seasonality is extremely significant in this model. With
347 observations and two parameters, this model has 345 degrees of freedom. At the
0.05 significance level, the critical value for a t-statistic is about 1.97. The 12th-lag
autocorrelation (the seasonal autocorrelation, because we are using monthly data) has
a value of 0.8739 and a t-statistic of 16.28. The t-statistic on this autocorrelation is
larger than the critical value (1.97) implying that we can reject the null hypothesis
that the 12th autocorrelation is 0. Note also that many of the other t-statistics for
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autocorrelations shown in the table differ significantly from 0. Consequently, the
model shown in Table 10-15 is misspecified, so we cannot rely on it to forecast sales
growth.

TABLE 10-15 Monthly Real Retail Sales Growth: AR(1) Model
February 1972–December 2000

Regression Statistics

R-squared 0.0659
Standard error 2.3520
Observations 347
Durbin–Watson 2.1008

Coefficient Standard Error t-Statistic

Intercept 1.2170 0.1357 8.9666
Lag 1 −0.2577 0.0522 −4.9349

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0552 0.0537 −1.0288
2 −0.1536 0.0537 −2.8619
3 0.1774 0.0537 3.3044
4 −0.1020 0.0537 −1.8996
5 −0.1320 0.0537 −2.4582
6 −0.2676 0.0537 −4.9841
7 −0.1366 0.0537 −2.5455
8 −0.0923 0.0537 −1.7186
9 0.1655 0.0537 3.0832

10 −0.1732 0.0537 −3.2273
11 −0.0623 0.0537 −1.1597
12 0.8739 0.0537 16.2793

Source: U.S. Department of Commerce.

Suppose we add the seasonal lag of sales growth (the 12th lag) to the AR(1)
model to estimate the equation Sales growtht = b0 + b1(Sales growtht−1) + b2(Sales
growtht−12) + εt . Table 10-16 presents the results of estimating this equation. The
estimated value of the seasonal autocorrelation (the 12th autocorrelation) has fallen to
0.0335. None of the first 12 autocorrelations has a t-statistic with an absolute value
greater than the critical value of 1.97 at the 0.05 significance level. We can conclude
that there is no significant serial correlation in the residuals from this model. Because
we can reasonably believe that the model is correctly specified, we can use it to predict
retail sales growth. Note that the R2 in Table 10-16 is 0.8149, much larger than the R2

in Table 10-15 (computed by the model without the seasonal lag).
How can we interpret the coefficients in the model? To predict growth in retail

sales in this month, we need to know last month’s retail sales growth and retail sales
growth 12 months ago. If retail sales remained constant both last month and 12
months ago, the model in Table 10-16 predicts that retail sales will grow at an annual
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rate of approximately 15 percent this month. If retail sales grew at an annual rate of
5 percent last month and at an annual rate of 10 percent 12 months ago, the model in
Table 10-16 predicts that retail sales will grow in the current month at an annual rate
of 0.1516 − 0.0490(0.05) + 0.8857(0.10) = 0.2377 or 23.8 percent.

TABLE 10-16 Monthly Real Retail Sales Growth:
AR(1) Model with Seasonal Lag, February 1972–December 2000

Regression Statistics

R-squared 0.8149
Standard error 1.0487
Observations 347
Durbin–Watson 2.4301

Coefficient Standard Error t-Statistic

Intercept 0.1516 0.0669 2.2652
Lag 1 −0.0490 0.0239 −2.0484
Lag 12 0.8857 0.0237 37.3028

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic

1 −0.0699 0.0537 −1.3019
2 −0.0107 0.0537 −0.1985
3 0.0946 0.0537 1.7630
4 −0.0556 0.0537 −1.0355
5 −0.0319 0.0537 −0.5936
6 0.0289 0.0537 0.5386
7 −0.0933 0.0537 −1.7382
8 0.0062 0.0537 0.1150
9 −0.0111 0.0537 −0.2059

10 −0.0523 0.0537 −0.9742
11 0.0377 0.0537 0.7026
12 0.0335 0.0537 0.6231

Source: U.S. Department of Commerce.

8. AUTOREGRESSIVE
MOVING-AVERAGE MODELS

So far, we have presented autoregressive and moving-average models as alternatives for
modeling a time series. The time series we have considered in examples have usually been
explained quite well with a simple autoregressive model (with or without seasonal lags).36

36For the returns on the S&P 500 (see Example 10-14), we chose a moving-average model over an
autoregressive model.
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Some statisticians, however, have advocated using a more general model, the autoregressive
moving-average (ARMA) model. The advocates of ARMA models argue that these models
may fit the data better and provide better forecasts than do plain autoregressive (AR) models.
However, as we discuss later in this section, there are severe limitations to estimating and using
these models. Because you may encounter ARMA models, we provide a brief overview below.

An ARMA model combines both autoregressive lags of the dependent variable and
moving-average errors. The equation for such a model with p autoregressive terms and q
moving-average terms, denoted ARMA(p, q), is

xt+1 = b0 + b1xt + · · · + bpxt−p + εt + θ1εt−1 + · · · + θqεt−q (10-16)

E(εt ) = 0, E(ε2
t ) = σ2, E(εtεs) = 0 for t �= s

where b1, b2, . . . , bp are the autoregressive parameters and θ1, θ2, . . . , θq are the moving-average
parameters.

Estimating and using ARMA models has several limitations. First, the parameters in
ARMA models can be very unstable. In particular, slight changes in the data sample or the
initial guesses for the values of the ARMA parameters can result in very different final estimates
of the ARMA parameters. Second, choosing the right ARMA model is more of an art than a
science. The criteria for deciding on p and q for a particular time series are far from perfect.
Moreover, even after a model is selected, that model may not forecast well.

To reiterate, ARMA models can be very unstable, depending on the data sample used and
the particular ARMA model estimated. Therefore, you should be skeptical of claims that a
particular ARMA model provides much better forecasts of a time series than any other ARMA
model. In fact, in most cases, you can use an AR model to produce forecasts that are just
as accurate as those from ARMA models without nearly as much complexity. Even some of
the strongest advocates of ARMA models admit that these models should not be used with
fewer than 80 observations, and they do not recommend using ARMA models for predicting
quarterly sales or gross margins for a company using even 15 years of quarterly data.

9. AUTOREGRESSIVE CONDITIONAL
HETEROSKEDASTICITY MODELS

Up to now, we have ignored any issues of heteroskedasticity in time-series models and have
assumed homoskedasticity. Heteroskedasticity is the dependence of the error term variance
on the independent variable; homoskedasticity is the independence of the error term variance
from the independent variable. We have assumed that the error term’s variance is constant
and does not depend on the value of the time series itself or on the size of previous errors. At
times, however, this assumption is violated and the variance of the error term is not constant.
In such a situation, the standard errors of the regression coefficients in AR, MA, or ARMA
models will be incorrect, and our hypothesis tests would be invalid. Consequently, we can
make poor investment decisions based on those tests.

For example, suppose you are building an autoregressive model of a company’s sales. If
heteroskedasticity is present, then the standard errors of the regression coefficients of your
model are incorrect. It is likely that due to heteroskedasticity, one or more of the lagged sales
terms may appear statistically significant when in fact they are not. Therefore, if you use this
model for your decision making, you may make some suboptimal decisions.
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In work responsible in part for his shared Nobel Prize in Economics for 2003, Robert F.
Engle in 1982 first suggested a way of testing whether the variance of the error in a particular
time-series model in one period depends on the variance of the error in previous periods. He
called this type of heteroskedasticity autoregressive conditional heteroskedasticity (ARCH).

As an example, consider the ARCH(1) model

εt ∼ N (0, a0 + a1ε
2
t−1) (10-17)

where the distribution of εt , conditional on its value in the previous period, εt−1, is normal
with mean 0 and variance a0 + a1ε

2
t−1. If a1 = 0, the variance of the error in every period is

just a0. The variance is constant over time and does not depend on past errors. Now suppose
that a1 > 0. Then the variance of the error in one period depends on how large the squared
error was in the previous period. If a large error occurs in one period, the variance of the error
in the next period will be even larger.

Engle shows that we can test whether a time series is ARCH(1) by regressing the squared
residuals from a previously estimated time-series model (AR, MA, or ARMA) on a constant
and one lag of the squared residuals. We can estimate the linear regression equation

ε̂2
t = a0 + a1ε̂

2
t−1 + ut (10-18)

where ut is an error term. If the estimate of a1 is statistically significantly different from zero,
we conclude that the time series is ARCH(1). If a time-series model has ARCH(1) errors,
then the variance of the errors in period t + 1 can be predicted in period t using the formula
σ̂2

t+1 = â0 + â1ε̂
2
t .

EXAMPLE 10-17 Testing for ARCH(1) in Monthly Inflation

Analyst Lisette Miller wants to test whether monthly data on CPI inflation contain
autoregressive conditional heteroskedasticity. She could estimate Equation 10-18 using
the residuals from the time-series model. As discussed in Example 10-8, if she modeled
monthly CPI inflation from 1971 to 2000, she would conclude that an AR(1) model
was the best autoregressive model to use to forecast inflation out of sample. Table 10-17
shows the results of testing whether the errors in that model are ARCH(1).

Because the t-statistic for the coefficient on the previous period’s squared residuals
is greater than 7.5, Miller easily rejects the null hypothesis that the variance of the error
does not depend on the variance of previous errors. Consequently, the test statistics she
computed in Table 10-5 are not valid, and she should not use them in deciding her
investment strategy.

It is possible Miller’s conclusion—that the AR(1) model for monthly inflation
has ARCH in the errors—may have been due to the sample period employed (1971
to 2000). In Example 10-9, she used a shorter sample period of 1985 to 2000 and
concluded that monthly CPI inflation follows an AR(1) process. (These results were
shown in Table 10-8.) Table 10-17 shows that errors for a time-series model of inflation
for the entire sample (1971 to 2000) have ARCH errors. Do the errors estimated with
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a shorter sample period (1985 to 2000) also display ARCH? For the shorter sample
period, Miller estimated an AR(1) model using monthly inflation data.37 Now she tests
to see whether the errors display ARCH. Table 10-18 shows the results.

TABLE 10-17 Test for ARCH(1) in an AR(1) Model Residuals from
Monthly CPI Inflation at an Annual Rate, February 1971–December 2000

Regression Statistics

R-squared 0.1376
Standard error 26.3293
Observations 359
Durbin–Watson 1.9126

Coefficient Standard Error t-Statistic

Intercept 7.2958 1.5050 4.8478
Lag 1 0.3687 0.0488 7.5483

Source: U.S. Bureau of Labor Statistics.

TABLE 10-18 Test for ARCH(1) in an AR(1) Model Monthly CPI
Inflation at an Annual Rate, February 1985–December 2000

Regression Statistics

R-squared 0.0106
Standard error 11.2593
Observations 191
Durbin–Watson 1.9969

Coefficient Standard Error t-Statistic

Intercept 5.3939 0.9224 5.8479
Lag 1 0.1028 0.0724 1.4205

Source: U.S. Bureau of Labor Statistics.

In this sample, the coefficient on the previous period’s squared residual is quite
small and has a t-statistic of only 1.4205. Consequently, Miller fails to reject the
null hypothesis that the errors in this regression have no autoregressive conditional
heteroskedasticity. This is additional evidence that the AR(1) model for 1985 to 2000
is a good fit. The error variance appears to be homoskedastic, and Miller can rely on the
t-statistics. This result again confirms that a single AR process for the entire 1971–2000
period is misspecified (it does not describe the data well).

37The AR(1) results are reported in Example 10-9.



420 Quantitative Investment Analysis

Suppose a model contains ARCH(1) errors. What are the consequences of that fact?
First, if ARCH exists, the standard errors for the regression parameters will not be correct.
In case ARCH exists, we will need to use generalized least squares38 or other methods that
correct for heteroskedasticity to correctly estimate the standard error of the parameters in
the time-series model. Second, if ARCH exists and we have it modeled, for example as
ARCH(1), we can predict the variance of the errors. Suppose, for instance, that we want to
predict the variance of the error in inflation using the estimated parameters from Table 10-17:
σ̂2

t = 7.2958 + 0.3687ε̂2
t−1. If the error in one period were 0 percent, the predicted variance

of the error in the next period would be 7.2958 + 0.3687(0) = 7.2958. If the error in
one period were 1 percent, the predicted variance of the error in the next period would be
7.2958 + 0.3687(12) = 7.6645.

Engle and other researchers have suggested many generalizations of the ARCH(1) model,
including ARCH(p) and generalized autoregressive conditional heteroskedasticity (GARCH)
models. In an ARCH(p) model, the variance of the error term in the current period depends
linearly on the squared errors from the previous p periods: σ2

t = a0 + a1ε
2
t−1 + · · · + apε

2
t−p.

GARCH models are similar to ARMA models of the error variance in a time series. Just like
ARMA models, GARCH models can be finicky and unstable: Their results can depend greatly
on the sample period and the initial guesses of the parameters in the GARCH model. Financial
analysts who use GARCH models should be well aware of how delicate these models can be,
and they should examine whether GARCH estimates are robust to changes in the sample and
the initial guesses about the parameters.39

10. REGRESSIONS WITH MORE THAN ONE
TIME SERIES

Up to now, we have discussed time-series models only for one time series. Although in the
chapters on correlation and regression and on multiple regression we used linear regression to
analyze the relationship among different time series, in those chapters we completely ignored
unit roots. A time series that contains a unit root is not covariance stationary. If any time series
in a linear regression contains a unit root, ordinary least squares estimates of regression test
statistics may be invalid.

To determine whether we can use linear regression to model more than one time series, let
us start with a single independent variable; that is, there are two time series, one corresponding
to the dependent variable and one corresponding to the independent variable. We will then
extend our discussion to multiple independent variables.

We first use a unit root test, such as the Dickey–Fuller test, for each of the two time series
to determine whether either of them has a unit root.40 There are several possible scenarios
related to the outcome of these tests. One possible scenario is that we find that neither of the
time series has a unit root. Then we can safely use linear regression to test the relations between
the two time series. Otherwise, we may have to use additional tests, as we discuss later in this
section.

38See Greene (2003).
39For more on ARCH, GARCH, and other models of time-series variance, see Hamilton (1994).
40For theoretical details of unit root tests, see Greene (2003) or Hamilton (1994). Unit root tests are
available in some econometric software packages, such as EViews.
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EXAMPLE 10-18 Unit Roots and the Fisher Effect

In Example 9-8 in the chapter on multiple regression, we examined the Fisher effect by
estimating the regression relation between expected inflation and risk-free U.S. Treasury
bill (T-bill) returns. We used a sample of 137 quarterly observations from the fourth
quarter of 1968 until the fourth quarter of 2002 on the expected inflation and risk-free
T-bill returns. We used linear regression to analyze the relationship between the two
time series. The results of this regression would be valid if both the time series are
covariance stationary; that is, neither of the two time series has a unit root. So, if we
compute the Dickey–Fuller t-test statistic of the hypothesis of a unit root separately for
each time series and find that we can reject the null hypothesis that the risk-free T-bill
return series has a unit root and the null hypothesis that the expected inflation time
series has a unit root, then we can use linear regression to analyze the relation between
the two series. In that case, the results of our analysis of the Fisher effect would be valid.

A second possible scenario is that we reject the hypothesis of a unit root for the independent
variable but fail to reject the hypothesis of a unit root for the dependent variable. In this case,
the error term in the regression would not be covariance stationary. Therefore, one or more
of the following linear regression assumptions would be violated: (1) that the expected value
of the error term is 0, (2) that the variance of the error term is constant for all observations,
and (3) that the error term is uncorrelated across observations. Consequently, the estimated
regression coefficients and standard errors would be inconsistent. The regression coefficients
might appear significant, but those results would be spurious.41 Thus we should not use linear
regression to analyze the relation between the two time series in this scenario.

A third possible scenario is the reverse of the second scenario: We reject the hypothesis
of a unit root for the dependent variable but fail to reject the hypothesis of a unit root for
the independent variable. In this case also, like the second scenario, the error term in the
regression would not be covariance stationary, and we cannot use linear regression to analyze
the relation between the two time series.

EXAMPLE 10-19 Unit Roots and Predictability of Stock
Market Returns by Price-to-Earnings Ratio

Johann de Vries is analyzing the performance of the South African stock market. He
examines whether the percentage change in the Johannesburg Stock Exchange (JSE)
All Share Index can be predicted by the price-to-earnings ratio (P/E) for the index.
Using monthly data from January 1983 to December 2002, he runs a regression using
(Pt − Pt−1)/Pt−1 as the dependent variable and Pt−1/Et−2 as the independent variable,
where Pt is the value of the JSE index at time t and Et is the earnings on the index.

41The problem of spurious regression for nonstationary time series was first discussed by Granger and
Newbold (1974).
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De Vries finds that the regression coefficient is statistically significant and the value
of the R-squared for the regression is quite high. What additional analysis should he
perform before accepting the regression as valid?

De Vries needs to perform unit root tests for each of the two time series. If one of
the two time series has a unit root, implying that it is not stationary, the results of the
linear regression are not meaningful and cannot be used to conclude that stock market
returns are predictable by P/E.42

The next possibility is that both time series have a unit root. In this case, we need
to establish whether the two time series are cointegrated before we can rely on regression
analysis.43 Two time series are cointegrated if a long-term financial or economic relationship
exists between them such that they do not diverge from each other without bound in the long
run. For example, two time series are cointegrated if they share a common trend.

In the fourth scenario, both time series have a unit root but are not cointegrated. In this
scenario, as in the second and third scenarios above, the error term in the linear regression
will not be covariance stationary, some regression assumptions will be violated, the regression
coefficients and standard errors will not be consistent, and we cannot use them for hypothesis
tests. Consequently, linear regression of one variable on the other would be meaningless.

Finally, the fifth possible scenario is that both time series have a unit root, but they are
cointegrated. In this case, the error term in the linear regression of one time series on the
other will be covariance stationary. Accordingly, the regression coefficients and standard errors
will be consistent, and we can use them for hypothesis tests. However, we should be very
cautious in interpreting the results of a regression with cointegrated variables. The cointegrated
regression estimates the long-term relation between the two series but may not be the best
model of the short-term relation between the two series. Short-term models of cointegrated
series (error correction models) are discussed in Engle and Granger (1987) and Hamilton
(1994), but these are specialist topics.

Now let us look at how we can test for cointegration between two time series that each
have a unit root as in the last two scenarios above.44 Engle and Granger suggest this test: If yt

and xt are both time series with a unit root, we should do the following.

1. Estimate the regression yt = b0 + b1xt + εt .
2. Test whether the error term from the regression in Step 1 has a unit root using a

Dickey–Fuller test. Because the residuals are based on the estimated coefficients of
the regression, we cannot use the standard critical values for the Dickey–Fuller test.
Instead, we must use the critical values computed by Engle and Granger, which take into
account the effect of uncertainty about the regression parameters on the distribution of
the Dickey–Fuller test.

42Barr and Kantor (1999) contains evidence that the P/E time series is nonstationary.
43Engle and Granger (1987) first discussed cointegration.
44Consider a time series, xt , that has a unit root. For many such financial and economic time series,
the first difference of the series, xt − xt−1, is stationary. We say that such a series, whose first difference
is stationary, has a single unit root. However, for some time series, even the first difference may not be
stationary and further differencing may be needed to achieve stationarity. Such a time series is said to
have multiple unit roots. In this section, we consider only the case in which each nonstationary series has
a single unit root (which is quite common).
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3. If the (Engle–Granger) Dickey–Fuller test fails to reject the null hypothesis that the
error term has a unit root, then we conclude that the error term in the regression is not
covariance stationary. Therefore, the two time series are not cointegrated. In this case
any regression relation between the two series is spurious.

4. If the (Engle–Granger) Dickey–Fuller test rejects the null hypothesis that the error
term has a unit root, then we conclude that the error term in the regression is covariance
stationary. Therefore, the two time series are cointegrated. The parameters and standard
errors from linear regression will be consistent and will let us test hypotheses about the
long-term relation between the two series.

EXAMPLE 10-20 Testing for Cointegration between
Intel Sales and Nominal GDP

Suppose we want to test whether the natural log of Intel’s sales and the natural log of
GDP are cointegrated (that is, whether there is a long-term relation between GDP and
Intel sales). We want to test this hypothesis using quarterly data from the first quarter
of 1985 through the fourth quarter of 1999. Here are the steps:

1. Test whether the two series each have a unit root. If we cannot reject the
null hypothesis of a unit root for both series, implying that both series are
nonstationary, we must then test whether the two series are cointegrated.

2. Having established that each series has a unit root, we estimate the regression
ln (Intel Salest ) = b0 + b1 ln GDPt + εt , then conduct the (Engle–Granger)
Dickey–Fuller test of the hypothesis that there is a unit root in the error term of
this regression using the residuals from the estimated regression. If we reject the
null hypothesis of a unit root in the error term of the regression, we reject the
null hypothesis of no cointegration. That is, the two series would be cointegrated.
If the two series are cointegrated, we can use linear regression to estimate the
long-term relation between the natural log of Intel Sales and the natural log
of GDP.

We have so far discussed models with a single independent variable. We now extend the
discussion to a model with two or more independent variables, so that there are three or more
time series. The simplest possibility is that none of the time series in the model has a unit root.
Then, we can safely use multiple regression to test the relation among the time series.

EXAMPLE 10-21 Unit Roots and Returns to the
Fidelity Select Technology Fund

In Example 9-3 in the chapter on multiple regression, we used multiple linear regression
to examine whether returns to either the S&P 500/BARRA Growth Index or the S&P
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500/BARRA Value Index explain returns to the Fidelity Select Technology Fund using
60 monthly observations between January 1998 and December 2002. Of course, if any
of the three time series has a unit root, then the results of our regression analysis may
be invalid. Therefore, we could use a Dickey–Fuller test to determine whether any of
these series has a unit root.

If we reject the hypothesis of unit roots for all three series, we can use linear
regression to analyze the relation among the series. In that case the results of our analysis
of the factors affecting returns to the Fidelity Select Technology Fund would be valid.

If at least one time series (the dependent variable or one of the independent variables)
has a unit root while at least one time series (the dependent variable or one of the
independent variables) does not, the error term in the regression cannot be covariance
stationary. Consequently, we should not use multiple linear regression to analyze the relation
among the time series in this scenario.

Another possibility is that each time series, including the dependent variable and each
of the independent variables, has a unit root. If this is the case, we need to establish
whether the time series are cointegrated. To test for cointegration, the procedure is similar
to that for a model with a single independent variable. First, estimate the regression yt =
b0 + b1x1t + b2x2t + · · · + bkxkt + εt . Then conduct the (Engle–Granger) Dickey–Fuller
test of the hypothesis that there is a unit root in the errors of this regression using the residuals
from the estimated regression.

If we cannot reject the null hypothesis of a unit root in the error term of the regression,
we cannot reject the null hypothesis of no cointegration. In this scenario, the error term in the
multiple regression will not be covariance stationary, so we cannot use multiple regression to
analyze the relationship among the time series.

If we can reject the null hypothesis of a unit root in the error term of the regression, we
can reject the null hypothesis of no cointegration. However, modeling three or more time
series that are cointegrated may be difficult. For example, an analyst may want to predict a
retirement services company’s sales based on the country’s GDP and the total population over
age 65. Although the company’s sales, GDP, and the population over 65 may each have a unit
root and be cointegrated, modeling the cointegration of the three series may be difficult, and
doing so is beyond the scope of this book. Analysts who have not mastered all these complex
issues should avoid forecasting models with multiple time series that have unit roots: The
regression coefficients may be inconsistent and may produce incorrect forecasts.

11. OTHER ISSUES IN TIME SERIES

Time-series analysis is an extensive topic and includes many highly complex issues. Our
objective in this chapter has been to present those issues in time series that are the most
important for financial analysts and can also be handled with relative ease. In this section, we
briefly discuss some of the issues that we have not covered but could be useful for analysts.

In this chapter, we have shown how to use time-series models to make forecasts. We
have also introduced the RMSE as a criterion for comparing forecasting models. How-
ever, we have not discussed measuring the uncertainty associated with forecasts made using
time-series models. The uncertainty of these forecasts can be very large, and should be
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taken into account when making investment decisions. Fortunately, the same techniques
apply to evaluating the uncertainty of time-series forecasts as they apply to evaluating
the uncertainty about forecasts from linear regression models. To accurately evaluate fore-
cast uncertainty, we need to consider both the uncertainty about the error term and
the uncertainty about the estimated parameters in the time-series model. Evaluating this
uncertainty is fairly complicated when using regressions with more than one independent
variable.

In this chapter, we used the U.S. CPI inflation series to illustrate some of the practical
challenges analysts face in using time-series models. We used information on U.S. Federal
Reserve policy to explore the consequences of splitting the inflation series in two. In financial
time-series work, we may suspect that a time series has more than one regime but not have
the information to attempt to sort the data into different regimes. If you face such a problem,
you may want to investigate other methods, especially switching regression models, to identify
multiple regimes using only the time series itself.

If you are interested in these and other advanced time-series topics, you can learn more
in Diebold (2004) and Hamilton (1994).

12. SUGGESTED STEPS IN
TIME-SERIES FORECASTING

The following is a step-by-step guide to building a model to predict a time series.

1. Understand the investment problem you have, and make an initial choice of model.
One alternative is a regression model that predicts the future behavior of a variable based
on hypothesized causal relationships with other variables. Another is a time-series model
that attempts to predict the future behavior of a variable based on the past behavior of
the same variable.

2. If you have decided to use a time-series model, compile the time series and plot it to see
whether it looks covariance stationary. The plot might show important deviations from
covariance stationarity, including the following:

• a linear trend,
• an exponential trend,
• seasonality, or
• a significant shift in the time series during the sample period (for example, a change

in mean or variance).

3. If you find no significant seasonality or shift in the time series, then perhaps either a
linear trend or an exponential trend will be sufficient to model the time series. In that
case, take the following steps:

• Determine whether a linear or exponential trend seems most reasonable (usually by
plotting the series).

• Estimate the trend.
• Compute the residuals.
• Use the Durbin–Watson statistic to determine whether the residuals have significant

serial correlation. If you find no significant serial correlation in the residuals, then the
trend model is sufficient to capture the dynamics of the time series and you can use
that model for forecasting.
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4. If you find significant serial correlation in the residuals from the trend model, use a more
complex model, such as an autoregressive model. First, however, reexamine whether the
time series is covariance stationary. Following is a list of violations of stationarity, along
with potential methods to adjust the time series to make it covariance stationary:

• If the time series has a linear trend, first-difference the time series.
• If the time series has an exponential trend, take the natural log of the time series and

then first-difference it.
• If the time series shifts significantly during the sample period, estimate different

time-series models before and after the shift.
• If the time series has significant seasonality, include seasonal lags (discussed in

Step 7 below).

5. After you have successfully transformed a raw time series into a covariance-stationary
time series, you can usually model the transformed series with a short autoregression.45

To decide which autoregressive model to use, take the following steps:

• Estimate an AR(1) model.
• Test to see whether the residuals from this model have significant serial correlation.
• If you find no significant serial correlation in the residuals, you can use the AR(1)

model to forecast.

6. If you find significant serial correlation in the residuals, use an AR(2) model and test for
significant serial correlation of the residuals of the AR(2) model.

• If you find no significant serial correlation, use the AR(2) model.
• If you find significant serial correlation of the residuals, keep increasing the order of

the AR model until the residual serial correlation is no longer significant.

7. Your next move is to check for seasonality. You can use one of two approaches:

• Graph the data and check for regular seasonal patterns.
• Examine the data to see whether the seasonal autocorrelations of the residuals from

an AR model are significant (for example, the fourth autocorrelation for quarterly
data) and whether the autocorrelations before and after the seasonal autocorrelations
are significant. To correct for seasonality, add seasonal lags to your AR model. For
example, if you are using quarterly data, you might add the fourth lag of a time series
as an additional variable in an AR(1) or an AR(2) model.

8. Next, test whether the residuals have autoregressive conditional heteroskedasticity. To
test for ARCH(1), for example, do the following:

• Regress the squared residual from your time-series model on a lagged value of the
squared residual.

• Test whether the coefficient on the squared lagged residual differs significantly from 0.
• If the coefficient on the squared lagged residual does not differ significantly from 0,

the residuals do not display ARCH and you can rely on the standard errors from your
time-series estimates.

45Most financial time series can be modeled using an autoregressive process. For a few time series, a
moving-average model may fit better. To see if this is the case, examine the first five or six autocorrelations
of the time series. If the autocorrelations suddenly drop to 0 after the first q autocorrelations, a moving-
average model (of order q) is appropriate. If the autocorrelations start large and decline gradually, an
autoregressive model is appropriate.
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• If the coefficient on the squared lagged residual does differ significantly from 0, use
generalized least squares or other methods to correct for ARCH.

9. Finally, you may also want to perform tests of the model’s out-of-sample forecasting
performance to see how the model’s out-of-sample performance compares to its
in-sample performance.

Using these steps in sequence, you can be reasonably sure that your model is correctly
specified.





CHAPTER 11
PORTFOLIO CONCEPTS

1. INTRODUCTION

No aspect of quantitative investment analysis is as widely studied or as vigorously debated as
portfolio theory. Issues that portfolio managers have studied during the last 50 years include
the following:

• What characteristics of a portfolio are important, and how may we quantify them?
• How do we model risk?
• If we could know the distribution of asset returns, how would we select an optimal

portfolio?
• What is the optimal way to combine risky and risk-free assets in a portfolio?
• What are the limitations of using historical return data to predict a portfolio’s future

characteristics?
• What risk factors should we consider in addition to market risk?

In this chapter, we present key quantitative methods to support the management of
portfolios. In Section 2, we focus on mean–variance analysis and related models and issues.
Then in Section 3, we address some of the problems encountered using mean–variance
analysis and how we can respond to them. We introduce a single-factor model, the market
model, which explains the return on assets in terms of a single variable, a market index. In
Section 4, we present models that explain the returns on assets in terms of multiple factors,
and we illustrate some important applications of these models in current practice.

2. MEAN – VARIANCE ANALYSIS

When does portfolio diversification reduce risk? Are there some portfolios that all risk-averse
investors would avoid? These are some of the questions that Harry Markowitz addressed in
the research for which he shared the 1990 Nobel Prize in Economics.

Mean–variance portfolio theory, the oldest and perhaps most accepted part of modern
portfolio theory, provides the theoretical foundation for examining the roles of risk and return
in portfolio selection. In this section, we describe Markowitz’s theory, illustrate the principles
of portfolio diversification with several examples, and discuss several important issues in
implementation.

Mean–variance portfolio theory is based on the idea that the value of investment
opportunities can be meaningfully measured in terms of mean return and variance of

429
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return. Markowitz called this approach to portfolio formation mean–variance analysis.
Mean–variance analysis is based on the following assumptions:

1. All investors are risk averse; they prefer less risk to more for the same level of expected
return.1

2. Expected returns for all assets are known.
3. The variances and covariances of all asset returns are known.
4. Investors need only know the expected returns, variances, and covariances of returns to

determine optimal portfolios. They can ignore skewness, kurtosis, and other attributes
of a distribution.2

5. There are no transaction costs or taxes.

Note that the first assumption does not mean that all investors have the same tolerance for
risk. Investors differ in the level of risk they are willing to accept; however, risk-averse investors
prefer as little risk as possible for a given level of expected return. In practice, expected returns
and variances and covariances of returns for assets are not known but rather estimated. The
estimation of those quantities may be a source of mistakes in decision-making when we use
mean–variance analysis.

The fourth assumption is a key one, as it says that we may rely on certain summary
measures of assets’ return distributions—expected returns, variances, and covariances—to
determine which combinations of assets make an optimal portfolio.

2.1. The Minimum-Variance Frontier and Related Concepts

An investor’s objective in using a mean–variance approach to portfolio selection is to choose
an efficient portfolio. An efficient portfolio is one offering the highest expected return for a
given level of risk as measured by variance or standard deviation of return. Thus if an investor
quantifies her tolerance for risk using standard deviation, she seeks the portfolio that she
expects will deliver the greatest return for the standard deviation of return consistent with her
risk tolerance. We begin the exploration of portfolio selection by forming a portfolio from just
two asset classes, government bonds and large-cap stocks.

Table 11-1 shows the assumptions we make about the expected returns of the two assets,
along with the standard deviation of return for the two assets and the correlation between their
returns.

To begin the process of finding an efficient portfolio, we must identify the portfolios that
have minimum variance for each given level of expected return. Such portfolios are called
minimum-variance portfolios. As we shall see, the set of efficient portfolios is a subset of the
set of minimum variance portfolios.

We see from Table 11-1 that the standard deviation of the return to large-cap stocks
(Asset 1) is 15 percent, the standard deviation of the return to government bonds (Asset 2)
is 10 percent, and the correlation between the two asset returns is 0.5. Therefore, we can
compute the variance of a portfolio’s returns as a function of the fraction of the portfolio

1For more on risk aversion and its role in portfolio theory, see, for example, Sharpe, Alexander, and
Bailey (1999) or Reilly and Brown (2003).
2This assumption could follow either from assuming that returns follow a normal distribution or from
assuming that investors’ attitudes toward risk and return can be mathematically represented in terms of
mean and variance only.
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TABLE 11-1 Assumed Expected Returns, Variances, and
Correlation: Two-Asset Case

Asset 1 Asset 2
Large-Cap Stocks Government Bonds

Expected return 15% 5%
Variance 225 100
Standard deviation 15% 10%
Correlation 0.5

invested in large-cap stocks (w1) and the fraction of the portfolio invested in government
bonds (w2). Because the portfolio contains only these two assets, we have the relationship
w1 + w2 = 1. When the portfolio is 100 percent invested in Asset 1, w1 is 1.0 and w2 is 0;
and when w2 is 1.0, then w1 is 0 and the portfolio is 100 percent invested in Asset 2. Also,
when w1 is 1.0, we know that our portfolio’s expected return and variance of return are those
of Asset 1. Conversely, when w2 is 1.0, the portfolio’s expected return and variance are those
of Asset 2. In this case, the portfolio’s maximum expected return is 15 percent if 100 percent
of the portfolio is invested in large-cap stocks; its minimum expected return is 5 percent if 100
percent of the portfolio is invested in government bonds.

Before we can determine risk and return for all portfolios composed of large-cap stocks
and government bonds, we must know how the expected return, variance, and standard
deviation of the return for any two-asset portfolio depend on the expected returns of the two
assets, their variances, and the correlation between the two assets’ returns.

For any portfolio composed of two assets, the expected return to the portfolio, E(Rp), is

E(Rp) = w1E(R1) + w2E(R2)

where

E(R1) = the expected return on Asset 1
E(R2) = the expected return on Asset 2

The portfolio variance of return is

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ1,2σ1σ2

where

σ1 = the standard deviation of return on Asset 1
σ2 = the standard deviation of return on Asset 2

ρ1,2 = the correlation between the two assets’ returns

and Cov(R1, R2) = ρ1,2σ1σ2 is the covariance between the two returns, recalling the definition
of correlation as the covariance divided by the individual standard deviations. The portfolio
standard deviation of return is

σp = (w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρ1,2σ1σ2)1/2

In this case, the expected return to the portfolio is E(Rp) = w1(0.15) + w2(0.05), and the
portfolio variance is σ2

p = w2
10.152 + w2

20.102 + 2w1w2(0.5)(0.15)(0.10).
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Given our assumptions about the expected returns, variances, and return correlation for
the two assets, we can determine both the variance and the expected return of the portfolio
as a function of the proportion of assets invested in large-cap stocks and government bonds.
Table 11-2 shows the portfolio expected return, variance, and standard deviation as the weights
on large-cap stocks rise from 0 to 1.0.

TABLE 11-2 Relation Between Expected Return and Risk for a Portfolio
of Stocks and Bonds

Expected Portfolio Portfolio Standard Large-Cap Government
Return Variance Deviation Stocks (w1) Bonds (w2)

5% 100.00 10.00% 0 1.0
6% 96.75 9.84% 0.1 0.9
7% 97.00 9.85% 0.2 0.8
8% 100.75 10.04% 0.3 0.7
9% 108.00 10.39% 0.4 0.6

10% 118.75 10.90% 0.5 0.5
11% 133.00 11.53% 0.6 0.4
12% 150.75 12.28% 0.7 0.3
13% 172.00 13.11% 0.8 0.2
14% 196.75 14.03% 0.9 0.1
15% 225.00 15.00% 1.0 0

As Table 11-2 shows, when the weight on large-cap stocks is 0.1, the expected portfolio
return is 6 percent and the portfolio variance is 96.75.3 That portfolio has a higher expected
return and lower variance than a portfolio with a weight of 0 on stocks—that is, a portfolio
fully invested in government bonds. This improvement in risk–return characteristics illustrates
the power of diversification: Because the returns to large-cap stocks are not perfectly correlated
with the returns to government bonds (they do not have a correlation of 1), by putting some
of the portfolio into large-cap stocks, we increase the expected return and reduce the variance
of return. Furthermore, there is no cost to improving the risk–return characteristics of the
portfolio in this way.

Figure 11-1 graphs the possible combinations of risk and return for a portfolio composed
of government bonds and large-cap stocks. Figure 11-1 plots the expected portfolio return on
the y-axis and the portfolio variance on the x-axis.

The two-asset case is special because all two-asset portfolios plot on the curve illustrated
(there is a unique combination of two assets that provides a given level of expected return).
This is the portfolio possibilities curve—a curve plotting the expected return and risk of
the portfolios that can be formed using two assets. We can also call the curve in Figure 11-1
the minimum-variance frontier because it shows the minimum variance that can be achieved
for a given level of expected return. The minimum-variance frontier is a more useful concept
than the portfolio possibilities curve because it also applies to portfolios with more than two
assets. In the general case of more than two assets, any portfolios plotting on an imaginary
horizontal line at any expected return level have the same expected return, and as we move
left on that line, we have less variance of return. The attainable portfolio farthest to the left
on such a line is the minimum-variance portfolio for that level of expected return and one

3Note that the 96.75 is in units of percent squared. In decimals, the expected portfolio return is 0.06
and the portfolio variance is 0.009675.
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Minimum-Variance Frontier

FIGURE 11-1 Minimum-Variance Frontier: Large Cap Stocks and Government Bonds

point on the minimum-variance frontier. With three or more assets, the minimum-variance
frontier is a true frontier: It is the border of a region representing all combinations of expected
return and risk that are possible (the border of the feasible region). The region results from
the fact that with three or more assets, an unlimited number of portfolios can provide a
given level of expected return.4 In the case of three or more assets, if we move to the right
from a point on the minimum-variance frontier, we reach another portfolio but one with
more risk.

From Figure 11-1, note that the variance of the global minimum-variance portfolio (the
one with the smallest variance) appears to be close to 96.43 (Point A) when the expected return
of the portfolio is 6.43. This global minimum-variance portfolio has 14.3 percent of assets in
large-cap stocks and 85.7 percent of assets in government bonds. Given these assumed returns,
standard deviations, and correlation, a portfolio manager should not choose a portfolio with
less than 14.3 percent of assets in large-cap stocks because any such portfolio will have both

4For example, if we have three assets with expected returns of 5 percent, 12 percent, and 20 percent
and we want an expected return of 11 percent on the portfolio, we would use the following equation
to solve for the portfolio weights (using the fact that portfolio weights must sum to 1): 11% =
(5% × w1) + (12% × w2) + [20% × (1 − w1 − w2)]. This single equation with two unknowns, w1

and w2, has an unlimited number of possible solutions, each solution representing a portfolio.
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FIGURE 11-2 Minimum-Variance Frontier: Large-Cap Stocks and Government Bonds

a higher variance and a lower expected return than the global minimum-variance portfolio.
All of the points on the minimum-variance frontier below Point A are inferior to the global
minimum-variance portfolio, and they should be avoided.

Financial economists often say that portfolios located below the global minimum-
variance portfolio (Point A in Figure 11-1) are dominated by others that have the same
variances but higher expected returns. Because these dominated portfolios use risk inef-
ficiently, they are inefficient portfolios. The portion of the minimum-variance frontier
beginning with the global minimum-variance portfolio and continuing above it is called
the efficient frontier. Portfolios lying on the efficient frontier offer the maximum expected
return for their level of variance of return. Efficient portfolios use risk efficiently: Investors
making portfolio choices in terms of mean return and variance of return can restrict their
selections to portfolios lying on the efficient frontier. This reduction in the number of
portfolios to be considered simplifies the selection process. If an investor can quantify his
risk tolerance in terms of variance or standard deviation of return, the efficient portfolio
for that level of variance or standard deviation will represent the optimal mean–variance
choice.

Because standard deviation is easier to interpret than variance, investors often plot
the expected return against standard deviation rather than variance.5 Figure 11-2 plots the
expected portfolio return for this example on the y-axis and the portfolio standard deviation
of return on the x-axis.6 The curve graphed is still called the minimum variance frontier.

Example 11-1 illustrates the process of determining a historical minimum-variance
frontier.

5Expected return and standard deviation are measured in the same units, percent.
6For the remainder of this chapter, we will plot the expected return against standard deviation of return.
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EXAMPLE 11-1 A Two-Asset Minimum-Variance Frontier
Using Historical U.S. Return Data

Susan Fitzsimmons has decided to invest her retirement plan assets in a U.S. small-cap
equity index fund and a U.S. long-term government bond index fund. Fitzsimmons
decides to use mean–variance analysis to help determine the fraction of her funds to
invest in each fund. Assuming that expected returns and variances can be estimated
accurately using monthly historical returns from 1970 through 2002, she computes the
average returns, variances of returns, and correlation of returns for the indexes that the
index funds attempt to track. Table 11-3 shows those historical statistics.

TABLE 11-3 Average Returns and Variances of Returns (Annualized,
Based on Monthly Data, January 1970–December 2002)1-3

Asset Class Average Return Variance

U.S. small-cap stocks 14.63% 491.8
U.S. long-term government bonds 9.55% 109.0
Correlation 0.138

Source: Ibbotson Associates.

Given these statistics, Fitzsimmons can determine the allocation of the portfo-
lio between the two assets using the expected return and variance. To do so, she
must calculate

• the range of possible expected returns for the portfolio (minimum and maximum),
• the proportion of each of the two assets (asset weights) in the minimumvariance

portfolio for each possible level of expected return, and
• the variance7 for each possible level of expected return.

Because U.S. government bonds have a lower expected return than U.S. small-cap
stocks, the minimum expected return portfolio has 100 percent weight in U.S. long-
term government bonds, 0 percent weight in U.S. small-cap stocks, and an expected
return of 9.55 percent. In contrast, the maximum expected return portfolio has 100
percent weight in U.S. small-cap stocks, 0 percent weight in U.S. long-term government
bonds, and an expected return of 14.63 percent. Therefore, the range of possible
expected portfolio returns is 9.55 percent to 14.63 percent.

Fitzsimmons now determines the asset weights of the two asset classes at different
levels of expected return, starting at the minimum expected return of 9.55 percent and
concluding at the maximum level of expected return of 14.63 percent. The weights at
each level of expected return determine the variance for the portfolio consisting of these
two asset classes. Table 11-4 shows the composition of portfolios for various levels of
expected return.

7In the two-asset case, as previously stated, there is a unique combination of the two assets that provides a
given level of expected return, so there is a unique variance for a given level of expected return. Thus the
portfolio variance calculated for each level of expected return is trivially the minimum-variance portfolio
for that level of expected return.
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TABLE 11-4 Points on the Minimum-Variance Frontier for
U.S. Small-Cap Stocks and U.S. Long-Term Government Bonds

Expected Standard Small-Cap Government
Return Variance Deviation Stocks, w1 Bonds, w2

9.55% 109.0 10.4% 0.000 1.000
9.65% 106.2 10.3% 0.020 0.980
9.95% 100.2 10.0% 0.079 0.921

10.25% 98.0 9.9% 0.138 0.862
10.55% 99.5 10.0% 0.197 0.803
10.75% 102.6 10.1% 0.236 0.764
14.63% 491.8 22.2% 1.000 0.000

Table 11-4 illustrates what happens to the weights in the individual asset classes as
we move from the minimum expected return to the maximum expected return. When
the expected return is 9.55 percent, the weight for the long-term government bonds is
100 percent. As we increase the expected return, the weight in long-term government
bonds decreases; at the same time, the weight for U.S. small stocks increases. This result
makes sense because we know that the maximum expected return of 14.63 percent
must have a weight of 100 percent in U.S. small stocks. The weights in Table 11-4
reflect that property. Note that the global minimum-variance portfolio (which is also the
global minimum-standard-deviation portfolio) contains some of both assets. A portfolio
consisting only of bonds has more risk and a lower expected return than the global
minimum-variance portfolio because diversification can reduce total portfolio risk, as
we discuss shortly.

Figure 11-3 illustrates the minimum-variance frontier (in the two-asset-class case,
merely a portfolio possibilities curve) over the period 1970 to 2002 by graphing expected
return as a function of standard deviation.

FIGURE 11-3 Minimum-Variance Frontier: U.S. Small-Cap Stocks and Government Bonds
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If Fitzsimmons quantifies her risk tolerance as a standard deviation of 10 percent,
for example, mean–variance analysis suggests that she choose a portfolio with an
approximate weighting of 0.20 in small-cap stocks and 0.80 in long-term government
bonds. One major caution that we shall discuss later in this chapter is that even small
changes in inputs can have a significant effect on the minimum-variance frontier, and
the future may obviously be very different from the past. The historical record is only a
starting point in developing inputs for calculating the minimum-variance frontier.8

The trade-off between risk and return for a portfolio depends not only on the expected
asset returns and variances but also on the correlation of asset returns. Returning to the case
of large-cap stocks and government bonds, we assumed that the correlation was 0.5. The
risk–return trade-off is quite different for other correlation values. Figure 11-4 shows the
minimum-variance frontiers for portfolios containing large-cap stocks and government bonds
for varying weights.9 The weights go from 100 percent in government bonds and 0 percent
in large-cap stocks to 0 percent in government bonds and 100 percent in large-cap stocks, for
four different values of the correlation coefficient. The correlations illustrated in Figure 11-4
are −1, 0, 0.5, and 1.

Figure 11-4 illustrates a number of interesting characteristics about minimum-variance
frontiers and diversification:10

• The endpoints for all of the frontiers are the same. This fact should not be surprising,
because at one endpoint all of the assets are in government bonds and at the other endpoint
all of the assets are in large-cap stocks. At each endpoint, the expected return and standard
deviation are simply the return and standard deviation for the relevant asset (stocks or
bonds).

• When the correlation is +1, the minimum-variance frontier is an upward-sloping straight
line. If we start at any point on the line, for each one percentage point increase in standard
deviation we achieve the same constant increment in expected return. With a correlation
of +1, the return (not just the expected return) on one asset is an exact positive linear
function of the return on the other asset.11 Because fluctuations in the returns on the two
assets track each other in this way, the returns on one asset cannot dampen or smooth out
the fluctuations in the returns on the other asset. For a correlation of +1, diversification
has no potential benefits.

8Note also that the historical data are monthly, corresponding to a monthly investment horizon. The
minimum-variance frontier could be quite different if we used data with a different horizon (say
quarterly).
9Recall from Table 11-1 that large-cap stocks have an assumed expected return and standard deviation of
return of 15 percent, while government bonds have an assumed expected return and standard deviation
of return of 5 percent and 10 percent, respectively.
10We are examining, and our observations generally pertain to, the case in which neither of the two assets
is dominated. In mean–variance analysis, an asset A is dominated by an asset B if (1) the mean return
on B is equal to or larger than that on A, but B has a smaller standard deviation of return than A; or
(2) the mean return on B is strictly larger than that on A, but A and B have the same standard deviation
of return. The slope of a straight line connecting two assets, neither of which is dominated, is positive.
11If the correlation is +1, R1 = a + bR2, with b > 0.
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FIGURE 11-4 Minimum-Variance Frontier for Varied Correlations: Large-Cap Stocks and
Government Bonds

• When we move from a correlation of +1 to a correlation of 0.5, the minimum-variance
frontier bows out to the left, in the direction of smaller standard deviation. With any
correlation less than +1, we can achieve any feasible level of expected return with a smaller
standard deviation of return than for the +1 correlation case. As we move from a correlation
of 0.5 to each smaller value of correlation, the minimum-variance frontier bows out farther
to the left.

• The frontiers for correlation of 0.5, 0, and −1 have a negatively sloped part.12 This means
that if we start at the lowest point (100 percent in government bonds) and shift money into
stocks until we reach the global minimum-variance portfolio, we can get more expected
return with less risk. Therefore, relative to an initial position fully invested in government
bonds, there are diversification benefits in each of these correlation cases. A diversification
benefit is a reduction in portfolio standard deviation of return through diversification
without an accompanying decrease in expected return. Because the minimum-variance
frontier bows out further to the left as we lower correlation, we can also conclude that as we
lower correlation, holding all other values constant, there are increasingly larger potential
benefits to diversification.

• When the correlation is −1, the minimum-variance frontier has two linear segments.
The two segments join at the global minimum-variance portfolio, which has a standard
deviation of 0. With a correlation of −1, portfolio risk can be reduced to zero, if desired.

12For positive correlations (between 0 and 1), a negatively sloped part is present when correlation is less
than the standard deviation of the less risky asset divided by the standard deviation of the riskier asset.
In our case, this ratio is equal to the standard deviation of long-term government bonds to large-cap
stocks, or 10/15 = 0.6667. Because 0.5 is less than 0.6667, the minimum-variance frontier for 0.5 has
a negatively sloped part. We have not allowed short sales (negative asset weights). If we allow short sales,
frontiers for any positive correlation will have a negatively sloped part, which may involve the short sale
of the more risky asset. For details, see Elton, Gruber, Brown, and Goetzmann (2003).
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• Between the two extreme correlations of +1 and −1, the minimum-variance frontier has a
bullet-like shape. Thus the minimum-variance frontier is sometimes called the ‘‘bullet.’’

• The efficient frontier is the positively sloped part of the minimum-variance frontier.
Holding all other values constant, as we lower correlation, the efficient frontier improves in
the sense of offering a higher expected return for a given feasible level of standard deviation
of return.

In summary, when the correlation between two portfolios is less than +1, diversification
offers potential benefits. As we lower the correlation coefficient toward −1, holding other
values constant, the potential benefits to diversification increase.

2.2. Extension to the Three-Asset Case

Earlier we considered forming a portfolio composed of two assets: large-cap stocks and
government bonds. For investors in our example who want to maximize expected return for a
given level of risk (hold an efficient portfolio), the optimal portfolio combination of two assets
contains some of each asset, unless the portfolio is placed entirely in stocks.

Now we may ask, would adding another asset to the possible investment choices improve
the available trade-offs between risk and return? The answer to this question is very frequently
yes. A fundamental economic principle states that one is never worse off for having additional
choices. At worst, an investor can ignore the additional choices and be no worse off than
initially. Often, however, a new asset permits us to move to a superior minimum-variance
frontier. We can illustrate this common result by contrasting the minimum-variance frontier
for two assets (here, large-cap stocks and government bonds) with the minimum-variance
frontier for three assets (large-cap stocks, government bonds, and small-cap stocks).

In our initial two-asset case shown in Table 11-1, we assumed expected returns, variances,
and correlations for large-cap stocks and government bonds. Now suppose we have an
additional investment option, small-cap stocks. Can we achieve a better trade-off between
risk and return than when we could choose between only two assets, large-cap stocks and
government bonds?

Table 11-5 shows our assumptions about the expected returns of all three assets, along
with the standard deviations of the asset returns and their correlations.

Now we can consider the relation between these statistics and the expected return and

TABLE 11-5 Assumed Expected Returns, Variances, and Correlations:
Three-Asset Case

Asset 1 Asset 2 Asset 3
Large-Cap Stocks Government Bonds Small-Cap Stocks

Expected return 15% 5% 15%
Variance 225 100 225
Standard deviation 15% 10% 15%

Correlations
Large-cap stocks and bonds 0.5
Large-cap stocks and small-cap stocks 0.8
Bonds and small-cap stocks 0.5
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variance for the portfolio. For any portfolio composed of three assets with portfolio weights
w1, w2, and w3, the expected return on the portfolio, E(Rp), is

E(Rp) = w1E(R1) + w2E(R2) + w3E(R3)

where

E(R1) = the expected return on Asset 1 (here, large-cap stocks)
E(R2) = the expected return on Asset 2 (government bonds)
E(R3) = the expected return on Asset 3 (small-cap stocks)

The portfolio variance is

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + w2

3σ
2
3 + 2w1w2ρ1,2σ1σ2 + 2w1w3ρ1,3σ1σ3 + 2w2w3ρ2,3σ2σ3

where

σ1 = the standard deviation of the return on Asset 1
σ2 = the standard deviation of the return on Asset 2
σ3 = the standard deviation of the return on Asset 3

ρ1,2 = the correlation between returns on Asset 1 and Asset 2
ρ1,3 = the correlation between returns on Asset 1 and Asset 3
ρ2,3 = the correlation between returns on Asset 2 and Asset 3

The portfolio standard deviation is

σp = [w2
1σ

2
1 + w2

2σ
2
2 + w2

3σ
2
3 + 2w1w2ρ1,2σ1σ2 + 2w1w3ρ1,3σ1σ3

+ 2w2w3ρ2,3σ2σ3]1/2

Given our assumptions, the expected return on the portfolio is

E(Rp) = w1(0.15) + w2(0.05) + w3(0.15)

The portfolio variance is

σ2
p = w2

10.152 + w2
20.102 + w2

30.152 + 2w1w2(0.5)(0.15)(0.10)

+ 2w1w3(0.8)(0.15)(0.15) + 2w2w3(0.5)(0.10)(0.15)

The portfolio standard deviation is

σp = [w2
10.152 + w2

20.102 + w2
30.152 + 2w1w2(0.5)(0.15)(0.10)

+ 2w1w3(0.8)(0.15)(0.15) + 2w2w3(0.5)(0.10)(0.15)]1/2

In this three-asset case, however, determining the optimal combinations of assets is much
more difficult than it was in the two-asset example. In the two-asset case, the percentage of
assets in large-cap stocks was simply 100 percent minus the percentage of assets in government
bonds. But with three assets, we need a method to determine what combination of assets
will produce the lowest variance for any particular expected return. At least we know the
minimum expected return (the return that would result from putting all assets in government
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TABLE 11-6 Points on the Minimum-Variance Frontier for the Three-Asset Case

Expected Portfolio Portfolio Standard Large-Cap Government Small-Cap
Return Variance Deviation Stocks (w1) Bonds (w2) (w3)

5% 100.00 10.00% 0 1.00 0
6% 96.53 9.82% 0.05 0.90 0.05
7% 96.10 9.80% 0.10 0.80 0.10
8% 98.72 9.94% 0.15 0.70 0.15
9% 104.40 10.22% 0.20 0.60 0.20

10% 113.13 10.64% 0.25 0.50 0.25
11% 124.90 11.18% 0.30 0.40 0.30
12% 139.73 11.82% 0.35 0.30 0.35
13% 157.60 12.55% 0.40 0.20 0.40
14% 178.53 13.36% 0.45 0.10 0.45
15% 202.50 14.23% 0.50 0 0.50

bonds, 5 percent) and the maximum expected return (the return from putting no assets in
government bonds, 15 percent). For any level of expected return between the minimum and
maximum levels, we must solve for the portfolio weights that will result in the lowest risk
for that level of expected return. We use an optimizer (a specialized computer program or a
spreadsheet with this capability) to provide these weights.13

Notice that the new asset, small-cap stocks, has a correlation of less than +1 with both
large-cap stocks and bonds, suggesting that small-cap stocks may be useful in diversifying risk.

Table 11-6 shows the portfolio expected return, variance, standard deviation, and portfolio
weights for the minimum-variance portfolio as the expected return rises from 5 percent to 15
percent.

As Table 11-6 shows, the proportion of the portfolio in large-cap stocks and small-cap
stocks is the same in all the minimum-variance portfolios. This proportion results from
the simplifying assumption in Table 11-5 that large-cap stocks and small-cap stocks have
identical expected returns and standard deviations of return, as well as the same correlation
with government bonds. With a different, more realistic combination of returns, variances,
and correlations, the minimum-variance portfolios in this example would contain different
proportions of the large-cap stocks and small-cap stocks, but we would reach a similar
conclusion about the possibility of improving the available risk–return trade-offs.

How does the minimum variance for each level of expected return in the three-asset case
compare with the minimum variance for each level of expected return in the two-asset case?
Figure 11-5 shows the comparison.

When 100 percent of the portfolio is invested in government bonds, the minimum-
variance portfolio has the same expected return (5 percent) and standard deviation (10
percent) in both cases. For every other level of expected return, however, the minimum-
variance portfolio in the three-asset case has a lower standard deviation than the minimum-
variance portfolio in the two-asset case for the same expected return. Note also that the efficient
frontier with three assets dominates the efficient frontier with two assets (we would choose our
optimal portfolio from those on the superior efficient frontier).

From this three-asset example, we can draw two conclusions about the theory of portfolio
diversification. First, we generally can improve the risk–return trade-off by expanding the set

13These programs use a solution method called quadratic programming.
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FIGURE 11-5 Comparing Minimum-Variance Frontiers: Three Assets versus Two Assets

of assets in which we can invest. Second, the composition of the minimum-variance portfolio
for any particular level of expected return depends on the expected returns, the variances and
correlations of those returns, and the number of assets.

2.3. Determining the Minimum-Variance Frontier for Many Assets

We have shown examples of mean–variance analysis with two and three assets. Typically,
however, portfolio managers form optimal portfolios using a larger number of assets. In this
section, we show how to determine the minimum-variance frontier for a portfolio composed
of many assets.

For a portfolio of n assets, the expected return on the portfolio is14

E(Rp) =
n∑

j=1

wjE(Rj) (11-1)

The variance of return on the portfolio is15

σ2
p =

n∑
i=1

n∑
j=1

wiwjCov(Ri, Rj) (11-2)

14The summation notation says that we set j equal to 1 through n, and then we sum the resulting terms.
15The double summation notation says that we set i equal to 1 and let j run from 1 through n, then we
set i equal to 2 and let j run from 1 through n, and so forth until i equals n; then we sum all the terms.
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Before determining the optimal portfolio weights, remember that the weights of the individual
assets in the portfolio must sum to 1:

n∑
j=1

wj = 1

To determine the minimum-variance frontier for a set of n assets, we must first determine
the minimum and maximum expected returns possible with the set of assets (these are the
minimum, rmin, and the maximum, rmax, expected returns for the individual assets). Then
we must determine the portfolio weights that will create the minimumvariance portfolio for
values of expected return between rmin and rmax. In mathematical terms, we must solve the
following problem for specified values of z, rmin ≤ z ≤ rmax:

Minimize
by choice of w ′s

σ2
p =

n∑
i=1

n∑
j=1

wiwjCov(Ri , Rj) (11-3)

subject to E(Rp) =
n∑

j=1
wjE(Rj) = z and subject to

n∑
j=1

wj = 1

This optimization problem says that we solve for the portfolio weights (w1, w2, w3, . . . , wn)
that minimize the variance of return for a given level of expected return z, subject to the
constraint that the weights sum to 1. The weights define a portfolio, and the portfolio is
the minimum-variance portfolio for its level of expected return. Equation 11-3 shows the
simplest case in which the only constraint on portfolio weights is that they sum to 1; this
case allows assets to be sold short. A constraint against short sales would require adding a
further constraint that wj ≥ 0. We trace out the minimum-variance frontier by varying the
value of expected return from the minimum to the maximum level. For example, we could
determine the optimal portfolio weights for a small set of z values by starting with z = rmin,
then increasing z by 10 basis points (0.10 percent) and solving for the optimal portfolio
weights until we reach z = rmax.16 We use an optimizer to actually solve the optimization
problem. Example 11-2 shows a minimum-variance frontier that results from using historical
data for non-U.S. stocks and three U.S. asset classes.

EXAMPLE 11-2 A Minimum-Variance Frontier Using
International Historical Return Data

In this example, we examine a historical minimum-variance frontier with four asset
classes. The three U.S. asset classes are the S&P 500 Index, U.S. small-cap stocks, and

16There is a shortcut in the case of no constraints against short sales. According to Black’s (1972) two-
fund theorem, all portfolios on the minimum-variance frontier of risky assets are a linear combination
of any two other minimum-variance portfolios, assuming that short sales are allowed. The implication
is that we can trace out the minimum-variance frontier if we have calculated the portfolio weights of
two minimum-variance portfolios. The procedure in the text, however, works even when we add the
constraint against short sales, which many investors face.
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U.S. long-term government bonds. To these we add non-U.S. stocks (MSCI World
ex-United States). We estimate the minimum-variance frontier based on historical
monthly return data from January 1970 to December 2002. Table 11-7 presents the
mean returns, variances, and correlations of these four assets for the entire sample period.

TABLE 11-7 Mean Annual Returns, Standard Deviations, and Correlation Matrix for
Four Asset Classes, January 1970–December 2002

U.S. MSCI U.S.
Small- World Long-Term
Cap ex-United Government

S&P 500 Stocks States Bonds

Mean Annual Returns 11.6% 14.6% 11.1% 19.6%
Standard deviation 15.83% 22.18% 17.07% 10.44%
Correlations

S&P 500 1
U.S. small-cap stocks 0.731 1
MSCI World ex-U.S. 0.573 0.475 1
U.S. long-term bonds 0.266 0.138 0.155 1

Source: Ibbotson Associates.

Table 11-7 shows that the minimum average historical return from these four asset
classes was 9.6 percent a year (bonds) and the maximum average historical return was
14.6 percent (U.S. small-cap stocks). To trace out the minimum-variance frontier, we
use the optimization model. The optimization program with a short sales constraint
solves for the mean–variance frontier using the following equations:

Min σ2
p (R) = w2

1σ
2
1 + w2

2σ
2
2 + w2

3σ
2
3 + w2

4σ
2
4 + 2w1w2ρ1,2σ1σ2

+ 2w1w3ρ1,3σ1σ3 + 2w1w4ρ1,4σ1σ4 + 2w2w3ρ2,3σ2σ3

+ 2w2w4ρ2,4σ2σ4 + 2w3w4ρ3,4σ3σ4

subject to E(Rp) = w1E(R1) + w2E(R2) + w3E(R3) + w4E(R4) = z (repeated for spec-
ified values of z, 0.096 ≤ z ≤ 0.146), w1 + w2 + w3 + w4 = 1, and wj ≥ 0.

The weights w1, w2, w3, and w4 represent the four asset classes in the order listed
in Table 11-7. The optimizer chooses the weights (allocations to the four asset classes)
that result in the minimum-variance portfolio for each level of average return as we
move from the minimum level (rmin = 9.6 percent) to the maximum level (rmax = 14.6
percent). In this example, E(Rj) is represented by the sample mean return on asset class j,
and the variances and covariances are also sample statistics. Unless we deliberately chose
to use these historical data as our forward looking estimates, we would not interpret the
results of the optimization as a prediction about the future.

Figure 11-6 shows the minimum-variance frontier for these four asset classes based
on the historical means, variances, and covariances from 1970 to 2002. The figure also
shows the means and standard deviations of the four asset classes separately.
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FIGURE 11-6 Minimum-Variance Frontier for Four Asset Classes, 1970–2002

Although U.S. government bonds lie on the minimum-variance frontier, they are
dominated by other asset classes that offer a better mean return for the same level of
risk. Note that the points representing S & P 500 and the MSCI World ex-U.S. stocks
plotted off and to the right of the minimum-variance frontier. If we move directly to the
left from either the S & P 500 or MSCI ex-U.S. stock portfolio, we reach a portfolio on
the efficient frontier that has smaller risk without affecting the mean return. If we move
directly up from either, we reach a portfolio that has greater mean return with the same
level of risk. After the fact, at least, these two portfolios were not efficient for an investor
who could invest in all four asset classes. Despite the fact that MSCI World ex-U.S.
stocks is itself a very broad index, for example, there were benefits to further diversifying.
Of the four asset classes, only U.S. small-cap stocks as the highest-mean-return portfolio
plotted on the efficient frontier; in general, the highest-mean-return portfolio appears as
an endpoint of the efficient frontier in an optimization with a constraint against short
sales, as in this case.

In this section, we showed the process for tracing out a minimum-variance frontier.
We also analyzed a frontier generated from actual data. In the next section, we address the
relationship between portfolio size and diversification.

2.4. Diversification and Portfolio Size

Earlier, we illustrated the diversification benefits of adding a third asset to a two-asset portfolio.
That discussion opened a question of practical interest that we explore in this section: How
many different stocks must we hold in order to have a well-diversified portfolio? How does
covariance or correlation interact with portfolio size in determining a portfolio’s risk?
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We address these questions using the example of an investor who holds an equally weighted
portfolio. Suppose we purchase a portfolio of n stocks and put an equal fraction of the value
of the portfolio into each of the stocks (wi = 1/n, i = 1, 2, . . . , n). The variance of return is

σ2
p =

n∑
i=1

n∑
j=1

wiwjCov(Ri , Rj) = 1

n2

n∑
i=1

n∑
j=1

Cov(Ri, Rj) (11-4)

Suppose we call the average variance of return across all stocks σ2 and the average
covariance between all pairs of two stocks Cov. It is possible to show17 that Equation 11-4
simplifies to

σ2
p = 1

n
σ2 + n − 1

n
Cov (11-5)

As the number of stocks, n, increases, the contribution of the variance of the individual
stocks becomes very small because (1/n)σ2 has a limit of 0 as n becomes large. Also,
the contribution of the average covariance across stocks to the portfolio variance stays

nonzero because
n − 1

n
Cov has a limit of Cov as n becomes large. Therefore, as the

number of assets in the portfolio becomes large, portfolio variance approximately equals
average covariance. In large portfolios, average covariance—capturing how assets move
together—becomes more important than average individual risk or variance.

In addition to this insight, Equation 11-5 allows us to gauge the reduction in portfolio
variance from the completely undiversified position of holding only one stock. If the portfolio
contained only one stock, then of course its variance would be the individual stock’s variance,
which is the position of maximum variance.18 If the portfolio contained a very large number
of stocks, the variance of the portfolio would be close to the average covariance of any two of
the stocks, known as the position of minimum variance. How large is the difference between
these two levels of variance, and how much of the maximum benefit can we obtain with a
relatively small number of stocks?

The answers depend on the sizes of the average variance and the average covariance.
Because correlation is easier to interpret than covariance, we will work with correlation.
Suppose, for simplicity’s sake, that the correlation between the returns for any two stocks is the
same and that all stocks have the same standard deviation. Chan, Karceski, and Lakonishok
(1999) found that for U.S. NYSE and Amex stocks over the 1968–98 period, the average
correlation of small-stock returns was 0.24, the average correlation of large-stock returns was
0.33, and the average correlation of stock returns across the entire sample of stocks was 0.28.
Assume that the common correlation is 0.30, which is in the approximate range for the average
correlation of U.S. equities for many time periods. The covariance of two random variables is
the correlation of those variables multiplied by the standard deviations of the two variables,
so Cov = 0.30σ2 (using our assumption that all stocks have the same standard deviation of
returns, denoted σ).

Look back at Equation 11-5 and replace Cov with 0.30σ2:

σ2
p = 1

n
σ2 + n − 1

n
(0.30σ2)

= σ2

n
[1 + 0.30(n − 1)]

17See Bodie, Kane, and Marcus (2001).
18For realistic values of correlation, average variance is greater than average covariance.
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= σ2

n
(0.70 + 0.30n)

= σ2
(

0.70

n
+ 0.30

)

which provides an example of the more general expression (assuming stocks have the same
standard deviation of returns)

σ2
p = σ2

(
1 − ρ

n
+ ρ

)
(11-6)

If the portfolio contains one stock, the portfolio variance is σ2. As n increases, portfolio
variance drops rapidly. In our example, if the portfolio contains 15 stocks, the portfolio
variance is 0.347σ2, or only 34.7 percent of the variance of a portfolio with one stock. With
30 stocks, the portfolio variance is 32.3 percent of the variance of a single-stock portfolio.
The smallest possible portfolio variance in this case is 30 percent of the variance of a single
stock, because σ2

p = 0.30σ2 when n is extremely large. With only 30 stocks, for example,
the portfolio variance is only approximately 8 percent larger than minimum possible value
(0.323σ2/0.30σ2 − 1 = 0.077), and the variance is 67.7 percent smaller than the variance of
a portfolio that contains only one stock.

For a reasonable assumed value of correlation, the previous example shows that a portfolio
composed of many stocks has far less total risk than a portfolio composed of only one stock. In
this example, we can diversify away 70 percent of an individual stock’s risk by holding many
stocks. Furthermore, we may be able to obtain a large part of the risk reduction benefits of
diversification with a surprisingly small number of securities.

What if the correlation among stocks is higher than 0.30? Suppose an investor wanted to
be sure that his portfolio variance was only 110 percent of the minimum possible portfolio
variance of a diversified portfolio. How many stocks would the investor need? If the average
correlation among stocks were 0.5, he would need only 10 stocks for the portfolio to have
110 percent of the minimum possible portfolio variance. With a higher correlation, the
investor would need fewer stocks to obtain the same percentage of minimum possible portfolio
variance. What if the correlation is lower than 0.30? If the correlation among stocks were 0.1,
the investor would need 90 stocks in the portfolio to obtain 110 percent of the minimum
possible portfolio variance.

One common belief among investors is that almost all of the benefits of diversification
can be achieved with a portfolio of only 30 stocks. In fact, Fisher and Lorie (1970) showed
that 95 percent of the benefits of diversification among NYSE-traded stocks from 1926 to
1965 were achieved with a portfolio of 32 stocks.

As shown above, the number of stocks needed to achieve a particular diversification gain
depends on the average correlation among stock returns: The lower the average correlation, the
greater the number of stocks needed. Campbell, Lettau, Malkiel, and Xu (2001) showed that
although overall market volatility has not increased since 1963, individual stock returns have
been more volatile recently (1986–97) and individual stock returns have been less correlated
with each other. Consequently, to achieve the same percentage of the risk-reducing benefits
of diversification during the more recent period, more stocks were needed in a portfolio than
in the period studied by Fisher and Lorie. Campbell et al. conclude that during the 1963–85
period, ‘‘a portfolio of 20 stocks reduced annualized excess standard deviation to about five
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percent, but in the 1986–1997 subsample, this level of excess standard deviation required
almost 50 stocks.’’19

EXAMPLE 11-3 Diversification at Berkshire Hathaway

Berkshire Hathaway’s highly successful CEO, Warren Buffett, is one of the harshest
critics of modern portfolio theory and diversification. Buffett has said, for example, that
‘‘[I]f you are a know-something investor, able to understand business economics, and
find 5 to 10 sensibly priced companies that possess important long-term competitive
advantages, conventional diversification makes no sense for you. It is apt simply to hurt
your results and increase your risk.’’20

Does Buffett avoid diversification altogether? Certainly his investment record is
phenomenal, but even Buffett engages in diversification to some extent. For example,
consider Berkshire Hathaway’s top three investment holdings at the end of 2002.21

American Express Company $ 5.6 billion (32%)
The Coca-Cola Company $ 8.8 billion (51%)
The Gillette Company $ 2.9 billion (17%)

Total $17.3 billion

How much diversification do these three stocks provide? How much lower is this
portfolio’s standard deviation than that of a portfolio consisting only of Coca-Cola stock?
To answer these questions, assume that the historical mean returns, return standard
deviations, and return correlations of these stocks are the best estimates of the future
expected returns, return standard deviations, and return correlations. Table 11-8 shows
these historical statistics, based on monthly return data from 1990 through 2002.

TABLE 11-8 Historical Returns, Variances, and Correlations:
Berkshire Hathaway’s Largest Equity Holdings
(Monthly Data, January 1990–December 2002)

American Express Coca-Cola Gillette

Mean annual return 16.0% 16.1% 17.6%
Standard deviation 29.0% 24.7% 27.3%

Correlations
American Express and Coca-Cola 0.361
American Express and Gillette 0.317
Coca-Cola and Gillette 0.548

Source: FactSet.

19Campbell et al. defined ‘‘excess standard deviation’’ as the standard deviation of a randomly selected
portfolio of a given size minus the standard deviation of an equally weighted market index.
20Buffett (1993).
21We consider only the top three holdings in order to simplify the computations in this example. Also
for simplicity, we rounded the percentage allocations in the portfolio. The weights shown here are the
relative weights among these three stocks, not their actual weights in the Berkshire Hathaway portfolio.
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Table 11-8 shows that for Coca-Cola’s stock during this period, the mean annual
return was 16.1 percent and the annualized standard deviation of the return was
24.7 percent. In contrast, a portfolio consisting of 32 percent American Express stock,
51 percent Coca-Cola stock, and 17 percent Gillette stock had an expected return of
0.32(0.16) + 0.51(0.161) + 0.17(0.176) = 0.163, or 16.3 percent.

The portfolio’s expected standard deviation, based on these weights and the statistics
in Table 11-8, was

σp = [w2
1σ

2
1 + w2

2σ
2
2 + w2

3σ
2
3 + 2w1w2ρ1,2σ1σ2 + 2w1w3ρ1,3σ1σ3

+ 2w2w3ρ2,3σ2σ3]1/2

or
σp = [(0.322)(0.2902) + (0.512)(0.2472) + (0.172)(0.2732)

+ 2(0.32)(0.51)(0.361)(0.290)(0.247)

+ 2(0.32)(0.17)(0.317)(0.290)(0.273)

+ 2(0.51)(0.17)(0.548)(0.247)(0.273)]1/2

= 0.210 or 21.0 percent

The standard deviation of a portfolio with these three stocks is only 21.0/24.7 =
85.0 percent of the standard deviation of a portfolio composed exclusively of Coca-Cola
stock. Therefore, Berkshire Hathaway actually achieved substantial diversification in the
sense of risk reduction, even considering only its top three holdings.

2.5. Portfolio Choice with a Risk-Free Asset

So far, we have considered only portfolios of risky securities, implicitly assuming that investors
cannot also invest in a risk-free asset. But investors can hold their own government’s securities
such as Treasury bills, which are virtually risk-free in nominal terms over appropriate time
horizons. For example, the purchaser of a one-year Treasury bill knows his nominal return if
he holds the bill to maturity. What is the trade-off between risk and return when we can invest
in a risk-free asset?

A risk-free asset’s standard deviation of return is 0 because the return is certain and
there is no risk of default. Suppose, for example, that the return to the risk-free asset
is 4 percent a year. If we take the Treasury bill as risk-free, then 4 percent is the actual
return, known in advance; it is not an expected return.22 Because the risk-free asset’s
standard deviation of return is 0, the covariance between the return of the risk-free asset
and the return of any other asset must also be 0. These observations help us understand
how adding a risk-free asset to a portfolio can affect the mean–variance trade-off among
assets.

22We assume here that the maturity of the T-bills is the same as the investment horizon so that there is
no interest rate risk.
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2.5.1. The Capital Allocation Line The capital allocation line (CAL) describes the
combinations of expected return and standard deviation of return available to an investor
from combining her optimal portfolio of risky assets with the risk-free asset. Thus the CAL
describes the expected results of the investor’s decision on how to optimally allocate her capital
among risky and risk-free assets.

What graph in mean return–standard deviation space satisfies the definition of the CAL?
The CAL must be the line from the risk-free rate of return that is tangent to the efficient
frontier of risky assets; of all lines we could extend from the risk-free rate to the efficient
frontier of risky assets, the tangent line has the maximum slope and best risk–return tradeoff
(‘‘tangent’’ means touching without intersecting). The tangency portfolio is the investor’s
optimal portfolio of risky assets. The investor’s risk tolerance determines which point on the
line he or she will choose. Example 11-4 and the ensuing discussion clarify and illustrate these
points.

EXAMPLE 11-4 An Investor’s Trade-Off Between Risk and
Return with a Risk-Free Asset

Suppose that we want to determine the effect of including a risk-free asset in addition
to large-cap stocks and government bonds in our portfolio. Table 11-9 shows the
hypothetical expected returns and correlations for the three asset classes.

TABLE 11-9 Expected Returns, Variances, and Correlations: Three-Asset Case with
Risk-Free Asset

Large-Cap Stocks Government Bonds Risk-Free Asset

Expected return 15% 5% 4%
Variance 225 100 0
Standard deviation 15% 10% 0%

Correlations
Large-cap stocks and government bonds 0.5
Large-cap stocks and risk-free asset 0
Government bonds and risk-free asset 0

Suppose we decide to invest the entire portfolio in the risk-free asset with a return
of 4 percent. In this case, the expected return to the portfolio is 4 percent and the
expected standard deviation is 0. Now assume that we put the entire portfolio into
large-cap stocks. The expected return is now 15 percent, and the standard deviation of
the portfolio is 15 percent. What will happen if we divide the portfolio between the
risk-free asset and large-cap stocks? If the proportion of assets in large-cap stocks is w1

and the proportion of assets in the risk-free asset is (1 − w1), then the expected portfolio
return is
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E(Rp) = w1(0.15) + (1 − w1)(0.04)

and the portfolio standard deviation is

σp = [w2
1(0.15)2 + (1 − w1)2(0)2]1/2 = w1(0.15)

Note that both the expected return and the standard deviation of return are linearly
related to w1, the percentage of the portfolio in large-cap stocks. Figure 11-7 illustrates
the trade-off between risk and return for the risk-free asset and large-cap stocks in this
example.

FIGURE 11-7 Portfolios of the Risk-Free Asset and Large-Cap Stocks

Now let us consider the trade-off between risk and return for a portfolio containing
the risk-free asset and U.S. government bonds. Suppose we decide to put the entire
portfolio in the risk-free asset. In this case, the expected return to the portfolio is
4 percent and the expected standard deviation of the portfolio is 0. Now assume that
we put the entire portfolio into U.S. government bonds. The expected return is now
5 percent, and the standard deviation of the portfolio is 10 percent. What will happen
if we divide the portfolio between the risk-free asset and government bonds? If the
proportion of assets in government bonds is w1 and the proportion of assets in the
risk-free asset is (1 − w1), then the expected portfolio return is
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E(Rp) = w1(0.05) + (1 − w1)(0.04)

and the portfolio standard deviation is

σp = [w2
1(0.10)2 + (1 − w1)2(0)2]1/2 = w1(0.10)

Note that both the expected return and the standard deviation of return are linearly
related to w1, the percentage of the portfolio in the government bonds. Figure 11-8
shows the trade-off between risk and return for the risk-free asset and government bonds
in this example.

FIGURE 11-8 Portfolios of the Risk-Free Asset and Government Bonds

We have just seen the trade-off between risk and return for two different portfolios:
one with the risk-free asset and large-cap stocks, the other with the risk-free asset and
government bonds. How do these trade-offs between risk and return compare with
the original risk–return trade-off between government bonds and large-cap stocks?
Figure 11-9 illustrates the risk–return trade-off for all three portfolios.

Notice that the line describing portfolios of the risk-free asset and government
bonds touches the minimum-variance frontier for bonds and stocks at the point of lowest
return on the bond–stock minimum-variance frontier—that is, the point where 100
percent of the portfolio is invested in bonds. Some points on the risk-free asset–bond
line have lower risk and return than points on the bond–stock frontier; however, we can
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FIGURE 11-9 Portfolios of the Risk-Free Asset, Large-Cap Stocks, and Government Bonds

find no point where, for a given level of risk, the expected return is higher on the risk-free
asset–bond line than on the bond–stock frontier. In this case, if we draw the line with
the highest slope from the risk-free asset to the bond–stock frontier, that line is tangent
to the bond–stock frontier at a point representing a portfolio 100 percent invested in
stocks.23 This CAL is labeled Risk-Free Asset and Large-Cap Stocks in Figure 11-9.
For given assumptions about expected returns, variances, and covariances, that capital
allocation line identifies portfolios with the maximum expected return for a given level of
risk, if we can spread our money between an optimal risky portfolio and a risk-free asset.
Of all lines we could extend from the risk-free rate to the minimum-variance frontier
of risky assets, the CAL has maximum slope. Slope defined as rise (expected return)
over run (standard deviation) measures the expected risk–return trade-off. The CAL is
the line of maximum slope that touches the minimum-variance frontier; consequently,
the capital allocation line offers the best risk–return trade-off achievable, given our
expectations.

The previous example showed three important general principles concerning the
risk–return trade-off in a portfolio containing a risk-free asset:

• If we can invest in a risk-free asset, then the CAL represents the best risk–return trade-off
achievable.

23In a typical case with many assets, however, the point where the line with maximum slope from the risk-
free asset touches the minimum-variance frontier of risky assets does not represent a portfolio composed
of only the highest expected return asset. In such typical cases, the CAL represents combinations of the
risk-free asset and a broad combination of risky assets.
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• The CAL has a y-intercept equal to the risk-free rate.
• The CAL is tangent to the efficient frontier of risky assets.24

EXAMPLE 11-5A The CAL with Multiple Assets

In Example 11-4, the CAL was tangent to the efficient frontier for all risky assets. We
now illustrate how the efficient frontier changes depending on the opportunity set
(the set of assets available for investment) and whether the investor wants to borrow to
leverage his investments. We can illustrate this point by reconsidering our earlier example
(Example 11-2) of optimal portfolio choice among the S&P 500, U.S. small-cap stocks,
non-U.S. stocks (the MSCI World ex-U.S.), and U.S. government bonds, adding a
risk-free asset.

We now assume that the risk-free rate is 5 percent. The standard deviation of the
risk-free rate of return is 0, because the return is certain; the covariance between returns
to the risk-free asset and returns to the other assets is also 0. We demonstrate the
following principles:

• The point of maximum expected return is not the point of tangency between the
CAL and the efficient frontier of risky assets.

-

-
U.S. Bonds

FIGURE 11-10 The Effect of Adding a Risk-Free Asset to a Risky Portfolio

24Note that that when we expand the set of assets to include the risk-free asset, an investor’s CAL
becomes the efficient frontier defined in relation to the expanded set of assets. The efficient frontier of
risky assets is the efficient frontier considering risky assets alone. It is critical to understand that the
efficient frontier is always defined in relationship to a specified set of assets.
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• The point of tangency between the CAL and the efficient frontier for risky assets
represents a portfolio containing risky assets and none of the risk-free asset.

• If we rule out borrowing at the risk-free rate, then the efficient frontier for all the
assets (including the risk-free asset) cannot be completely linear.

Figure 11-10 shows the mean–variance frontier for all five assets (the original four plus
the risk-free asset), assuming borrowing at the risk-free rate is not possible.

As the figure shows, the efficient frontier is linear from the y-intercept (the
combination of risk and return for placing the entire portfolio in the risk-free asset)
to the point of tangency. If the investor wants additional return (and risk) beyond the
point of tangency without borrowing, however, the investor’s efficient frontier is the
portion of the efficient frontier for the four risky assets that lies to the right of the point
of tangency. The investor’s efficient frontier has linear and curved portions.25

2.5.2. The Capital Allocation Line Equation In the previous section, we discussed the
graph of the CAL and illustrated how the efficient frontier can change depending on the set of
assets available for investment as well as the portfolio manager’s expectations. We now provide
the equation for this line.

Suppose that an investor, given expectations about means, variances, and covariances
for risky assets, plots the efficient frontier of risky assets. There is a risk-free asset offering a
risk-free rate of return, RF . If wT is the proportion of the portfolio the investor places in the
tangency portfolio, then the expected return for the entire portfolio is

E(Rp) = (1 − wT )RF + wT E(RT )

and the standard deviation of the portfolio is

σp = [(1 − wT )2σ2
RF

+ w2
T σ2

RT
+ 2(1 − wT )wT σRF σRT ρRF ,RT ]1/2

= [(1 − wT )2(0) + w2
T σ2

RT
+ 2(1 − wT )wT (0)(σRT )(0)]1/2

= (w2
T σ2

RT
)1/2

= wT σRT

An investor can choose to invest any fraction of his assets in the risk-free asset or in the
tangency portfolio; therefore, he can choose many combinations of risk and return. If he puts
the entire portfolio in the risk-free asset, then

wT = 0

E(Rp) = (1 − 0)RF + 0E(RT ) = RF , and

σp = 0σRT

= 0

25If borrowing at the risk-free rate were possible (equivalent to buying on margin at the risk-free rate),
the efficient frontier would be the straight line from the risk-free rate, now continued past the point of
tangency.
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If he puts his entire portfolio in the tangency portfolio, then

wT = 1

E(Rp) = (1 − 1)RF + 1E(RT ) = E(RT ), and

σp = 1σRT = σRT

In general, if he puts wT percent of his portfolio in the tangency portfolio, his portfolio
standard deviation will be σp = wT σRT .

To see how the portfolio weights, expected return, and risk are related, we use the
relationship wT = σp/σRT . If we substitute this value of wT back into the expression for
expected return, E(Rp) = (1 − wT )RF + wT E(RT ), we get

E(Rp) =
(

1 − σp

σRT

)
RF + σp

σRT

E(RT )

or

E(Rp) = RF + E(RT ) − RT

σRT

σp (11-7)

This equation shows the best possible trade-off between expected risk and return, given
this investor’s expectations. The term [E(RT ) − RF ]/σRT is the return that the investor
demands in order to take on an extra unit of risk. Example 11-5B illustrates how to
calculate the investor’s price of risk and other aspects of his investment using the capital
allocation line.

EXAMPLE 11-5B CAL Calculations

Suppose that the risk-free rate, RF , is 5 percent; the expected return to an investor’s
tangency portfolio, E(RT ), is 15 percent; and the standard deviation of the tangency
portfolio is 25 percent.

1. How much return does this investor demand in order to take on an extra unit of
risk?

2. Suppose the investor wants a portfolio standard deviation of return of 10 percent.
What percentage of the assets should be in the tangency portfolio, and what is
the expected return?

3. Suppose the investor wants to put 40 percent of the portfolio in the risk-free asset.
What is the portfolio expected return? What is the standard deviation?

4. What expected return should the investor demand for a portfolio with a standard
deviation of 35 percent?

5. What combination of the tangency portfolio and the risk-free asset does the
investor need to hold in order to have a portfolio with an expected return of 19
percent?
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6. If the investor has $10 million to invest, how much must she borrow at the
risk-free rate to have a portfolio with an expected return of 19%?

Solution to 1: In this case, [E(RT ) − RF ]/σRT = (0.15 − 0.05)/0.25 = 0.4. The
investor demands an additional 40 basis points of expected return of the portfolio for
every 1 percentage point increase in the standard deviation of portfolio returns.

Solution to 2: Because σp = wT σRT , then wT = 0.1/0.25 = 0.4, or 40 percent. In other
words, 40 percent of the assets are in the tangency portfolio and 60 percent are in the

risk-free asset. The expected return for the portfolio is E(Rp) = RF + E(RT ) − RF

σRT

σp =
0.05 + (0.4)(0.1) = 0.09, or 9 percent.

Solution to 3: In this case, wT = 1 − 0.4 = 0.6. Therefore, the expected portfolio
return is E(Rp) = (1 − wT )RF + wT E(RT ) = (1 − 0.6)(0.05) + (0.6)(0.15) = 0.11,
or 11 percent. The portfolio standard deviation is σp = wT σRT = (0.6)(0.25) = 0.15
or 15 percent.

Solution to 4 : We know that the relation between risk and expected return for

this portfolio is E(Rp) = RF + E(RT ) − RF

σRT

σp = 0.05 + [(0.15 − 0.05)/0.25]σp =
0.05 + 0.4σp. If the standard deviation for the portfolio’s returns is 35 percent,
then the investor can demand an expected return of E(Rp) = 0.05 + 0.4σp = 0.05 +
0.4(0.35) = 0.19, or 19 percent.

Solution to 5: With an expected return of 19 percent, the asset allocation must be as
follows:

E(Rp) = (1 − wT )RF + wT E(RT ) or

0.19 = (1 − wT )(0.05) + wT (0.15) = 0.05 + 0.10wT

wT = 1.4

How can the weight on the tangency portfolio be 140 percent? The interpretation of
wT = 1.4 is that the investment in the tangency portfolio consists of (1) the entire
amount of initial wealth and (2) an amount equal to 40 percent of initial wealth that
has been borrowed at the risk-free rate. We can confirm that the expected return is
(−0.4)(0.05) + (1.4)(0.15) = 0.19 or 19 percent.

Solution to 6 : The investor must borrow $4 million dollars at the risk-free rate to
increase the holdings of the tangency-asset portfolio to $14 million dollars. Therefore,
the net value of the portfolio will be $14million − $4million = $10 million.

In this section, we have assumed that investors may have different views about risky
assets’ mean returns, variances of returns, and correlations. Thus each investor may perceive a
different efficient frontier of risky assets and have a different tangency portfolio, the optimal
portfolio of risky assets which the investor may combine with risk-free borrowing or lending.
In the next two sections, we examine the consequences when mean–variance investors share
identical expectations.
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2.5.3. The Capital Market Line When investors share identical expectations about the
mean returns, variance of returns, and correlations of risky assets, the CAL for all investors is
the same and is known as the capital market line (CML). With identical expectations, the
tangency portfolio must be the same portfolio for all investors. In equilibrium, this tangency
portfolio must be a portfolio containing all risky assets in proportions reflecting their market
value weights; the tangency portfolio is the market portfolio of all risky assets. The CML is a
capital allocation line with the market portfolio as the tangency portfolio. The equation of the
CML is

E(Rp) = RF + E(RM ) − RF

σM
σp (11-8)

where

E(Rp) = the expected return of portfolio p lying on the capital market line
RF = the risk-free rate

E(RM ) = the expected rate of return on the market portfolio
σM = the standard deviation of return on the market portfolio
σp = the standard deviation of return on portfolio p

The slope of the CML, [E(RM ) − RF ]/σM , is called the market price of risk because it
indicates the market risk premium for each unit of market risk. As noted, the CML describes
the expected return of only efficient portfolios. The implication of the capital market line is
that all mean–variance investors, whatever their risk tolerance, can satisfy their investment
needs by combining the risk-free asset with a single risky portfolio, the market portfolio of all
risky assets.

In the next section we present a mean–variance theory describing the expected return of
any asset or portfolio, efficient or inefficient.

2.6. The Capital Asset Pricing Model

The capital asset pricing model (CAPM) has played a pivotal role in the development of
quantitative investment management since its introduction in the early 1960s. In this section,
we review some of its key aspects.

The CAPM makes the following assumptions:26

• Investors need only know the expected returns, the variances, and the covariances of returns
to determine which portfolios are optimal for them. (This assumption appears throughout
all of mean–variance theory.)

• Investors have identical views about risky assets’ mean returns, variances of returns, and
correlations.

• Investors can buy and sell assets in any quantity without affecting price, and all assets are
marketable (can be traded).

• Investors can borrow and lend at the risk-free rate without limit, and they can sell short
any asset in any quantity.

• Investors pay no taxes on returns and pay no transaction costs on trades.

26For a complete list of assumptions, see Elton, Gruber, Brown, and Goetzmann (2003).
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The CML represents the efficient frontier when the assumptions of the CAPM hold. In a
CAPM world, therefore, all investors can satisfy their investment needs by combining the
risk-free asset with the identical tangency portfolio, which is the market portfolio of all risky
assets (no risky asset is excluded).

The following equation describes the expected returns on all assets and portfolios, whether
efficient or not:

E(Ri) = RF + βi[E(RM ) − RF ] (11-9)

where

E(Ri) = the expected return on asset i
RF = the risk-free rate of return

E(RM ) = the expected return on the market portfolio
βi = Cov(Ri , RM )/Var(RM )

Equation 11-9 itself is referred to as the capital asset pricing model, and its graph is
called the security market line (SML). The CAPM is an equation describing the expected
return on any asset (or portfolio) as a linear function of its beta, βi, which is a measure of the
asset’s sensitivity to movements in the market. The CAPM says that expected return has two
components: first, the risk-free rate, RF , and second, an extra return equal to βi[E(RM ) − RF ].
The term [E(RM ) − RF ] is the expected excess return on the market. This amount is the
market risk premium; if we are 100 percent invested in the market, the market risk premium
is the extra return we expect to obtain, on average, compared with the risk-free rate of return.

The market risk premium is multiplied by the asset’s beta. A beta of 1 represents average
market sensitivity, and we expect an asset with that beta to earn the market risk premium
exactly.27 A beta greater than 1 indicates greater than average market risk and, according to
the CAPM, earns a higher expected excess return. Conversely, a beta less than 1 indicates less
than average market risk and, according to the CAPM, earns a smaller expected excess return.
Expected excess returns are related only to market risk, represented by beta. Sensitivity to the
market return is the only source of difference in expected excess returns across assets.28

Like all theory-based models, the CAPM comes from a set of assumptions. The CAPM
describes a financial market equilibrium in the sense that, if the model is correct and any
asset’s expected return differs from its expected return as given by the CAPM, market forces
will come into play to restore the relationships specified by the model. For example, a stock
that offers a higher expected return than justified by its beta will be bid up in price, lowering
the stock’s expected return; investors would expect that a broad-based portfolio would offset
any non-market risk the stock might carry.

Because it is all-inclusive, the market portfolio defined in the CAPM is unobservable. In
practice, we must use some broad index to represent it. The CAPM has been used primarily

27The market portfolio itself has a beta of 1, as βM = Cov(RM , RM )/Var(RM ) = Var(RM )/Var(RM ) = 1.
Because the market portfolio includes all assets, the average asset must have a beta of 1. The same
argument applies if we compute the betas of assets in an index, using the index to represent the market.
28One intuition for this idea is that the market is the perfectly diversified portfolio. We can cancel out
any other risk by holding the market portfolio, and we can costlessly hold the market portfolio (by
the no-transaction-costs assumption). Even risk with respect to personal assets such as human capital
(representing earning power) can be diversified away (all assets are tradable). Investors should not require
extra return for risks they can costlessly hedge.
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to value equities, so a common choice for the market portfolio is a broad value-weighted stock
index or market proxy. The straight-line relationship between expected return and beta results
from the efficiency of the market portfolio. As a result, the CAPM theory is equivalent to
saying that the unobservable market portfolio is efficient, but not that any particular proxy for
the market is efficient.29 Of more interest to practitioners than the strict truth of CAPM as
a theory is whether beta computed using available market proxies is useful for evaluating the
expected mean returns to various investment strategies. The evidence now favors the existence
of multiple sources of systematic risk affecting the mean returns to investment strategies.

2.7. Mean–Variance Portfolio Choice Rules: An Introduction

In this section, we introduce some of the principles of portfolio choice from a mean–variance
perspective. One of the most basic portfolio choice decisions is the selection of an optimal asset
allocation starting from a set of permissible asset classes. A second kind of decision involves
modifying an existing portfolio. This type of decision is easier because we may be able to
conclude that one portfolio represents a mean–variance improvement on another without
necessarily establishing that the better portfolio is optimal. We begin with a brief discussion of
this second decision type.

2.7.1. Decisions Related to Existing Portfolios We examine two kinds of decisions
related to existing portfolios in which mean–variance analysis may play a role.

Comparisons of Portfolios as Stand-Alone Investments The Markowitz decision rule provides
the principle by which a mean–variance investor facing the choice of putting all her money in
Asset A or all her money in Asset B can sometimes reach a decision. This investor prefers A to
B if either

• the mean return on A is equal to or larger than that on B, but A has a smaller standard
deviation of return than B; or

• the mean return on A is strictly larger than that on B, but A and B have the same standard
deviation of return.

When A is preferred to B by the Markowitz decision rule, we say that A mean–variance
dominates B: Asset A clearly makes more efficient use of risk than B does. For example, if an
investor is presented with a choice between (1) an asset allocation A with a mean return of
9 percent and a standard deviation of return of 12 percent and (2) a second asset allocation
B with a mean return of 8 percent and a standard deviation of return of 15 percent, a
mean–variance investor will prefer alternative A because it is expected to provide a higher
mean return with less risk. A point to note is that when asset allocation has both higher
mean return and higher standard deviation, the Markowitz decision rule does not select one
asset allocation as superior; rather, the preference depends on the individual investor’s risk
tolerance.

We can identify an expanded set of mean–variance dominance relationships if we admit
borrowing and lending at the risk-free rate. Then we can use the risk-free asset to match risk
among the portfolios being compared. The Sharpe ratio (the ratio of mean return in excess of
the risk-free rate of return to the standard deviation of return) serves as the appropriate metric.

29See Bodie, Kane, and Marcus (2001) for more on this topic.
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• If a portfolio p has a higher positive Sharpe ratio than portfolio q, then p mean–variance
dominates q if borrowing and lending at the risk-free rate is possible.30

Suppose asset allocation A is as before but now B has a mean of 6 percent and a standard
deviation of 10 percent. Allocation A has higher mean return than B (9 percent versus
6 percent) but also higher risk (12 percent versus 10 percent), so the Markowitz decision rule
is inconclusive about which allocation is better. Suppose we can borrow and lend at a risk-free
rate of 3 percent. The Sharpe ratio of A, (9 − 3)/12 = 0.50, is higher than the Sharpe ratio
of B, (6 − 3)/10 = 0.30, so we can conclude that A mean–variance dominates B. Note
that a portfolio 83.3 percent invested in A and 16.7 percent invested in the risk-free asset
has the same standard deviation as B, because 0.833(12) = 10 percent, with mean return of
0.833(9) + 0.167(3) = 8 percent, versus 6 percent for B. In short, we combined the higher
Sharpe ratio portfolio p with the risk-free asset to achieve a portfolio with the same risk as
portfolio q but with higher mean return. As B was originally defined (mean return of 8 percent
and standard deviation of 15 percent), B had a Sharpe ratio of 0.33 and, as expected, the
decision based on Sharpe ratios is consistent with that based on the Markowitz decision rule.

Practically, the above decision-making approach is most reliable when we are considering
choices among well-diversified portfolios and when the return distributions of the choices are
at least approximately normal.

The Decision to Add an Investment to an Existing Portfolio We described an approach for
choosing between two asset allocations as an either/or proposition. We now discuss an approach
to deciding whether to add a new asset class to an existing portfolio, or more generally to
further diversify an existing portfolio.

Suppose you hold a portfolio p with expected or mean return E(Rp) and standard
deviation of return σp. Then you are offered the opportunity to add another investment to
your portfolio, for example, a new asset class. Will you effect a mean–variance improvement
by expanding your portfolio to include a positive position in the new investment? To answer
this question, you need three inputs:

• the Sharpe ratio of the new investment,
• the Sharpe ratio of the existing portfolio, and
• the correlation between the new investment’s return and portfolio p’s return, Corr(Rnew, Rp).

Adding the new asset to your portfolio is optimal if the following condition is met:31

E(Rnew) − RF

σnew
>

(
E(Rp) − RF

σp

)
Corr(Rnew, Rp) (11-10)

This expression says that in order to gain by adding the new investment to your holdings, the
Sharpe ratio of the new investment must be larger than the product of the Sharpe ratio of
your existing portfolio and the correlation of the new investment’s returns with the returns of

30The reverse of the proposition is also true: If a portfolio p mean–variance dominates a portfolio q,
then p has a higher Sharpe ratio than q. The proof of these propositions is in Dybvig and Ross (1985b).
Note that we assume a positive Sharpe ratio for the higher Sharpe ratio portfolio to rule out some
counterintuitive results when negative-Sharpe-ratio portfolios are compared.
31See Blume (1984) and Elton, Gruber, and Rentzler (1987).
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your current portfolio. If Equation 11-10 holds, we can combine the new investment with the
prior holdings to achieve a superior efficient frontier of risky assets (one in which the tangency
portfolio has a higher Sharpe ratio). Note that although the expression may indicate that we
effect a mean–variance improvement at the margin by adding a positive amount of a new
asset, it does not indicate how much of the new asset we might want to add, or more broadly,
what the efficient frontier including the new asset may be—to determine it, we would need
to conduct an optimization. An insight from Equation 11-10 is that, in contrast to the case
in which we considered investments as stand-alone and needed to consider only Sharpe ratios
(from a mean–variance perspective) in choosing among them, in the case in which we can
combine two investments, we must also consider their correlation. Example 11-6 illustrates
how to use Equation 11-10 in deciding whether to add an asset class.

EXAMPLE 11-6 The Decision to Add an Asset Class

Jim Regal is chief investment officer of a Canadian pension fund invested in Canadian
equities, Canadian bonds, Canadian real estate, and U.S. equities. The portfolio has a
Sharpe ratio of 0.25. The investment committee is considering adding one or the other
(but not both) of the following asset classes:

• Eurobonds: predicted Sharpe ratio = 0.10; predicted correlation with existing
portfolio = 0.42.

• Non-North American developed market equities, as represented in the MSCI EAFE
(Europe, Australasia, Far East) index: predicted Sharpe ratio = 0.30; predicted
correlation with existing portfolio = 0.67.

1. Explain whether the investment committee should add Eurobonds to the
existing portfolio.

2. Explain whether the committee should add non-North American developed
market equities to the portfolio.

Solution to 1: (Sharpe ratio of existing portfolio) × (Correlation of Eurobonds with
existing portfolio) = 0.25(0.42) = 0.105. We should add Eurobonds if their predicted
Sharpe ratio exceeds 0.105. Because the investment committee predicts a Sharpe ratio
of 0.10 for Eurobonds, the committee should not add them to the existing portfolio.

Solution to 2: (Sharpe ratio of existing portfolio) × (Correlation of new equity class with
existing portfolio) = 0.25(0.67) = 0.1675. Because the predicted Sharpe ratio of 0.30
for non-North American equities exceeds 0.1675, the investment committee should add
them to the existing portfolio.

In Example 11-6, even if the correlation between the pension fund’s existing portfolio and
the proposed new equity class were +1, so that adding the new asset class had no potential risk
reduction benefits, Equation 11-10 would indicate that the class should be added because the
condition for adding the asset class would be satisfied, as 0.30 > 0.25(1.0). For any portfolio,
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we can always effect a mean–variance improvement at the margin by adding an investment
with a higher Sharpe ratio than the existing portfolio. This result is intuitive, because the
higher Sharpe ratio investment would mean–variance dominate the existing portfolio in a
pairwise comparison. Again, we emphasize that the assumptions of mean–variance analysis
must be fulfilled for these results to be reliable.

2.7.2. Determining an Asset Allocation Our objective in this section is to summarize
the mean–variance perspective on asset allocation. In a prior section, we gave the mathematical
objective and constraints for determining the minimum-variance frontier of risky assets in
the simplest case in which the only constraint on portfolio weights is that they sum to 1.
Determining the efficient frontier using Equation 11-3 plus a constraint wi ≥ 0 to reflect
no short sales is a starting point for many institutional investors in determining an asset
allocation.32 Mean–variance theory then points to choosing the asset allocation represented
by the perceived tangency portfolio if the investor can borrow or lend at the risk-free rate.
The manager can combine the tangency portfolio with the risk-free asset to achieve an
efficient portfolio at a desired level of risk. Because the tangency portfolio represents the
highest-Sharpe-ratio portfolio of risky assets, it is a logical baseline for an asset allocation.

This theoretical perspective, however, views the investment in a risk-free asset as a
readily available risk-adjustment variable. In practice, investors may be constrained against
using margin (borrowing), may face constraints concerning minimum and maximum positive
investments in a risk-free asset, or may have other reasons for not adopting the perspective of
theory.33 In such a case, the investor may establish an asset allocation among risky asset classes
that differs from the tangency portfolio. Quantifying his risk tolerance in terms of standard
deviation of returns, the investor could choose the portfolio on the efficient frontier of risky
assets that corresponds to the chosen level of standard deviation.

The CAPM framework provides even more narrowly focused choices because it adds
the assumption that investors share the same views about mean returns, variances of returns,
and correlations. Then all investors would agree on the identity of the tangency portfolio,
which is the market portfolio of all risky assets held in proportion to their market values. This
portfolio represents the highest possible degree of diversification. The exact identity of such an
all-inclusive portfolio cannot be established, of course. Practically, however, investors can own
highly diversified passively managed portfolios invested in major asset classes worldwide that
approximately reflect the relative market values of the included classes. This asset allocation can
be adapted to account for differential expectations. For example, the Black–Litterman (1991,
1992) asset allocation model takes a well-diversified market-value-weighted asset allocation as
a neutral starting point for investors. The model incorporates a procedure for deviating from
market capitalization weights in directions reflecting an investor’s different-from-equilibrium
model (CAPM) views concerning expected returns.

Mean–variance theory in relation to portfolio construction and asset allocation has been
intensively examined, and researchers have recognized a number of its limitations. We will
discuss an important limitation related to the sensitivity of the optimization procedure—the

32See Grinblatt and Titman (1998) and Elton, Gruber, Brown, and Goetzmann (2003) for discussions
of solution methods and mechanics. In practice, investors often place additional constraints, such as
constraints on maximum percentages, to assure plausible solutions. We discuss this approach further in
the section on instability of the minimum-variance frontier.
33For example, a risk-free asset may not be readily available if the analysis is conducted in real terms.
Only short-term inflation-protected securities, if available, are potentially risk free in such a context.
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instability of the efficient frontier—in a later section. We must recognize that as a single-
period model, mean–variance analysis ignores the liquidity and tax considerations that arise
in a multiperiod world in which investors rebalance portfolios. Relatedly, the time horizon
associated with the optimization, often one year, may be shorter than an investor’s actual time
horizon due to difficulties in developing inputs for long horizons.34 Mean–variance analysis
takes into account the correlation of returns across asset classes over single time periods but
does not address serial correlation (long and short-term dependencies) in returns for a given
asset class. Monte Carlo simulation is sometimes used in asset allocation to address such
multiperiod issues.35 Despite its limitations, mean–variance analysis provides an objective and
fairly adaptable procedure for narrowing the unlimited set of choices we face in selecting an
asset allocation.36

3. PRACTICAL ISSUES IN
MEAN – VARIANCE ANALYSIS

We now discuss practical issues that arise in the application of mean–variance analysis in
choosing portfolios. The two areas of focus are

• estimating inputs for mean–variance optimization, and
• the instability of the minimum-variance frontier, which results from the optimization

process’s sensitivity to the inputs.

Relative to the first area, we must ask two principal questions concerning the prediction
of expected returns, variances, and correlations. First, which methods are feasible? Second,
which are most accurate? Relative to sensitivity of the optimization process, we need to ask
first, what is the source of the problem, and second, what corrective measures are available to
address it.

3.1. Estimating Inputs for Mean–Variance Optimization

In this section, we compare the feasibility and accuracy of several methods for computing the
inputs for mean–variance optimization. These methods use one of the following:

• historical means, variances, and correlations,
• historical beta estimated using the market model, or
• adjusted betas.

34See Swenson (2000). For example, if the investor’s time horizon is five years, developing an efficient
frontier involves estimating the correlations of five-year returns. Many assets have a limited number of
independent five-year observations for correlation that we might use to develop estimates.
35See the chapter on probability distributions for more information about Monte Carlo simulation.
36For example, Chow (1995) adapted mean–variance optimization to address managers’ concerns
about performance relative to a benchmark, and Chow, Jacquier, Kritzman, and Lowry (1999) adapted
optimization to account for correlations that may change in times of stress.
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3.1.1. Historical Estimates This approach involves calculating means, variances, and
correlations directly from historical data. The historical method requires estimating a very
large number of parameters when we are optimizing for even a moderately large number of
assets. As a result, it is more feasible for asset allocation than for portfolio formation involving
a large number of stocks.

The number of parameters a portfolio manager needs to estimate to determine the
minimum-variance frontier depends on the number of potential stocks in the portfolio. If a
portfolio manager has n stocks in a portfolio and wants to use mean–variance analysis, she
must estimate

• n parameters for the expected returns to the stocks,
• n parameters for the variances of the stock returns, and
• n(n − 1)/2 parameters for the covariances of all the stock returns with each other.

Together, the parameters total n2/2 + 3n/2.
The two limitations of the historical approach involve the quantity of estimates needed

and the quality of historical estimates of inputs.
The quantity of estimates needed may easily be very large, mainly because the number

of covariances increases in the square of the number of securities. If the portfolio manager
wanted to compute the minimum-variance frontier for a portfolio of 100 stocks, she would
need to estimate 1002/2 + 3(100)/2 = 5, 150 parameters. If she wanted to compute the
minimum-variance frontier for 1,000 stocks, she would need to estimate 501,500 parameters.
Not only is this task unappealing, it might be impossible.37

The second limitation is that historical estimates of return parameters typically have
substantial estimation error. The problem is least severe for estimates of variances.38 The
problem is acute with historical estimates of mean returns because the variability of risky asset
returns is high relative to the mean, and the problem cannot be ameliorated by increasing
the frequency of observations. Estimation error is also serious with historical estimates of
covariances. The intuition in the case of covariances is that the historical method essentially
tries to capture every random feature of a historical data set, reducing the usefulness of the
estimates in a predictive mode. In a study based on monthly returns for U.S. stocks over
the period 1973–1997, Chan, Karceski, and Lakonishok (1999) found that the correlation
between past and future sample covariances was 0.34 at the 36-month horizon but only 0.18
at the 12-month horizon.

In current industry practice, the historical sample covariance matrix is not used without
adjustment in mean–variance optimization. Adjusted values of variance and covariance may be
weighted averages of the raw sample values and the average variance or covariance, respectively.
For example, if a stock’s variance of monthly returns is 0.0210 and the average stock’s variance
of monthly returns is 0.0098, the procedure might adjust 0.0210 downward, in the direction
of the mean. Adjusting values in the direction of the mean reduces the dispersion in the
estimates that may be caused by sampling error.39

37The number of time-series observations must exceed the number of securities for the covariances
(including variances) to be estimated.
38See Chan, Karceski, and Lakonishok (1999) for empirical evidence that future variances are relatively
more predictable from past variances than is the case for future covariances.
39For more information on this approach, called shrinkage estimators, see Michaud (1998) and Ledoit
and Wolf (2004).
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In estimating mean returns, analysts use a variety of approaches. They may adjust historical
mean returns to reflect perceived contrasts between current market conditions and past average
experience. They frequently use valuation models, such as models based on expected future
cash flows, or equilibrium models, such as the CAPM, to develop forward-looking mean return
estimates. Their use of these approaches reflects not only the technical issue of estimation error
but also the risk in assuming that future performance will mirror past average performance.

3.1.2. Market Model Estimates: Historical Beta (Unadjusted) A simpler way to
compute the variances and covariances of asset returns involves the insight that asset returns
may be related to each other through their correlation with a limited set of variables or factors.
The simplest such model is the market model, which describes a regression relationship
between the returns on an asset and the returns on the market portfolio. For asset i, the return
to the asset can be modeled as

Ri = αi + βiRM + εi (11-11)

where

Ri = the return on asset i
RM = the return on the market portfolio
αi = average return on asset i unrelated to the market return
βi = the sensitivity of the return on asset i to the return on the market portfolio
εi = an error term

Consider first how to interpret βi. If the market return increases by one percentage point,
the market model predicts that the return to asset i will increase by βi percentage points.
(Recall that βi is the slope in the market model.)

Now consider how to interpret αi . If the market return is 0, the market model predicts
that the return to asset i will be αi , the intercept in the market model.

The market model makes the following assumptions about the terms in Equation 11-11:

• The expected value of the error term is 0, so E(εi) = 0.
• The market return (RM ) is uncorrelated with the error term, Cov(RM , εi) = 0.
• The error terms, εi, are uncorrelated among different assets. For example, the error term

for asset i is uncorrelated with the error term for asset j. Consequently, E(εiεj) = 0 for all i
not equal to j.40

Note that some of these assumptions are very similar to those we made about the single-
variable linear regression model in the chapter on correlation and regression. The market
model, however, does not assume that the error term is normally distributed or that the
variance of the error term is identical across assets.

Given these assumptions, the market model makes the following predictions about the
expected returns of assets as well as the variances and covariances of asset returns.41

40Cov(εi , εj) = E{[εi − E(εi)][εj − E(εj)]} = E[(εi − 0)(εj − 0)] = E(εiεj) = 0. The assumption of
uncorrelated errors is not innocuous. If we have more than one factor that affects returns for assets,
then this assumption will be incorrect and single-factor models will produce inaccurate estimates for the
covariance of asset returns.
41See Elton, Gruber, Brown, and Goetzmann (2003) for derivations of these results.
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First, the expected return for asset i depends on the expected return to the market, E(RM ),
the sensitivity of the return on asset i to the return on the market, βi, and the part of returns
on asset i that are independent of market returns, αi .

E(Ri) = αi + βiE(RM ) (11-12)

Second, the variance of the return to asset i depends on the variance of the return to the
market, σ2

M , the variance of the error for the return of asset i in the market model, σ2
εi

, and the
sensitivity, βi.

Var(Ri) = β2
i σ

2
M + σ2

εi
(11-13)

In the context of a model in which the market portfolio is the only source of risk, the first
term in Equation 11-13, β2

i σ
2
M , is sometimes referred to as the systematic risk of asset i. The

error variance term in Equation 11-13, σ2
εi

, is sometimes referred to as the nonsystematic risk
of asset i.

Third, the covariance of the return to asset i and the return to asset j depends on the
variance of the return to the market, σ2

M , and on the sensitivities βi and βj .

Cov(Ri , Rj) = βiβjσ
2
M (11-14)

We can use the market model to greatly reduce the computational task of providing the
inputs to a mean–variance optimization. For each of the n assets, we need to know αi, βi, σ2

εi
,

as well as the expected return and variance for the market. Because we need to estimate only
3n + 2 parameters with the market model, we need far fewer parameters to construct the
minimum-variance frontier than we would if we estimated the historical means, variances, and
covariances of asset returns. For example, if we estimated the minimum-variance frontier for
1,000 assets (say, 1,000 different stocks), the market model would use 3,002 parameters for
computing the minimum-variance frontier, whereas the historical estimates approach would
require 501,500 parameters, as discussed earlier.

We do not know the parameters of the market model, so we must estimate them. But
what method do we use? The most convenient way is to estimate a linear regression using
time-series data on the returns to the market and the returns to each asset.

We can use the market model to estimate αi and βi by using a separate linear regression
for each asset, using historical data on asset returns and market returns.42 The regression
output produces an estimate, β̂i, of βi; we call this estimate an unadjusted beta. Later we will
introduce an adjusted beta. We can use these estimates to compute the expected returns and
the variances and covariances of those returns for mean–variance optimization.

EXAMPLE 11-7 Computing Stock Correlations Using
the Market Model

You are estimating the correlation of returns between Cisco Systems (Nasdaq: CSCO)
and Microsoft (Nasdaq: MSFT) as of late 2003. You run a market-model regression for

42One common practice is to use 60 monthly returns to estimate this model. The default setting on
Bloomberg terminals uses two years of weekly data to estimate this model.
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each of the two stocks based on monthly returns, using the S&P 500 to represent the
market. You obtain the following regression results:

• The estimated beta for Cisco, β̂CSCO, is 2.09, and the residual standard deviation,
σ̂εCSCO , is 11.52.

• The estimated beta for Microsoft, β̂MSFT, is 1.75, and the residual standard deviation,
σεMSFT , is 11.26.

Your estimate of the variance of monthly returns on the S&P 500 is σ2
M = 29.8, which

corresponds to an annual standard deviation of returns of about 18.9 percent. Using the
data given, estimate the correlation of returns between Cisco and Microsoft.

Solution: We compute σ2
εCSCO

= 132.71 and σ2
εMSFT

= 126.79. Using the definition
of correlation as covariance divided by the individual standard deviations, and using

Equations 11-13 and 11-14, we have

Cov(RCSCO, RMSFT)

Var(RCSCO)1/2Var(RMSFT)1/2

= β̂CSCOβ̂MSFT(σ̂2
M )

[β̂2
CSCO(σ̂2

M ) + σ̂2
εCSCO

]1/2[β̂2
MSFT(σ̂2

M ) + σ̂2
εMSFT

]1/2

= (2.09)(1.75)(29.8)

[(2.09)2(29.8) + 132.71]1/2[(1.75)2(29.8) + 126.79]1/2
= 0.4552

Thus the market model predicts that the correlation between the two asset returns is
0.4552.

One difficulty with using the market model is determining an appropriate index to
represent the market. Typically, analysts who use the market model to determine the risk of
individual domestic equities use returns on a domestic equity market index. In the United
States, such an index might be the S&P 500 or the Wilshire 5000 Index; in the United
Kingdom, the Financial Times Stock Exchange 100 Index might be used. Using returns on
an equity market index may create a reasonable market model for equities, but it may not be
reasonable for modeling the risk of other asset classes.43

3.1.3. Market Model Estimates: Adjusted Beta Should we use historical betas from a
market model for mean–variance optimization? Before we can answer this question, we need
to restate our goal: We want to predict expected returns for a set of assets and the variances
and covariances of those returns so that we can estimate the minimum-variance frontier for
those assets. Estimates based on historical beta depend on the crucial assumption that the
historical beta for a particular asset is the best predictor of the future beta for that asset. If beta

43Using this model to estimate the risk of other asset classes may violate two assumptions of single-factor
models discussed earlier: The market return, RM , is independent of the error term, εi ; and the error
terms, εi , are independent across assets. If either of these assumptions is violated, the market model will
not produce accurate predictions of expected returns or the variances and covariances of returns.
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changes over time, then this assumption is untrue. Therefore, we may want to use some other
measure instead of historical beta to estimate an asset’s future beta. These other forecasts are
known by the general term adjusted beta. Researchers have shown that adjusted beta is often
a better forecast of future beta than is historical beta. As a consequence, practitioners often use
adjusted beta.

Suppose, for example, we are in period t and we want to estimate the minimum-variance
frontier for period t + 1 for a set of stocks. We need to use data available in period t to
predict the expected stock returns and the variances and covariances of those returns in period
t + 1. Note, however, that the historical estimate of beta in period t for a particular stock
may not be the best estimate we can make in period t of beta in period t + 1 for that stock.
And the minimum-variance frontier for period t + 1 must be based on the forecast of beta for
period t + 1.

If beta for each stock were a random walk from one period to the next, then we could
write the relation between the beta for stock i in period t and the beta for stock i in period
t + 1 as

βi,t+1 = βi,t + εi,t+1

where εi,t+1 is an error term. If beta followed a random walk, the best predictor of βi,t+1

would be βi,t because the error term has a mean value of 0. The historical beta would be the
best predictor of the future beta, and the historical beta need not be adjusted.

In reality, beta for each stock often is not a random walk from one period to the next, and
therefore, historical beta is not necessarily the best predictor of the future beta. For example,
if beta can be represented as a first-order autoregression, then

βi,t+1 = α0 + α1βi,t + εi,t+1 (11-15)

If we estimate Equation 11-15 using time-series data on historical betas, the best predictor
of βi,t+1 is α̂0 + α̂1βi,t . In this case, the historical beta needs to be adjusted because the best
prediction of beta in the next period is α̂0 + α̂1βi,t , not βi,t .

Adjusted betas predict future betas better than historical betas do because betas are, on
average, mean reverting.44 Therefore, we should use adjusted, rather than historical, betas. One
common method that practitioners use to adjust historical beta is to assume that α0 = 0.333
and α1 = 0.667. With this adjustment,

• if the historical beta equals 1.0, then the adjusted beta will be 0.333 + 0.667(1.0) = 1.0.
• if the historical beta equals 1.5, then adjusted beta will be 0.333 + 0.667(1.5) = 1.333.
• if the historical beta equals 0.5, then adjusted beta will be 0.333 + 0.667(0.5) = 0.667.

Thus the mean-reverting level of beta is 1.0. If the historical beta is above 1.0, then adjusted
beta will be below historical beta; if historical beta is below 1.0, then adjusted beta will be
above historical beta.45

44See, for example, Klemkosky and Martin (1975).
45Although practitioners regularly use this method for computing adjusted beta, we are unaware of
any published research suggesting that α0 = 0.333 and α1 = 0.667 are the best coefficient values to
use in computing adjusted beta. Some researchers suggest an additional adjustment to historical betas
called fundamental betas. Fundamental betas predict beta based on fundamental data for a company
(price–earnings ratio, earnings growth, market capitalization, volatility, and so forth). Consulting firms
such as BARRA sell estimates of fundamental betas.
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3.2. Instability in the Minimum-Variance Frontier

Although standard mean–variance optimization, as represented by Equation 11-3, is a
convenient and objective procedure for portfolio formation, we must use care when interpreting
its results in practice. In this section, we discuss cautions regarding the use of mean–variance
optimization. The problems that can arise have been widely studied, and remedies for them have
been developed. With this knowledge, mean–variance optimization can still be a useful tool.

The chief problem with mean–variance optimization is that small changes in input
assumptions can lead to large changes in the minimum-variance (and efficient) frontier. This
problem is called instability in the minimum-variance frontier. It arises because, in practice,
uncertainty exists about the expected returns, variances, and covariances used in tracing out
the minimum-variance frontier.

Suppose, for example, that we use historical data to compute estimates to be used in an
optimization. These means, variances, and covariances are sample quantities that are subject
to random variation. In the chapter on sampling, for instance, we discussed how the sample
mean has a probability distribution, called its sampling distribution. The sample mean is only
a point estimate of the underlying or population mean.46 The optimization process attempts
to maximally exploit differences among assets. When these differences are statistically (and
economically) insignificant (e.g., representing random variation), the resulting minimum-
variance frontiers are misleading and not practically useful. Mean–variance optimization then
overfits the data: It does too much with differences that are actually not meaningful. In an
optimization with no limitation on short sales, assets can appear with very large negative
weights, reflecting this overfitting (a negative weight for an asset means that the asset is sold
short). Portfolios with very large short positions are of little practical interest.47 Because of
sensitivity to small changes in inputs, mean–variance optimizations may suggest too-frequent
portfolio rebalancing, which is costly. Responses to instability include the following:

• Adding constraints against short sales (which is sometimes an institutional investment policy
constraint as well). In Equation 11-3, we can add a no-short-sales constraint specifying that
all asset weights must be positive: wj ≥ 0, j = 1, 2, 3, . . . , n.48

• Improving the statistical quality of inputs to optimization.
• Using a statistical concept of the efficient frontier, reflecting the fact that the inputs to the

optimization are random variables rather than constants.49

We stated above that mean–variance optimizations can recommend too-frequent portfolio
rebalancing. Similarly, we find that the minimum-variance frontier is generally unstable when
calculated using historical data for different time periods. One possible explanation is that the
different frontiers reflect shifts in the parameters of asset return distribution between sample
time periods. Time instability of the minimum-variance frontier can also result from random
variation in means, variances, and covariances, when the underlying parameters are actually
unchanged. Small differences in sample periods used for mean–variance optimization may

46The underlying means of asset returns are particularly difficult to estimate accurately. See Luenberger
(1998) for an introduction to this problem, as well as Black (1993).
47In practice, few investors that engage in short sales would take a large short position as a result of an
analysis restricted to means, variances, and correlations. Unlimited losses are possible in a short position.
48In practice, other ad hoc constraints on the size of positions are sometimes used as well.
49For example, Michaud (1998) defines a region of efficient portfolios that are statistically equivalent at
a given confidence level. A portfolio falling in the region is consistent with being efficient and does not
need to be rebalanced.
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greatly affect a model even if the distribution of asset returns is stationary. Example 11-8
illustrates time instability with the data used for optimization.

EXAMPLE 11-8 Time Instability of the
Minimum-Variance Frontier

In Example 11-2, we calculated a minimum-variance frontier for four asset classes
for the period 1970 through 2002. What variation would we find among minimum-
variance frontiers for subperiods of 1970 to 2002? To find out, we take the data for
decades within the entire period, calculate the sample statistics, and then trace out the
minimum-variance frontier for each decade. Table 11-10 shows the sample statistics of
the monthly asset returns to these four asset classes for 1970 to 1979, 1980 to 1989,
1990 to 2002, and the combined sample period.

TABLE 11-10 Average Returns, Standard Deviations, and Correlation Matrixes

MSCI U.S. Long-
World Term

U.S. Small- ex-United Government
S&P 500 Cap Stocks States Bonds

A. Average Returns

Time Period
1970–1979 7.0% 14.4% 11.8% 5.7%
1980–1989 17.6% 16.7% 21.1% 12.9%
1990–2002 10.4% 13.2% 2.7% 9.9%
Overall period 11.6% 14.6% 11.1% 9.6%

B. Standard Deviations

Time Period
1970–1979 15.93% 26.56% 16.68% 8.25%
1980–1989 16.41% 19.17% 17.32% 14.19%
1990–2002 15.27% 20.71% 16.93% 8.31%
Overall period 15.83% 22.18% 17.07% 10.44%

C. Correlation Matrixes

1970–1979
S&P 500 1
U.S. Small-cap 0.787 1
MSCI ex-U.S. 0.544 0.490 1
U.S. LT Bonds 0.415 0.316 0.218 1

1980–1989
S&P 500 1
U.S. Small-cap 0.844 1
MSCI ex-U.S. 0.512 0.483 1
U.S. LT Bonds 0.310 0.171 0.229 1

(continued )
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TABLE 11-10 (continued )

MSCI U.S. Long-
World Term

U.S. Small- ex-United Government
S&P 500 Cap Stocks States Bonds

1990–1999
S&P 500 1
U.S. Small-cap 0.611 1
MSCI ex-U.S. 0.647 0.473 1
U.S. LT Bonds 0.097 −0.047 0.017 1

Overall Period
S&P 500 1
U.S. Small-cap 0.731 1
MSCI ex-U.S. 0.573 0.475 1
U.S. LT Bonds 0.266 0.138 0.155 1

Source: Ibbotson Associates.

As we might expect, variation occurs within subperiods in the sample means,
variances, and covariances for all asset classes. Initially, the correlations offer the
impression of relative stability over time. For example, the correlation of the S&P 500
with the MSCI World ex-U.S. was 0.544, 0.512, and 0.647 for 1970 to 1979, 1980
to 1989, and 1990 to 2002, respectively. In contrast to ranking by mean returns, the
ranking of asset classes by standard deviation was the same in each decade, with U.S.
small-cap stocks the riskiest asset class and bonds the least risky. We could use statistical
inference to explore interperiod differences. With these initial impressions in mind,
however, let us view the decades’ minimum-variance frontiers.

Figure 11-11 shows the minimum-variance frontiers computed using the historical
return statistics shown in Table 11-10 for 1970 to 1979, 1980 to 1989, 1990 to 2002,
and the entire sample period. As this figure shows, the minimum-variance frontiers can
differ dramatically in different periods. For example, note that the minimum-variance
frontiers based on data from 1970 to 1979 and 1980 to 1989 do not overlap at all.

FIGURE 11-11 Historical Minimum–Variance Frontier Comparison
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As mentioned, researchers have developed various methods to address portfolio managers’
concerns about the issue of instability.

EXAMPLE 11-9 How Yale University’s Endowment Fund
Uses Mean–Variance Analysis

David Swensen, Yale University’s chief investment officer (who also teaches portfolio
management at Yale), wrote that ‘‘unconstrained mean–variance [optimization] usually
provide[s] solutions unrecognizable as reasonable portfolios . . . . Because the process
involves material simplifying assumptions, adopting the unconstrained asset allocation
point estimates produced by mean–variance optimization makes little sense.’’50

Swensen’s remarks highlight practitioners’ concerns about the usefulness of standard
mean–variance optimization. Among the most important simplifying assumptions of
mean–variance analysis is that the means, variances, and covariances of assets in a
portfolio are known. Because the optimization process tries to make much of small
differences, and the true values of the means and other parameters are uncertain, this
simplifying assumption has a large impact. As mentioned earlier, responses to instability
include adding constraints on asset weights and modifying historical sample estimates of
the inputs. Despite Swensen’s criticism, Yale uses mean–variance analysis for allocating
its portfolio; however, the Yale Investment Office adds constraints on weights and does
not use raw historical inputs.

4. MULTIFACTOR MODELS

Earlier we discussed the market model, which was historically the first attempt to describe
the process that drives asset returns. The market model assumes that all explainable variation
in asset returns is related to a single factor, the return to the market. Yet asset returns may
be related to factors other than market return, such as interest rate movements, inflation,
or industry-specific returns. For many years, investment professionals have used multifactor
models in portfolio management, risk analysis, and the evaluation of portfolio performance.

Multifactor models have gained importance for the practical business of portfolio
management for two main reasons. First, multifactor models explain asset returns better than
the market model does.51 Second, multifactor models provide a more detailed analysis of risk
than does a single factor model. That greater level of detail is useful in both passive and active
management.

• Passive management. In managing a fund that seeks to track an index with many component
securities, portfolio managers may need to select a sample of securities from the index.

50Swensen (2000).
51See, for example, Burmeister and McElroy (1988). These authors show that at the 1 percent significance
level, the CAPM can be rejected in favor of an arbitrage pricing theory model with several factors. We
discuss arbitrage pricing theory later in the chapter.
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Analysts can use multifactor models to match an index fund’s factor exposures to the factor
exposures of the index tracked.

• Active management. Multifactor models are used in portfolio formation to model the
expected returns and risks of securities and portfolio. Many quantitative investment
managers rely on multifactor models in predicting alpha (excess risk-adjusted returns) or
relative return (the return on one asset or asset class relative to that of another) as part of
a variety of active investment strategies. In evaluating portfolios, analysts use multifactor
models to understand the sources of active managers’ returns and assess the risks assumed
relative to the manager’s benchmark (comparison portfolio).

In the following sections, we explain the basic principles of factor models and discuss various
types of models and their application. We also present the arbitrage pricing theory developed
by Ross (1976), which relates the expected return of investments to their risk with respect to a
set of factors.

4.1. Factors and Types of Multifactor Models

To begin by defining terms, a factor is a common or underlying element with which several
variables are correlated. For example, the market factor is an underlying element with which
individual share returns are correlated. We search for systematic factors, which affect the
average returns of a large number of different assets. These factors represent priced risk, risk
for which investors require an additional return for bearing. Systematic factors should thus
help explain returns.

Many varieties of multifactor models have been proposed and researched. We can
categorize most of them into three main groups, according to the type of factor used:

• In macroeconomic factor models, the factors are surprises in macroeconomic variables
that significantly explain equity returns. The factors can be understood as affecting either
the expected future cash flows of companies or the interest rate used to discount these cash
flows back to the present.

• In fundamental factor models, the factors are attributes of stocks or companies that are
important in explaining cross-sectional differences in stock prices. Among the fundamental
factors that have been used are the book-value-to-price ratio, market capitalization, the
price–earnings ratio, and financial leverage.

• In statistical factor models, statistical methods are applied to a set of historical returns
to determine portfolios that explain historical returns in one of two senses. In factor
analysis models, the factors are the portfolios that best explain (reproduce) historical return
covariances. In principal-components models, the factors are portfolios that best explain
(reproduce) the historical return variances.

Some practical factor models have the characteristics of more than one of the above categories.
We can call such models mixed factor models.

Our discussion concentrates on macroeconomic factor models and fundamental factor
models. Industry use has generally favored fundamental and macroeconomic models, perhaps
because such models are much more easily interpreted; nevertheless, statistical factor models
have proponents and are used in practical applications.
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4.2. The Structure of Macroeconomic Factor Models

The representation of returns in macroeconomic factor models assumes that the returns to each
asset are correlated with only the surprises in some factors related to the aggregate economy,
such as inflation or real output.52 We can define surprise in general as the actual value minus
predicted (or expected) value. A factor’s surprise is the component of the factor’s return that
was unexpected, and the factor surprises constitute the model’s independent variables. This
idea contrasts to the representation of independent variables as returns (as opposed to the
surprise in returns) in fundamental factor models, or for that matter in the market model.

Suppose that K factors explain asset returns. Then in a macroeconomic factor model, the
following equation expresses the return of asset i:

Ri = ai + bi1F1 + bi2F2 + · · · + biK FK + εi (11-16)

where

Ri = the return to asset i
ai = the expected return to asset i
Fk = the surprise in the factor k, k = 1, 2, . . . , K
bik = the sensitivity of the return on asset i to a surprise in factor k, k = 1, 2, . . . , K
εi = an error term with a zero mean that represents the portion of the return to asset i

not explained by the factor model

What exactly do we mean by the surprise in a macroeconomic factor? Suppose we are analyzing
monthly returns for stocks. At the beginning of each month, we have a prediction of inflation
for the month. The prediction may come from an econometric model or a professional
economic forecaster, for example. Suppose our forecast at the beginning of the month is that
inflation will be 0.4 percent during the month. At the end of the month, we find that inflation
was actually 0.5 percent during the month. During any month,

Actual inflation = Predicted inflation + Surprise inflation

In this case, actual inflation was 0.5 percent and predicted inflation was 0.4 percent. Therefore,
the surprise in inflation was 0.5 − 0.4 = 0.1 percent.

What is the effect of defining the factors in terms of surprises? Suppose we believe that
inflation and gross domestic product (GDP) growth are priced risk. (GDP is a money measure
of the goods and services produced within a country’s borders.) We do not use the predicted
values of these variables because the predicted values are already reflected in stock prices and
thus in their expected returns. The intercept ai, the expected return to asset i, reflects the
effect of the predicted values of the macroeconomic variables on expected stock returns. The
surprise in the macroeconomic variables during the month, on the other hand, contains new
information about the variable. As a result, this model structure analyzes the return to an asset
into three components: the asset’s expected return, its unexpected return resulting from new
information about the factors, and an error term.

Consider a factor model in which the returns to each asset are correlated with two factors.
For example, we might assume that the returns for a particular stock are correlated with

52See, for example, Burmeister, Roll, and Ross (1994).
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surprises in interest rates and surprises in GDP growth. For stock i, the return to the stock can
be modeled as

Ri = ai + bi1FINT + bi2FGDP + εi (11-17)

where

Ri = the return to stock i
ai = the expected return to stock i

bi1 = the sensitivity of the return to stock i to interest rate surprises
FINT = the surprise in interest rates

bi2 = the sensitivity of the return to stock i to GDP growth surprises
FGDP = the surprise in GDP growth

εi = an error term with a zero mean that represents the portion of the return to asset i
not explained by the factor model

Consider first how to interpret bi1. The factor model predicts that a one percentage
point surprise in interest rates will contribute bi1 percentage points to the return to stock i.
The slope coefficient bi2 has a similar interpretation relative to the GDP growth factor. Thus
slope coefficients are naturally interpreted as the factor sensitivities of the asset.53 A factor
sensitivity is a measure of the response of return to each unit of increase in a factor, holding
all other factors constant.

Now consider how to interpret the intercept ai. Recall that the error term has a mean or
average value of 0. If the surprises in both interest rates and GDP growth are 0, the factor
model predicts that the return to asset i will be ai. Thus ai is the expected value of the return
to stock i.

Finally, consider the error term εi. The intercept ai represents the asset’s expected return.
The amount (bi1FINT + bi2FGDP) represents the return resulting from factor surprises, and we
have interpreted these as the sources of risk shared with other assets. The term εi is the part
of return that is unexplained by expected return or the factor surprises. If we have adequately
represented the sources of common risk (the factors), then εi must represent an asset-specific
risk. For a stock, it might represent the return from an unanticipated company-specific event.

We will discuss expected returns further when we present the arbitrage pricing theory.
In macroeconomic factor models, the time series of factor surprises are developed first. We
use regression analysis to estimate assets’ sensitivities to the factors. In our discussion, we
assume that you do not estimate sensitivities and intercepts yourself; instead you use estimates
from another source (for example, one of the many consulting companies that specialize in
factor models).54 When we have the parameters for the individual assets in a portfolio, we
can calculate the portfolio’s parameters as a weighted average of the parameters of individual
assets. An individual asset’s weight in that calculation is the proportion of the total market
value of the portfolio that the individual asset represents.

53Factor sensitivities are sometimes called factor betas or factor loadings.
54If you want to estimate your own macroeconomic factor model, follow these steps. First, estimate a
time series for each macroeconomic surprise (for example, you could use the residuals from a time-series
model for each different macroeconomic series). Then, use time-series data to regress the returns for a
particular asset on the surprises to the different macroeconomic factors.
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EXAMPLE 11-10 Factor Sensitivities for a
Two-Stock Portfolio

Suppose that stock returns are affected by two common factors: surprises in inflation and
surprises in GDP growth. A portfolio manager is analyzing the returns on a portfolio
of two stocks, Manumatic (MANM) and Nextech (NXT). The following equations
describe the returns for those stocks, where the factors FINFL and FGDP represent the
surprise in inflation and GDP growth, respectively:

RMANM = 0.09 − 1FINFL + 1FGDP + εMANM

RNXT = 0.12 + 2FINFL + 4FGDP + εNXT

In evaluating the equations for surprises in inflation and GDP, amounts stated in percent
terms need to be converted to decimal form. One-third of the portfolio is invested in
Manumatic stock, and two-thirds is invested in Nextech stock.

1. Formulate an expression for the return on the portfolio.
2. State the expected return on the portfolio.
3. Calculate the return on the portfolio given that the surprises in inflation and

GDP growth are 1 percent and 0 percent, respectively, assuming that the error
terms for MANM and NXT both equal 0.5 percent.

Solution to 1: The portfolio’s return is the following weighted average of the returns to
the two stocks:

RP = (1/3)(0.09) + (2/3)(0.12) + [(1/3)(−1) + (2/3)(2)]FINFL + [(1/3)(1)

+ (2/3)(4)]FGDP + (1/3)εMANM + (2/3)εNXT

= 0.11 + 1FINFL + 3FGDP + (1/3)εMANM + (2/3)εNXT

Solution to 2: The expected return on the portfolio is 11 percent, the value of the
intercept in the expression obtained in Part 1.

Solution to 3:

RP = 0.11 + 1FINFL + 3FGDP + (1/3)εMANM + (2/3)εNXT

= 0.11 + 1(0.01) + 3(0) + (1/3)(0.005) + (2/3)(0.005)

= 0.125 or 12.5 percent
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4.3. Arbitrage Pricing Theory and the Factor Model

In the 1970s, Stephen Ross developed the arbitrage pricing theory (APT) as an alternative to
the CAPM. APT describes the expected return on an asset (or portfolio) as a linear function
of the risk of the asset (or portfolio) with respect to a set of factors. Like the CAPM, the APT
describes a financial market equilibrium. However, the APT makes less-strong assumptions
than the CAPM. The APT relies on three assumptions:

1. A factor model describes asset returns.
2. There are many assets, so investors can form well-diversified portfolios that eliminate

asset-specific risk.
3. No arbitrage opportunities exist among well-diversified portfolios.

Arbitrage is a risk-free operation that earns an expected positive net profit but requires no
net investment of money.55 An arbitrage opportunity is an opportunity to conduct an
arbitrage—an opportunity to earn an expected positive net profit without risk and with no
net investment of money.

In the first assumption, the number of factors is not specified. The second assumption
allows us to form portfolios with factor risk but without asset-specific risk. The third
assumption is the condition of financial market equilibrium.

Empirical evidence indicates that Assumption 2 is reasonable. When a portfolio contains
many stocks, the asset-specific or nonsystematic risk of individual stocks makes almost no
contribution to the variance of portfolio returns. Roll and Ross (2001) found that only
1 percent to 3 percent of a well-diversified portfolio’s variance comes from the nonsystematic
variance of the individual stocks in the portfolio, as Figure 11-12 shows.

According to the APT, if the above three assumptions hold, the following equation holds:56

E(Rp) = RF + λ1βp,1 + · · · + λK βp,K (11-18)

where

E(Rp) = the expected return to portfolio p
RF = the risk-free rate
λj = the risk premium for factor j

βp,j = the sensitivity of the portfolio to factor j
K = the number of factors

The APT equation, Equation 11-18, says that the expected return on any well-diversified
portfolio is linearly related to the factor sensitivities of that portfolio.57

55As we will see, arbitrage typically involves funding the investment in assets with proceeds from the short
sale of other assets, so that net, no money is invested. A short sale is the sale of a borrowed asset. Note
that the word ‘‘arbitrage’’ is also sometimes used to describe investment operations in which significant
risk is present.
56A risk-free asset is assumed. If no risk-free asset exists, in place of RF we write λ0 to represent the
expected return on a risky portfolio with zero sensitivity to all the factors. The number of factors is not
specified but must be much lower than the number of assets, a condition fulfilled in practice.
57The APT equation can also describe (at least approximately) the expected return on investments with
asset-specific risk, under certain conditions.
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FIGURE 11-12 Sources of Volatility: The Case of a Well Diversified Portfolio

The factor risk premium (or factor price) λj represents the expected return in excess of
the risk-free rate for a portfolio with a sensitivity of 1 to factor j and a sensitivity of 0 to all
other factors. Such a portfolio is called a pure factor portfolio for factor j.

For example, suppose we have a portfolio with a sensitivity of 1 with respect to Factor 1
and a sensitivity of 0 to all other factors. With E1 being the expected return on this portfolio,
Equation 11-18 shows that the expected return on this portfolio is E1 = RF + λ1 × 1, so
λ1 = E1 − RF . Suppose that E1 = 0.12 and RF = 0.04. Then the risk premium for Factor
1 is λ1 = 0.12 − 0.04 = 0.08 or 8 percent. We obtain an eight percentage point increase in
expected return for an increase of 1 in the sensitivity to first factor.

What is the relationship between the APT equation and the equation for a multifactor
model, Equation 11-17? In discussing the multifactor model, we stated that the intercept term
is the investment’s expected return. The APT equation explains what an investment’s expected
return is in equilibrium. Thus if the APT holds, it places a restriction on the intercept term
in the multifactor model in the sense that the APT model tells us what the intercept’s value
should be. For instance, in Example 11-10, the APT would explain the intercept of 0.09 in
the model for MANM returns as the expected return on MANM given the stock’s sensitivities
to the inflation and GDP factors and the risk premiums of the those factors. We can in fact
substitute the APT equation into the multifactor model to produce what is known as an APT
model in returns form.58

To use the APT equation, we need to estimate its parameters. The parameters of the
APT equation are the risk-free rate and the factor risk premiums (the factor sensitivities are

58An interesting issue is the relationship between the APT and the CAPM. If the market is the factor
in a single-factor model, APT (Equation 11-18) is consistent with the CAPM. The CAPM can also
be consistent with multiple factors in an APT model, if the risk premiums in the APT model satisfy
certain restrictions; these CAPM-related restrictions have been repeatedly rejected in statistical tests. See
Burmeister and McElroy (1988), for example.
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specific to individual investments). Example 11-11 shows how the expected returns and factor
sensitivities of a set of portfolios can determine the parameters of the APT model assuming a
single factor.

EXAMPLE 11-11 Determining the Parameters in a
One-Factor APT Model

Suppose we have three well-diversified portfolios that are each sensitive to the same
single factor. Table 11-11 shows the expected returns and factor sensitivities of these
portfolios. Assume that the expected returns reflect a one-year investment horizon.

TABLE 11-11 Sample Portfolios for a One-Factor Model

Portfolio Expected Return Factor Sensitivity

A 0.075 0.5
B 0.150 2.0
C 0.070 0.4

We can use these data to determine the parameters of the APT equation. According
to Equation 11-18, for any well-diversified portfolio and assuming a single factor
explains returns, we have E(Rp) = RF + λ1βp,1. The factor sensitivities and expected
returns are known; thus there are two unknowns, the parameters RF and λ1. Because two
points define a straight line, we need to set up only two equations. Selecting Portfolios
A and B, we have

E(RA) = 0.075 = RF + 0.5λ1

and

E(RB) = 0.150 = RF + 2λ1

From the equation for Portfolio A, we have RF = 0.075 − 0.5λ1. Substituting this
expression for the risk-free rate into the equation for Portfolio B gives

0.15 = 0.075 − 0.5λ1 + 2λ1

0.15 = 0.075 + 1.5λ1

So we have λ1 = (0.15 − 0.075)/1.5 = 0.05. Substituting this value for λ1 back into
the equation for the expected return to Portfolio A yields

0.075 = RF + 0.05 × 0.5

RF = 0.05
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So the risk-free rate is 0.05 or 5 percent, and the factor premium for the common factor
is also 0.05 or 5 percent. The APT equation is

E(Rp) = 0.05 + 0.05βp,1

Portfolio C has a factor sensitivity of 0.4. Accordingly, 0.05 + (0.05 × 0.4) = 0.07 or
7 percent if no arbitrage opportunity exists. The expected return for Portfolio C given
in Table 11-11 is 7 percent. Therefore, in this example no arbitrage opportunity exists.

EXAMPLE 11-12 Checking Whether Portfolio Returns Are
Consistent with No Arbitrage

In this example, we demonstrate how to tell whether a set of expected returns for
well-diversified portfolios is consistent with the APT by testing whether an arbitrage
opportunity exists. In Example 11-11, we had three portfolios with expected returns
and factor sensitivities that were consistent with the one-factor APT model E(Rp) =
0.05 + 0.05βp,1. Suppose we expand the set of portfolios to include a fourth well-
diversified portfolio, Portfolio D. Table 11-12 repeats the data given in Table 11-11 for
Portfolios A, B, and C, in addition to providing data on Portfolio D and a portfolio we
form using A and C.

TABLE 11-12 Sample Portfolios for a One-Factor Model

Portfolio Expected Return Factor Sensitivity

A 0.0750 0.50
B 0.1500 2.00
C 0.0700 0.40
D 0.0800 0.45

0.5A + 0.5C 0.0725 0.45

The expected return and factor sensitivity of a portfolio is the weighted average
of the expected returns and factor sensitivities of the assets in the portfolio. Suppose
we construct a portfolio consisting of 50 percent Portfolio A and 50 percent Portfolio
C. Table 11-12 shows that the expected return of this portfolio is (0.50)(0.0750) +
(0.50)(0.07) = 0.0725, or 7.25 percent. The factor sensitivity of this portfolio is
(0.50)(0.50) + (0.50)(0.40) = 0.45.

Arbitrage pricing theory assumes that well-diversified portfolios present no arbitrage
opportunities. If the initial investment is 0 and we bear no risk, the final expected cash
flow should be 0. In this case, the configuration of expected returns in relation
to factor risk presents an arbitrage opportunity involving Portfolios A, C, and D.
Portfolio D offers too high an expected rate of return given its factor sensitivity.
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According to the APT model estimated in Example 11-11, an arbitrage opportunity
exists unless E(RD) = 0.05 + 0.05βD,1 = 0.05 + (0.05 × 0.45) = 0.0725, so that the
expected return on D is 7.25 percent. In fact, the expected return on D is 8 percent.
Portfolio D is undervalued relative to its factor risk. We will buy D (hold it long) in the
portfolio that exploits the arbitrage opportunity (the arbitrage portfolio). We purchase
D using the proceeds from selling short a portfolio consisting of A and C with exactly
the same 0.45 factor sensitivity as D. As we showed above, an equally weighted portfolio
of A and C has a factor sensitivity of 0.45.

The arbitrage thus involves the following strategy: Invest $10,000 in Portfolio D
and fund that investment by selling short an equally weighted portfolio of Portfolios A
and C; then close out the investment position at the end of one year (the investment
horizon for expected returns). Table 11-13 demonstrates the arbitrage profits to the
arbitrage strategy. The final row of the table shows the net cash flow to the arbitrage
portfolio.

TABLE 11-13 Arbitrage Opportunity within Sample Portfolios

Initial Cash Flow Final Cash Flow Factor Sensitivity

Portfolio D −$10,000.00 $10,800.00 0.45
Portfolios A and C $10,000.00 −$10,725.00 −0.45
Sum $0.00 $75.00 0.00

As Table 11-13 shows, if we buy $10,000 of Portfolio D and sell $10,000 of an
equally weighted portfolio of Portfolios A and C, we have an initial net cash flow of
$0. The expected value of our investment in Portfolio D at the end of one year is
$10, 000(1 + 0.08) = $10, 800. The expected value of our short position in Portfolios
A and C at the end of one year is −$10, 000(1.0725) = −$10, 725. So the combined
expected cash flow from our investment position in one year is $75.

What about the risk? Table 11-13 shows that the factor risk has been eliminated:
Purchasing D and selling short an equally weighted portfolio of A and C creates a
portfolio with a factor sensitivity of 0.45 − 0.45 = 0. The portfolios are well diversified,
and we assume any asset-specific risk is negligible.

Because the arbitrage is possible, Portfolios A, C, and D cannot all be consistent
with the same equilibrium. A unique set of parameters for the APT model does not
describe the returns on these three portfolios. If Portfolio D actually had an expected
return of 8 percent, investors would bid up its price until the expected return fell and
the arbitrage opportunity vanished. Thus arbitrage restores equilibrium relationships
among expected returns.

In Example 11-11, we illustrated how the parameters of a single-factor APT model can
be determined from data. Example 11-13 shows how to determine the model parameters in a
model with more than one factor.
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EXAMPLE 11-13 Determining the Parameters in a
Two-Factor Model

Suppose that two factors, surprise in inflation (Factor 1) and surprise in GDP growth
(Factor 2), explain returns. According to the APT, an arbitrage opportunity exists unless

E(Rp) = RF + λ1βp,1 + λ2βp,2

Our goal is to estimate the three parameters of the model, RF , λ1, and λ2. We also have
hypothetical data on three well-diversified portfolios, J, K, and L, given in Table 11-14.

TABLE 11-14 Sample Portfolios for a Two-Factor Model

Expected Sensitivity to Sensitivity to
Portfolio Return Inflation Factor GDP Factor

J 0.14 1.0 1.5
K 0.12 0.5 1.0
L 0.11 1.3 1.1

If the market is in equilibrium (no arbitrage opportunities exist), the expected returns
to the three portfolios should be described by the two-factor APT with the same set of
parameters. Using the expected returns and the return sensitivities shown in Table 11-14
yields

E(RJ) = 0.14 = RF + 1.0λ1 + 1.5λ2

E(RK) = 0.12 = RF + 0.5λ1 + 1.0λ2

E(RL) = 0.11 = RF + 1.3λ1 + 1.1λ2

We have three equations with three unknowns, so we can solve for the parameters using
the method of substitution. We first want to get two equations with two unknowns.
Solving the equation for E(RJ) for the risk-free rate,

RF = 0.14 − 1.0λ1 − 1.5λ2

Substituting this expression for the risk-free rate into the equation for E(RK), we find,
after simplification, that λ1 = 0.04 − λ2. Using λ1 = 0.04 − λ2 to eliminate λ1 in the
equation for E(RJ),

0.10 = RF + 0.5λ2

Using λ1 = 0.04 − λ2 to eliminate λ1 in the equation for E(RL),

0.058 = RF − 0.2λ2
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Using the two equations in RF and λ2 immediately above, we find that λ2 = 0.06
(we solved for the risk-free rate in the first of these two equations and used the
expression in the second equation). Because λ1 = 0.04 − λ2, λ1 = −0.02. Finally,
RF = 0.14 − 1.0 × (−0.02) − 1.5 × (0.06) = 0.07. To summarize:

RF = 0.07 (The risk-free rate is 7 percent.)

λ1 = −0.02 (The inflation risk premium is −2 percent per unit of sensitivity.)

λ2 = 0.06 (The GDP risk premium is 6 percent per unit of sensitivity.)

So, the APT equation for these three portfolios is

E(Rp) = 0.07 − 0.02βp,1 + 0.06βp,2

This example illustrates the calculations for determining the parameters of an APT
model. It also shows that the risk premium for a factor can actually be negative.

In Example 11-13, we computed a negative risk premium for the inflation factor. One
explanation for a negative inflation risk premium is that most equities have negative sensitivities
to inflation risk (their returns tend to decrease with a positive inflation surprise). An asset with
a positive inflation sensitivity would be in demand as an inflation-hedging asset; the premium
associated with a factor portfolio for inflation risk could be negative as a result.

4.4. The Structure of Fundamental Factor Models

We earlier gave the equation of a macroeconomic factor model as

Ri = ai + bi1F1 + bi2F2 + · · · + biK FK + εi

We can also represent the structure of fundamental factor models with this equation, but we
need to interpret the terms differently.

In fundamental factor models, the factors are stated as returns rather than return surprises
in relation to predicted values, so they do not generally have expected values of zero. This
approach changes the interpretation of the intercept, which we no longer interpret as the
expected return.59

We also interpret the factor sensitivities differently in most fundamental factor models.
In fundamental factor models, the factor sensitivities are attributes of the security. Consider
a fundamental model for equities with a dividend yield factor. An asset’s sensitivity to the
dividend factor is the value of the attribute itself, its dividend yield; the sensitivity is typically
standardized. Specifically, an asset i’s sensitivity to a given factor would be calculated as the

59If the coefficients were not standardized as described in the following paragraph, the intercept could be
interpreted as the risk-free rate, because it would be the return to an asset with no factor risk (zero factor
betas) and no asset-specific risk. With standardized coefficients, the intercept is not interpreted beyond
being an intercept in a regression included so that the expected asset-specific risk equals 0.
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value of the attribute for the asset minus the average value of the attribute across all stocks,
divided by the standard deviation of the attribute across all stocks. The standardized beta is

bij = Asset i’s attribute value − Average attribute value

σ(Attribute values)
(11-19)

Continuing with the dividend yield example, after standardization a stock with an average
dividend yield will have a factor sensitivity of 0, a stock with a dividend yield one standard
deviation above the average will have a factor sensitivity of 1, and a stock with a dividend yield
one standard deviation below the average will have a factor sensitivity of −1. Suppose, for
example, that an investment has a dividend yield of 3.5 percent and that the average dividend
yield across all stocks being considered is 2.5 percent. Further, suppose that the standard
deviation of dividend yields across all stocks is 2 percent. The investment’s sensitivity to
dividend yield is (3.5% − 2.5%)/2% = 0.50, or one-half standard deviation above average.
The scaling permits all factor sensitivities to be interpreted similarly, despite differences in
units of measure and scale in the variables. The exception to this interpretation is factors for
binary variables such as industry membership. A company either participates in an industry or
it does not. The industry factor sensitivities would be 0 − 1 dummy variables; in models that
recognize that companies frequently operate in multiple industries, the value of the sensitivity
would be 1 for each industry in which a company operated.60

A second distinction between macroeconomic multifactor models and fundamental factor
models is that with the former, we develop the factor (surprise) series first and then estimate
the factor sensitivities through regressions; with the latter, we generally specify the factor
sensitivities (attributes) first and then estimate the factor returns through regressions.61

4.5. Multifactor Models in Current Practice

In the previous sections, we explained the basic concepts of multifactor models and the APT.
We now describe some models in actual industry use.

4.5.1. Macroeconomic Factor Models Chen, Roll, and Ross (1986) pioneered the
development of macroeconomic factor models. Following statistically based research suggesting
that more than one factor was important in explaining the average returns on U.S. stocks, Chen
et al. suggested that a relatively small set of macro factors was the primary influence on the U.S.
stock market. The factors in the Chen et al. study were (1) inflation, including unanticipated
inflation and changes in expected inflation, (2) a factor related to the term structure of interest
rates, represented by long-term government bond returns minus one-month Treasury-bill
rates, (3) a factor reflecting changes in market risk and investors’ risk aversion, represented
by the difference between the returns on low-rated and high-rated bonds, and (4) changes in
industrial production.

The usefulness of any factor for explaining asset returns is generally evaluated using
historical data. Our confidence that a factor will explain future returns increases if we can

60To further explain 0 − 1 variables, industry membership is measured on a nominal scale because we
can name the industry to which a company belongs but no more. A nominal variable can be represented
in a regression by a dummy variable (a variable that takes on the value of 0 or 1). For more on dummy
variables, see the chapter on multiple regression.
61In some models that may be classed as fundamental, the factor sensitivities are regression coefficients
and are not specified first.
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give an economic explanation of why a factor should be important in explaining average
returns. We can plausibly explain all of Chen et al.’s four factors. For example, inflation affects
the cash flows of businesses as well as the level of the discount rate applied to these cash
flows by investors. Changes in industrial production affect the cash flows of businesses and
the opportunities faced by investors. Example 11-14 details a current macroeconomic factor
model that expanded on the model of Chen et al.

EXAMPLE 11-14 Expected Return in a
Macroeconomic Factor Model

Burmeister, Roll, and Ross (1994) presented a macroeconomic factor model to explain
the returns on U.S. equities. The model is known as the BIRR model for short. The
BIRR model includes five factors:

1. Confidence risk: the unanticipated change in the return difference between risky
corporate bonds and government bonds, both with maturities of 20 years. Risky
corporate bonds bear greater default risk than does government debt. Investors’
attitudes toward this risk should affect the average returns on equities. To explain
the factor’s name, when their confidence is high, investors are willing to accept a
smaller reward for bearing this risk.

2. Time horizon risk: the unanticipated change in the return difference between 20-
year government bonds and 30-day Treasury bills. This factor reflects investors’
willingness to invest for the long term.

3. Inflation risk: the unexpected change in the inflation rate. Nearly all stocks have
negative exposure to this factor, as their returns decline with positive surprises in
inflation.

4. Business cycle risk: the unexpected change in the level of real business activity. A
positive surprise or unanticipated change indicates that the expected growth rate
of the economy, measured in constant dollars, has increased.

5. Market timing risk: the portion of the S&P 500’s total return that remains
unexplained by the first four risk factors.62 Almost all stocks have positive
sensitivity to this factor.

The first four factors are quite similar to Chen et al.’s factors with respect to the
economic influences they seek to capture. The fifth factor acknowledges the uncertainty
surrounding the correct set of underlying variables for asset pricing; this factor captures
influences on the returns to the S&P 500 not explained by the first four factors.

The S&P 500 is a widely used index of 500 U.S. stocks of leading companies in
leading industries. Burmeister et al. used the S&P 500 to gauge the influence of their
five factors on the mean excess returns (above the Treasury bill rate) to the S&P 500.
Table 11-15 shows their results.

62Because of the way the factor is constructed, the S&P 500 itself has a sensitivity of 1 to market timing
risk.
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TABLE 11-15 Explaining the Annual Expected Excess Return for the S&P 500

Factor Effect of Factor on
Risk Factor Sensitivity Risk Premium Expected Return

Confidence risk 0.27 2.59% 0.70%
Time horizon risk 0.56 −0.66% −0.37%
Inflation risk −0.37 −4.32% 1.60%
Business cycle risk 1.71 1.49% 2.55%
Market timing risk 1.00 3.61% 3.61%

Expected excess return 8.09%

Source: Burmeister et al.

The estimated APT model is E(Rp) = T-bill rate + 2.59(Confidence risk) −
0.66(Time horizon risk) − 4.32(Inflation risk) + 1.49(Business cycle risk) + 3.61 (Mar-
ket timing risk). The table shows that the S&P 500 had positive exposure to every risk
factor except inflation risk. The two largest contributions to excess return came from
market timing risk and business cycle risk. According to the table, this model predicts
that the S&P 500 will have an expected excess return of 8.09 percent above the
T-bill rate. Therefore, if the 30-day Treasury bill rate were 4 percent, for example, the
forecasted return for the S&P 500 would be 4 + 8.09 = 12.09 percent a year.

In Example 11-15, we illustrate how we might use the Burmeister et al. factor model
to assess the factor bets placed by a portfolio manager managing a U.S. active core equity
portfolio (an actively managed portfolio invested in large-cap stocks).

EXAMPLE 11-15 Exposures to Economy-Wide Risks

William Hughes is the portfolio manager of a U.S. core equity portfolio that is being
evaluated relative to its benchmark, the S&P 500. Because Hughes’s performance will
be evaluated relative to this benchmark, it is useful to understand the active factor bets
that Hughes took relative to the S&P 500. With a focus on exposures to economy-
wide risk, we use the Burmeister et al. model already presented. Table 11-16 displays
Hughes’s data.

We see that the portfolio manager tracks the S&P 500 exactly on confidence and
time horizon risk but tilts toward greater business cycle risk. The portfolio also has a
small positive excess exposure to the market timing factor.

We can use the excess exposure to business cycle risk to illustrate the numerical
interpretation of the excess sensitivities. Ignoring nonsystematic risk and holding the
values of the other factors constant, if there is a +1 percent surprise in the business
cycle factor, we expect the return on the portfolio to be 0.01 × 0.54 = 0.0054 or 0.54
percent higher than the return on the S&P 500. Conversely, we expect the return on the
portfolio to be lower than the S&P 500’s return by an equal amount for a −1 percent
surprise in business cycle risk.
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TABLE 11-16 Excess Factor Sensitivities for a Core Equity Portfolio

Core Portfolio’s S&P 500 Core Portfolio’s
Factor Factor Excess Factor

Risk Factor Sensitivity Sensitivity Sensitivity

Confidence risk 0.27 0.27 0.00
Time horizon risk 0.56 0.56 0.00
Inflation risk −0.12 −0.37 0.25
Business cycle risk 2.25 1.71 0.54
Market timing risk 1.10 1.00 0.10

Because of the excess exposure of 0.54, the portfolio manager appears to be placing
a bet on economic expansion, relative to the benchmark. If the factor bet is inadvertent,
Hughes is perhaps assuming an unwanted risk. If he is aware of the bet, what are the
reasons for the bet?

Care must be taken in interpreting the portfolio manager’s excess sensitivity of 0.25
to the inflation factor. The S&P 500 has a negative inflation factor exposure. The value
of 0.25 represents a smaller negative exposure to inflation for the core portfolio—that
is, less rather than more exposure to inflation risk. Note from Table 11-16 that because
the risk premium for inflation risk is negative, Hughes is giving up expected return
relative to the benchmark by his bet on inflation. Again, what are his reasons for the
inflation factor bet?

The market timing factor has an interpretation somewhat similar to that of the
CAPM beta about how a stock tends to respond to changes in the broad market, with a
higher value indicating higher sensitivity to market returns, all else equal. But the market
timing factor reflects only the portion of the S&P 500’s returns not explained by the other
four factors, and the two concepts are distinct. Whereas we would expect S&P 500 returns
to be correlated with one or more of the first four factors, the market timing factor is con-
structed to be uncorrelated with the first four factors. Because the market timing factor
and the S&P 500 returns are distinct, we would not expect market timing factor sensi-
tivity to be proportional to CAPM beta computed relative to the S&P 500, in general.

Another major macroeconomic factor model is the Salomon Smith Barney U.S. Equity
Risk Attribute Model, or Salomon RAM, for short.

EXAMPLE 11-16 Expected Return in the Salomon RAM

The Salomon RAM model explains returns to U.S. stocks in terms of nine factors: six
macroeconomic factors, a residual market factor, a residual size factor, and a residual
sector factor:

1. Economic growth: the monthly change in industrial production.
2. Credit quality: the monthly change in the yield of the Salomon Smith Barney

High-Yield Market 10+ year index, after removing the component of the change
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that is correlated with the monthly changes in the yields of 30-year Treasury
bonds.

3. Long rates: the monthly change in the yield of the 30-year Treasury bond.
4. Short rates: the monthly change in the yield of the 3-month Treasury bill.
5. Inflation shock: the unexpected component of monthly change in the consumer

price index (CPI).
6. Dollar: the monthly change in the trade-weighted dollar.
7. Residual market: the monthly return on the S&P 500 after removing the effects

of the six factors above.
8. Small-cap premium: the monthly difference between the return on the Russell

2000 Index and the S&P 500, after removing the effect of the seven factors above.
9. Residual sector: the monthly return on a sector membership index after removing

the effect of the eight factors above.

Some noteworthy points concerning this model are as follows:63

• In contrast to the BIRR model and the general model (Equation 11-16), all the
factors except inflation are stated in terms of returns rather than surprises.

• Factors 7, 8, and 9 attempt to isolate the net or unique contribution of the factor
by removing the component of the factor return that is correlated with the group
of preceding factors. Factors 7, 8, and 9 are each uncorrelated among themselves
and with the other factors; they are said to be orthogonal (uncorrelated) factors. In
addition, the credit quality factor is constructed to be uncorrelated with the long-rate
factor.

• Based on the explanatory power of the model, each stock receives a RAM ranking
that reflects its coefficient of determination, with 1 the highest and 5 the lowest rank.

• The factor sensitivities are presented in standardized form.

In Table 11-17, the factor sensitivities are standardized with the same interpretation as
Equation 11-19.

TABLE 11-17 Factor Sensitivities for Four Stocks

Cable Department Computer
Bank TV Provider Store Manufacturer

Economic growth 1.48 −1.30 −0.88 0.88
Credit quality −1.62 −0.77 −3.19 0.12
Long rates −0.01 −1.65 1.83 0.78
Short rates 1.00 1.53 1.10 1.17
Inflation shock −0.97 −1.99 −1.57 0.80
Dollar 0.82 1.47 0.87 −1.63
Residual market 0.06 0.30 0.13 0.26
Small-cap premium 0.13 1.44 0.92 −1.19
Residual sector 0.02 0.00 −0.03 0.00

Note: Entries are standardized factor sensitivities.

63See Sorenson, Samak, and Miller (1998) for more information on this model.
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The bank and the computer manufacturer have investment-grade debt. The cable
TV provider and department store are relatively heavy users of debt that is rated below
investment grade. The computer manufacturer uses little debt in its capital structure.
Based only on the information given, answer the following questions.

1. Contrast the factor sensitivities of the cable TV provider stock to those of the
average stock.

2. State which stocks are expected to do well in an economy showing strong
economic growth coupled with an improving credit environment, all else equal.

3. Explain a possible business reason or a reason related to company fundamentals to
explain negative sensitivity of the cable TV provider’s stock to the credit quality
factor.

Solution to 1: The factor sensitivities to short rates, the trade-weighted dollar, the
residual market factor, and the small-cap premium factor are above average, as indicated
by positive factor sensitivities. The sensitivity to the residual sector factor is average,
as indicated by zero factor sensitivity. By contrast, the cable TV provider’s stock has
below-average sensitivity to the economic growth, credit quality, long-rate, and inflation
factors, as indicated by negative factor sensitivities.

Solution to 2: Both the bank and the computer manufacturer have positive sensitivity to
the economic growth factor, which is the monthly change in industrial production. As
the factor and factor sensitivity are defined, the positive sensitivity implies above-average
returns for these two stocks in an environment of strong economic growth, all else equal.
The bank has a negative coefficient on the credit quality factor, whereas the computer
manufacturer has a positive sensitivity. An improving credit environment means that
the yields of high-yield bonds are declining. Thus we would observe a negative value for
the credit quality factor in that environment. Of the two stocks, we expect that only the
bank stock with a negative sensitivity should give above-average returns in an improving
credit environment. Thus the bank stock is expected to do well in the stated scenario.

Solution to 3: The credit quality factor essentially measures the change in the premium
for bearing default risk. A negative coefficient on the credit quality factor means that the
stock should do well when the premium for bearing default risk declines (an improving
credit environment). One explanation for the negative sensitivity of the cable TV
provider’s stock to the credit quality factor is that the company is a heavy borrower
with less than investment-grade debt. The cost of such debt reflects a significant default
premium. The cable TV provider’s borrowing costs should decline in an improving
credit environment; that decline should positively affect its stock price.

4.5.2. Fundamental Factor Models Financial analysts frequently use fundamental fac-
tor models for a variety of purposes, including portfolio performance attribution and risk
analysis.64 Fundamental factor models focus on explaining the returns to individual stocks

64Portfolio performance attribution analyzes the performance of portfolios in terms of the contributions
from various sources of risk.
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using observable fundamental factors that describe either attributes of the securities them-
selves or attributes of the securities’ issuers. Industry membership, price–earnings ratio, book
value-to-price ratio, size, and financial leverage are examples of fundamental factors.

Example 11-17 reports a study that examined macroeconomic, fundamental, and statis-
tical factor models.

EXAMPLE 11-17 Alternative Factor Models

Connor (1995) contrasted a macroeconomic factor model with a fundamental factor
model to compare how well the models explain stock returns.65

Connor reported the results of applying a macroeconomic factor model to the
returns for 779 large-cap U.S. stocks based on monthly data from January 1985 through
December 1993. Using five macroeconomic factors, Connor was able to explain
approximately 11 percent of the variance of return on these stocks.66 Table 11-18 shows
his results.

TABLE 11-18 The Explanatory Power of the Macroeconomic Factors

Explanatory Power Increase in Explanatory
from Using Power from Adding Each

Factor Each Factor Alone Factor to All the Others

Inflation 1.3% 0.0%
Term structure 1.1% 7.7%
Industrial production 0.5% 0.3%
Default premium 2.4% 8.1%
Unemployment −0.3% 0.1%

All factors 10.9%

Source: Connor (1995).

Connor also reported a fundamental factor analysis of the same companies for which
he conducted a macroeconomic factor analysis. The factor model employed was the
BARRA US-E2 model (the current version is E3). Table 11-19 shows these results. In
the table, ‘‘variability in markets’’ represents the stock’s volatility, ‘‘success’’ is a price
momentum variable, ‘‘trade activity’’ distinguishes stocks by how often their shares
trade, and ‘‘growth’’ distinguishes stocks by past and anticipated earnings growth.67

65We do not discuss results for statistical factor models also reported in Connor (1995).
66The explanatory power of a given model was computed as 1 − [(Average asset-specific variance
of return across stocks)/(Average total variance of return across stocks)]. The variance estimates were
corrected for degrees of freedom, so the marginal contribution of a factor to explanatory power can be 0
or negative. Explanatory power captures the proportion of the total variance of return that a given model
explains for the average stock.
67The explanations of the variables are from Grinold and Kahn (1994); Connor did not supply
definitions.
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TABLE 11-19 The Explanatory Power of the Fundamental Factors

Explanatory Power Increase in Explanatory
from Using Power from Adding Each

Factor Each Factor Alone Factor to All the Others

Industries 16.3% 18.0%
Variability in markets 4.3% 0.9%
Success 2.8% 0.8%
Size 1.4% 0.6%
Trade activity 1.4% 0.5%
Growth 3.0% 0.4%
Earnings to price 2.2% 0.6%
Book to price 1.5% 0.6%
Earnings variability 2.5% 0.4%
Financial leverage 0.9% 0.5%
Foreign investment 0.7% 0.4%
Labor intensity 2.2% 0.5%
Dividend yield 2.9% 0.4%

All factors 42.6%

Source: Connor (1995).

As Table 11-19 shows, the most important fundamental factor is ‘‘industries,’’
represented by 55 industry dummy variables. The fundamental factor model explained
approximately 43 percent of the variation in stock returns, compared with approximately
11 percent for the macroeconomic factor model. Connor’s article does not provide tests
of the statistical significance of the various factors in either model; however, Connor did
find strong evidence for the usefulness of fundamental factor models, and this evidence
is mirrored by the wide use of those models in the investment community. Fundamental
factor models are frequently used in portfolio performance attribution, for example. We
shall illustrate this use later in the chapter. Typically, fundamental factor models employ
many more factors than macroeconomic factor models, giving a more detailed picture
of the sources of a portfolio manager’s results.

We cannot conclude from this study that fundamental factor models are inherently
superior to macroeconomic factors, however. Each of the major types of models has its
uses. The factors in various macroeconomic factor models are individually backed by
statistical evidence that they represent systematic risk (i.e., risk that cannot be diversified
away). In contrast, a portfolio manager can easily construct a portfolio that excludes
a particular industry, so exposure to a particular industry is not systematic risk. The
two types of factors, macroeconomic and fundamental, have different implications for
measuring and managing risk, in general. The macroeconomic factor set is parsimonious
(five variables). The fundamental factor set is large (67 variables including the 55 industry
dummy variables), and at the expense of greater complexity, it can give a more detailed
picture of risk in terms that are easily related to company and security characteristics.
Connor found that the macroeconomic factor model had no marginal explanatory
power when added to the fundamental factor model, implying that the fundamental
risk attributes capture all the risk characteristics represented by the macroeconomic
factor betas. Because the fundamental factors supply such a detailed description of the
characteristics of a stock and its issuer, however, this finding is not necessarily surprising.
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We encounter a range of distinct representations of risk in the fundamental models that
are currently used in practical applications. Diversity exists in both the identity and exact
definition of factors as well as in the underlying functional form and estimation procedures.
Despite the diversity, we can place the factors of most fundamental factor models for equities
into three broad groups:

• Company fundamental factors. These are factors related to the company’s internal
performance. Examples are factors relating to earnings growth, earnings variability, earnings
momentum, and financial leverage.

• Company share-related factors. These factors include valuation measures and other
factors related to share price or the trading characteristics of the shares. In contrast to the
previous category, these factors directly incorporate investors’ expectations concerning the
company. Examples include price multiples such as earnings yield, dividend yield, and
book-to-market. Market capitalization falls under this heading. Various models incorporate
variables relating to share price momentum, share price volatility, and trading activity that
fall in this category.

• Macroeconomic factors. Sector or industry membership factors come under this heading.
Various models include factors such as CAPM beta, other similar measures of systematic
risk, and yield curve level sensitivity, all of which can be placed in this category.

4.6. Applications
The following sections present some of the major applications of multifactor models in
investment practice.

We begin by discussing portfolio performance attribution and risk analysis. We could
frame the discussion in terms of raw returns or in terms of returns relative to a portfolio’s
benchmark. Because they provide a reference standard for risk and return, benchmarks play an
important role in many institutional investors’ plans for quantitatively risk-controlled returns.
We shall thus focus on analyzing returns relative to a benchmark.

Multifactor models can also help portfolio managers form portfolios with specific desired
risk characteristics. After discussing performance attribution and risk analysis, we explain the
use of multifactor models in creating a portfolio with risk exposures that are similar to those
of another portfolio.

4.6.1. Analyzing Sources of Returns Multifactor models can help us understand in
detail the sources of a manager’s returns relative to a benchmark. For simplicity, in this section
we analyze the sources of the returns of a portfolio fully invested in the equities of a single
national equity market.68

Analysts frequently favor fundamental multifactor models in decomposing (separating
into basic elements) the sources of returns. In contrast to statistical factor models, fundamental
factor models allow the sources of portfolio performance to be described by name. Also,
in contrast to macroeconomic factor models, fundamental models suggest investment style
choices and security characteristics more directly, and often in greater detail.

We first need to understand the objectives of active managers. As mentioned, managers
are commonly evaluated relative to a specified benchmark. Active portfolio managers hold

68The assumption allows us to ignore the roles of country selection, asset allocation, market timing,
and currency hedging, greatly simplifying the analysis. Even in a more general context, however, we can
perform similar analyses using multifactor models.
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securities in different-from-benchmark weights in an attempt to add value to their portfolios
relative to a passive investment approach. Securities held in different-from-benchmark weights
reflect portfolio manager expectations that differ from consensus expectations. For an equity
manager, those expectations may relate to common factors driving equity returns or to
considerations unique to a company. Thus when we evaluate an active manager, we want to
ask questions such as ‘‘Did the manager have insights that were valuable in the sense of adding
value above a passive strategy?’’ Analyzing the sources of returns using multifactor models can
help answer these questions.

The return on a portfolio, Rp, can be viewed as the sum of the benchmark’s return, RB,
and the active return (portfolio return minus benchmark return):

Active return = Rp |RB (11-20)

With a factor model in hand, we can analyze a portfolio manager’s active return as the sum
of two components. The first component is the product of portfolio manager’s factor tilts
(active factor sensitivities) and the factor returns; we may call that component the return from
factor tilts. The second component is the part of active return reflecting the manager’s skill in
individual asset selection; we may call that component asset selection. Equation 11-21 shows
the decomposition of active return into those two components:

Active return =
K∑

j=1

[(Portfolio sensitivity)j − (Benchmark sensitivity)j]

× (Factor return)j + Asset selection

(11-21)

In Equation 11-21, we measure the portfolio’s and benchmark’s sensitivities to each factor in
our risk model at the beginning of an evaluation period.

Example 11-18 illustrates the use of a relatively parsimonious fundamental factor model
in decomposing and interpreting returns.

EXAMPLE 11-18 Active Return Decomposition of an
Equity Portfolio Manager

As an equity analyst at a pension fund sponsor, Ronald Service uses the following
multifactor model to evaluate U.S. equity portfolios:

Rp − RF = ap + bp1RMRF + bp2SMB + bp3HML + bp4WML + εp (11-22)

where

Rp and RF = the return on the portfolio and the risk-free rate of return, respectively
RMRF = the return on a value-weighted equity index in excess of the one-month

T-bill rate
SMB = small minus big, a size (market capitalization) factor. SMB is the average

return on three small-cap portfolios minus the average return on three
large-cap portfolios.
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HML = high minus low, the average return on two high book-to-market portfolios
minus the average return on two low book-to-market portfolios

WML = winners minus losers, a momentum factor. WML is the return on a
portfolio of the past year’s winners minus the return on a portfolio of
the past year’s losers.69

In Equation 11-22, the sensitivities are interpreted as regression coefficients and are not
standardized.

Service’s current task is evaluating the performance of the most recently hired U.S.
equity manager. That manager’s benchmark is the Russell 1000, an index representing
the performance of U.S. large-cap stocks. The manager describes herself as a ‘‘stock
picker’’ and points to her performance in beating the benchmark as evidence that
she is successful. Table 11-20 presents an analysis based on Equation 11-21 of the
sources of that manager’s active return during the year. In Table 11-20, ‘‘A. Return
from Factor Tilts,’’ equal to 2.1241 percent, sums the four numbers above it in the
column; the return from factor tilts is the first component of the Equation 11-21.
Table 11-20 lists asset selection as equal to −0.05 percent. Active return is found as
2.1241% + (−0.05%) = 2.0741%.

TABLE 11-20 Active Return Decomposition

Contribution to
Factor Sensitivity Active Return

Portfolio Benchmark Difference Factor Return Absolute Proportion of
Factor (1) (2) (3) = (1) − (2) (4) (3) × (4) Total Active

RMRF 0.85 0.90 −0.05 5.52% −0.2760 −13.3%
SMB 0.05 0.10 −0.05 −3.35% 0.1675 8.1%
HML 1.40 1.00 0.40 5.10% 2.0400 98.4%
WML 0.08 0.06 0.02 9.63% 0.1926 9.3%

A. Return from Factor Tilts = 2.1241 102.4%
B. Asset Selection = −0.0500 −2.4%

C. Active Return (A + B) = 2.0741 100.0%

From his previous work, Service knows that the returns to growth-style portfolios
often have a positive sensitivity to the momentum factor (WML) in Equation 11-22. By
contrast, the returns to certain value-style portfolios, such as those following a contrarian
strategy, often have low or negative sensitivity to the momentum factor.

Using the information given, address the following:

1. Determine the manager’s investment style mandate.
2. Evaluate the sources of the manager’s active return for the year.
3. What concerns might Service discuss with the manager as a result of the return

decomposition?

69WML is an equally weighted average of the stocks with the highest 30 percent 11-month returns
lagged 1 month minus the equally weighted average of the stocks with the lowest 30 percent 11-month
returns lagged 1 month. The model is based on Carhart (1997); WML is Carhart’s PR1YR factor.
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Solution to 1: The benchmark’s sensitivities reflect the baseline risk characteristics of a
manager’s investment opportunity set. We can infer the manager’s anticipated style by
examining the characteristics of the benchmark selected for her. We then confirm these
inferences by examining the portfolio’s actual factor exposures:

• Stocks with high book-to-market are generally viewed as value stocks. Because the
pension sponsor selected a benchmark with a high sensitivity (1.0) to HML (the high
book-to-market minus low book-to-market factor), we can infer that the manager has
a value orientation. The actual sensitivity of 1.4 to HML indicates that the manager
had even more exposure to high book-to-market stocks than the benchmark.

• The benchmark’s and portfolio’s approximate neutrality to the momentum factor is
consistent with a value orientation.

• The benchmark’s and portfolio’s low exposure to SMB suggests essentially no net
exposure to small-cap stocks.

The above considerations as a group suggest that the manager has a large-cap value
orientation.

Solution to 2: The dominant source of the manager’s positive active return was her pos-
itive active exposure to the HML factor. The bet contributed (1.40 − 1.00)(5.10%) =
2.04% or approximately 98 percent of the realized active return of about 2.07 percent.
During the evaluation period, the manager sharpened her value orientation, and that
bet paid off. The manager’s active exposure to the overall market (RMRF) was unprof-
itable, but her active exposures to small stocks (SMB) and to momentum (WML) were
profitable; however, the magnitudes of the manager’s active exposures to RMRF, SMB,
and WML were relatively small, so the effects of those bets on active return was minor
compared with her large and successful bet on HML.

Solution to 3: Although the manager is a self-described ‘‘stock picker,’’ her active return
from asset selection in this period was actually negative. Her positive active return
resulted from the concurrence of a large active bet on HML and a high return to that
factor during the period. If the market had favored growth rather than value without
the manager doing better in individual asset selection, the manager’s performance
would have been unsatisfactory. Can the manager supply evidence that she can predict
changes in returns to the HML factor? Is she overconfident about her stock selection
ability? Service may want to discuss these concerns with the manager. The return
decomposition has helped Service distinguish between the return from positioning
along the value–growth spectrum and return from insights into individual stocks within
the investment approach the manager has chosen.

4.6.2. Analyzing Sources of Risk Continuing with our focus on active returns, in this
section we explore analysis of active risk. Active risk is the standard deviation of active returns.
Many terms in use refer to exactly the same concept, so we need to take a short detour to
mention them. A traditional synonym is tracking error (TE), but the term may be confusing
unless error is associated by the reader with standard deviation; tracking-error volatility (TEV)
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has been used (where error is understood as a difference); and tracking risk is now in common
use (but the natural abbreviation TR could be misunderstood to refer to total return). We
will use the abbreviation TE for the concept of tracking risk, and we will refer to it usually as
tracking risk:

TE = s(Rp − RB) (11-23)

In Equation 11-23, s(Rp − RB) indicates that we take the sample standard deviation (indicated
by s) of the time series of differences between the portfolio return, Rp, and the benchmark
return, RB. We should be careful that active return and tracking risk are stated on the same
time basis.70

As a broad indication of ranges for tracking risk, in U.S. equity markets a well executed
passive investment strategy can often achieve tracking risk on the order of 1 percent or less per
annum. A semi-active or enhanced index investment strategy, which makes tightly controlled
use of managers’ expectations, often has a tracking risk goal of 2 percent per annum. A
diversified active U.S. large-cap equity strategy that might be benchmarked on the S&P 500
would commonly have tracking risk in the range of 2 percent to 6 percent per annum. An
aggressive active equity manager might have tracking risk in the range of 6 percent to 9 percent
or more.

Somewhat analogous to use of the traditional Sharpe measure in evaluating absolute
returns, the ratio of mean active return to active risk, the information ratio (IR), is a tool for
evaluating mean active returns per unit of active risk. The historical or ex post IR has the form

IR = Rp − RB

s(Rp − RB)
(11-24)

In the numerator of Equation 11-24, Rp and RB stand for the sample mean return on the
portfolio and the sample mean return on the benchmark, respectively. To illustrate the
calculation, if a portfolio achieved a mean return of 9 percent during the same period that
its benchmark earned a mean return of 7.5 percent, and the portfolio’s tracking risk was
6 percent, we would calculate an information ratio of (9% − 7.5%)/6% = 0.25. Setting
guidelines for acceptable active risk or tracking risk is one of the ways that some institutional
investors attempt to assure that the overall risk and style characteristics of their investments
are in line with those desired.

EXAMPLE 11-19 Communicating with
Investment Managers

The framework of active return and active risk is appealing to investors who want
to closely control the risk of investments. The benchmark serves as a known and
continuously observable reference standard in relation to which quantitative risk and

70To annualize a daily TE based on daily returns, we multiply daily TE by (250)1/2 based on 250 trading
days in a year; to annualize a monthly TE based on monthly returns, we multiply monthly TE by (12)1/2.
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return objectives may be stated and communicated. For example, a U.S. public employee
retirement system issued a solicitation (or request for proposal) to prospective investment
managers for a ‘‘risk-controlled U.S. large-cap equity fund’’ that included the following
requirements:

• Shares must be components of the S&P 500.
• The portfolio should have a minimum of 200 issues. At time of purchase, the

maximum amount that may be invested in any one issuer is 5 percent of the portfolio
at market value or 150 percent of the issuers’ weight within the S&P 500 Index,
whichever is greater.

• The portfolio must have a minimum 0.30 percent information ratio either since
inception or over the last seven years.

• The portfolio must also have tracking risk of less than 4.0 percent with respect to the
S&P 500 either since inception or over the last seven years.

Analysts use multifactor models to understand in detail a portfolio manager’s risk
exposures. In decomposing active risk, the analyst’s objective is to measure the portfolio’s
active exposure along each dimension of risk—in other words, to understand the sources of
tracking risk.71 Among the questions analysts will want to answer are the following:

• What active exposures contributed most to the manager’s tracking risk?
• Was the portfolio manager aware of the nature of his active exposures, and if so, can he

articulate a rationale for assuming them?
• Are the portfolio’s active risk exposures consistent with the manager’s stated investment

philosophy?
• Which active bets earned adequate returns for the level of active risk taken?

In addressing these questions, analysts often choose fundamental factor models because they
can be used to relate active risk exposures to a manager’s portfolio decisions in a fairly direct
and intuitive way. In this section, we explain how to decompose or explain a portfolio’s active
risk using a multifactor model.

We previously addressed the decomposition of active return; now we address the
decomposition of active risk. In analyzing risk, it is convenient to use variances rather than
standard deviations because the variances of uncorrelated variables are additive. We refer to
the variance of active risk as active risk squared:

Active risk squared = s2(Rp − RB) (11-25)

We can separate a portfolio’s active risk squared into two components:

71The portfolio’s active risks are weighted averages of the component securities’ active risk. Therefore,
we may also perform the analysis at the level of individual holdings. A portfolio manager may find this
approach useful in making adjustments to his active risk profile.
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• Active factor risk is the contribution to active risk squared resulting from the portfolio’s
different-than-benchmark exposures relative to factors specified in the risk model.72

• Active specific risk or asset selection risk is the contribution to active risk squared
resulting from the portfolio’s active weights on individual assets as those weights interact
with assets’ residual risk.73

When applied to an investment in a single asset class, active risk squared has two components.
The decomposition of active risk squared into two components is

Active risk squared = Active factor risk + Active specific risk (11-26)

Active factor risk represents the part of active risk squared explained by the portfolio active
factor exposures. Active factor risk can be found indirectly as the difference between active risk
squared and active specific risk, which has the expression74

Active specific risk =
n∑

i=1

wa
i σ

2
εi

where wa
i is the ith asset’s active weight in the portfolio (that is, the difference between the

asset’s weight in the portfolio and its weight in the benchmark) and σ2
εi

is the residual risk of
the ith asset (the variance of the ith asset’s returns left unexplained by the factors).75 Active
specific risk identifies the active nonfactor or residual risk assumed by the manager. We should
look for a positive average return from asset selection as compensation for bearing active
specific risk.

EXAMPLE 11-20 A Comparison of Active Risk

Richard Gray is comparing the risk of four U.S. equity managers who share the
same benchmark. He uses a fundamental factor model, the BARRA US-E3 model,
which incorporates 13 risk indexes and a set of 52 industrial categories. The risk indexes
measure various fundamental aspects of companies and their shares such as size, leverage,
and dividend yield. In the model, companies have nonzero exposures to all industries
in which the company operates. Table 11-21 presents Gray’s analysis of the active risk
squared of the four managers, based on Equation 11-26.76 In Table 11-21, the column

72Throughout this discussion, ‘‘active’’ means ‘‘different than benchmark.’’
73As we use the terms, ‘‘active specific risk’’ and ‘‘active factor risk’’ refer to variances rather than standard
deviations.
74The direct procedure for calculating active factor risk is as follows. A portfolio’s active factor exposure
to a given factor j, ba

j , is found by weighting each asset’s sensitivity to factor j by its active weight and

summing the terms ba
j =

n∑
i=1

wa
i bji. Then active factor risk equals

K∑
i=1

K∑
j=1

ba
i ba

j Cov(Fi, Fj).

75The residual returns of the assets are assumed to be uncorrelated with each other and with the factor
returns.
76There is a covariance term in active factor risk, reflecting the correlation of industry membership and
the risk indexes, which we assume is negligible in this example.
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labeled ‘‘Industry’’ gives the portfolio’s active factor risk associated with the industry
exposures of its holdings; the column ‘‘Risk Indexes’’ gives the portfolio’s active factor
risk associated with the exposures of its holdings to the 13 risk indexes.

TABLE 11-21 Active Risk Squared Decomposition

Active Factor

Risk Total Active Active Risk
Portfolio Industry Indexes Factor Specific Squared

A 12.25 17.15 29.40 19.60 49
B 1.25 13.75 15.00 10.00 25
C 1.25 17.50 18.75 6.25 25
D 0.03 0.47 0.50 0.50 1

Note: Entries are percent squared.

Using the information in Table 11-21, address the following:

1. Contrast the active risk decomposition of Portfolios A and B.
2. Contrast the active risk decomposition of Portfolios B and C.
3. Characterize the investment approach of Portfolio D.

Solution to 1: Table 11-22 restates the information in Table 11-21 to show the
proportional contributions of the various sources of active risk. In the last column of
Table 11-22, we now give the square root of active risk squared—that is, active risk or
tracking risk. To explain the middle set of columns in Table 11-22, Portfolio A’s value
of 25 percent under the Industry column is found as 12.25/49 = 0.25. So Portfolio A’s
active risk related to industry exposures is 25 percent of active risk squared.

TABLE 11-22 Active Risk Decomposition (re-stated)

Active Factor
(% of total active) Active Specific

Risk Total (% of total Active
Portfolio Industry Indexes Factor active) Risk

A 25% 35% 60% 40% 7%
B 5% 55% 60% 40% 5%
C 5% 70% 75% 25% 5%
D 3% 47% 50% 50% 1%

Portfolio A has assumed a higher level of active risk than B (tracking risk of
7 percent versus 5 percent). Portfolios A and B assumed the same proportions of active
factor and active specific risk, but a sharp contrast exists between the two in terms of
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type of active factor risk exposure. Portfolio A assumed substantial active industry risk,
whereas Portfolio B was approximately industry neutral relative to the benchmark. By
contrast, Portfolio B had higher active bets on the risk indexes representing company
and share characteristics.

Solution to 2: Portfolios B and C were similar in their absolute amounts of active
risk. Furthermore, both Portfolios B and C were both approximately industry neutral
relative to the benchmark. Portfolio C assumed more active factor risk related to the
risk indexes, but B assumed more active specific risk. We can also infer from the second
point that B is somewhat less diversified than C.

Solution to 3: Portfolio D appears to be a passively managed portfolio, judging by its
negligible level of active risk. Referring to Table 11-21, Portfolio D’s active factor risk
of 0.50, equal to 0.707 percent expressed as a standard deviation, indicates that the
portfolio very closely matches the benchmark along the dimensions of risk that the
model identifies as driving average returns.

Example 11-20 presented a set of hypothetical portfolios with differing degrees of tracking risk
in which active factor risk tended to be larger than active specific risk. Given a well-constructed
multifactor model and a well-diversified portfolio, this relationship is fairly commonplace. For
well-diversified portfolios, managing active factor risk is typically the chief task in managing
tracking risk.

Example 11-20 presented an analysis of active risk at an aggregated level; a portfolio’s
active factor risks with respect to the multifactor model’s 13 risk indexes was aggregated
into a single number. In appraising performance, an analyst may be interested in a much
more detailed analysis of a portfolio’s active risk. How can an analyst appraise the individual
contributions of a manager’s active factor exposures to active risk squared?

Whatever the set of factors, the procedure for evaluating the contribution of an active factor
exposure to active risk squared is the same. This quantity has been called a factor’s marginal
contribution to active risk squared (FMCAR). With K factors, the marginal contribution to
active risk squared for a factor j, FMCARj is

FMCARj =
ba

j

K∑
i=1

ba
i Cov(Fj , Fi)

Active risk squared
(11-27)

where ba
j is the portfolio’s active exposure to factor j. The numerator is the active factor risk

for factor j.77 The numerator is similar to expressions involving beta that we encountered
earlier in discussing the market model, but with multiple factors, factor covariances as well
as variances are relevant. To illustrate Equation 11-27 in a simple setting, suppose we have a
two-factor model:

77If we summed the numerator over j = 1 to K , we would have the expression for active factor risk given
in Footnote 74.
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• The manager’s active exposure to the first factor is 0.50; that is, ba
1 = 0.50. The other active

factor exposure is ba
2 = 0.15.

• The variance–covariance matrix of the factors is described by Cov(F1, F1) = σ2(F1) =
225, Cov(F1, F2) = 12, and Cov(F2, F2) = σ2(F2) = 144.

• Active specific risk is 53.71.

We first compute active factor risk for each factor; that calculation is the numerator in
Equation 11-27. Then we find active risk squared by summing the active factor risks and
active specific risk, and form the ratio indicated in Equation 11-27. For the first factor, we
calculate the numerator of FMCAR1 as

ba
1

2∑
i=1

ba
i Cov(F1, Fi) = 0.50[0.50(225) + 0.15(12)] = 57.15

For the second factor, we have

ba
2

2∑
i=1

ba
i Cov(F2, Fi) = 0.15[0.50(12) + 0.15(144)] = 4.14

Active factor risk is 57.15 + 4.14 = 61.29. Adding active specific risk, we find that active
risk squared is 61.29 + 53.71 = 115. Thus we have FMCAR1 = 57.15/115 = 0.497 or
49.7 percent, and FMCAR2 = 4.14/115 = 0.036 or 3.6 percent. Active factor risk as a
fraction of total risk is FMCAR1 + FMCAR2 = 49.7% + 3.6% = 53.3%. Active specific
risk contributes 100% − 53.3% = 46.7% to active risk squared. Example 11-21 illustrates
the application of these concepts.

EXAMPLE 11-21 An Analysis of Individual
Active Factor Risk

William Whetzell is responsible for a monthly internal performance attribution and
risk analysis of a domestic core equity fund managed internally by his organization, a
Canadian endowment. In his monthly analyses, Whetzell uses a risk model incorporating
the following factors:

• Log of market cap
• E/P, the earnings yield
• B/P, the book-to-price ratio
• Earnings growth
• Average dividend yield
• D/A, the long-term debt-to-asset ratio
• Volatility of return on equity (ROE)
• Volatility of EPS
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The factor sensitivities in the model have the standard interpretation of factor sensitivities
in fundamental factor models.

Having determined that he earned an active return of 0.75 percent during the last
fiscal year, Whetzell turns to the task of analyzing the portfolio’s risk. At the start of that
fiscal year, the investment committee made the following decisions:

• to tactically tilt the portfolio in the direction of small-cap stocks;
• to implement an ‘‘earnings growth at a reasonable price’’ (GARP) bias in security

selection;
• to keep any active factor risk, expressed as a standard deviation, under 5 percent per

annum;
• to keep active specific risk at no more than 50 percent of active risk squared; and
• to achieve an information ratio of 0.15 or greater.

Before Whetzell presented his report, one investment committee member reviewing his
material commented that the investment committee should adopt a passive investment
strategy for domestic equities if the equity fund continues to perform as it did during
the last fiscal year.

Table 11-23 presents information on the equity fund. The factor returns were
constructed to be approximately mutually uncorrelated.

TABLE 11-23 Risk Analysis Data

Sensitivity

Factor Portfolio Benchmark Factor Variance

Log of market cap 0.05 0.25 225
E/P −0.05 0.05 144
B/P −0.25 −0.02 100
Earnings growth 0.25 0.10 196
Dividend yield 0.01 0.00 169
D/A 0.03 0.03 81
Vol of ROE −0.25 0.02 121
Vol of EPS −0.10 0.03 64

Active specific risk = 29.9406
Active specific return = −0.5%

Active return = 0.75%

Based on the information in Table 11-23, address the following:

1. For each factor, calculate (A) the active factor risk and (B) the marginal contribu-
tion to active risk squared.

2. Discuss whether the data are consistent with the objectives of the investment
committee having been met.

3. Appraise the endowment’s risk-adjusted performance for the year.
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4. Explain two pieces of evidence supporting the committee member’s statement
concerning a passive investment strategy.

Solution to 1:

(A) Active factor risk for a factor = (Active sensitivity to the factor)2(Factor variance)
in Equation 11-27 with zero factor correlations.

Log of market cap = (0.05 − 0.25)2(225) = 9.0

E/P = (−0.05 − 0.05)2(144) = 1.44

B/P = [−0.25 − (−0.02)]2(100) = 5.29

Earnings growth = (0.25 − 0.10)2(196) = 4.41

Dividend yield = (0.01 − 0.00)2(169) = 0.0169

D/A = (0.03 − 0.03)2(81) = 0.0

Volatility of ROE = (−0.25 − 0.02)2(121) = 8.8209

Volatility of EPS = (−0.10 − 0.03)2(64) = 1.0816

(B) The sum of the individual active factor risks equals 30.0594. We add active
specific risk to this sum to obtain active risk squared of 30.0594 + 29.9406 = 60.
Thus FMCAR for the factors is as follows:

Log of market cap = 9/60 = 0.15

E/P = 1.44/60 = 0.024

B/P = 5.29/60 = 0.0882

Earnings growth = 4.41/60 = 0.0735

Dividend yield = 0.0169/60 = 0.0003

D/A = 0.0/60 = 0.0

Volatility of ROE = 8.8209/60 = 0.1470

Volatility of EPS = 1.0816/60 = 0.0180

Solution to 2: We consider each investment committee objective in turn. The first
objective was to tactically tilt the portfolio in the direction of small-cap stocks. A zero
sensitivity to the log market cap factor would indicate average exposure to size. An
exposure of 1 would indicate a positive exposure to returns to increasing size that is
one standard deviation above the mean, given the standard interpretation of factor
sensitivities in fundamental factor models. Although the equity fund’s exposure to size
is positive, the active exposure is negative. This result is consistent with tilting toward
small-cap stocks.
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The second objective was to implement an ‘‘earnings growth at a reasonable price’’ bias
in security selection. The equity fund has a positive active exposure to earnings growth
consistent with seeking companies with high earnings growth rates. It is questionable,
however, whether the ‘‘reasonable price’’ part of the approach is being satisfied. The
fund’s absolute E/P and B/P sensitivities are negative, indicating below average earning
yield and B/P (higher than average P/E and P/B). The active exposures to these factors
are also negative. If above-average earnings growth is priced in the marketplace, the fund
may need to bear negative active exposures, so we cannot reach a final conclusion. We
can say, however, that none of the data positively supports a conclusion that the GARP
strategy was implemented.

The third objective was to keep any active factor risk, expressed as a standard deviation,
under 5 percent per annum. The largest active factor risk was on the log of market cap
factor. Expressed as a standard deviation, that risk was (9)1/2 = 3 percent per annum,
so this objective was met.

The fourth objective was to keep active specific risk at no more than 50 percent
of active risk squared. Active specific risk as a fraction of active risk squared was
29.9406/60 = 0.4990 or 49.9 percent, so this objective was met.

The fifth objective was to achieve an information ratio of 0.15 or greater. The
information ratio is active return divided by active risk (tracking risk). Active return
was given as 0.75 percent. Active risk is the square root of active risk squared:
(60)1/2 = 7.7460%. Thus IR = 0.75%/7.7460% = 0.0968 or approximately 0.10,
which is short of the stated objective of 0.15.

Solution to 3: The endowment’s realized information ratio of 0.10 means its risk-adjusted
performance for the year was inadequate.

Solution to 4 : The active specific return for the year was negative, although the fund
incurred substantial active specific risk. Therefore, specific risk had a negative reward.
Furthermore, the realized information ratio fell short of the investment committee’s
objective. With the qualification that this analysis is based on only one year, these facts
would argue for the cost-efficient alternative of indexing.

In our discussion of performance attribution and risk analysis, we have given examples
related to common stock. Multifactor models have also been used in similar roles for portfolios
of bonds and other asset classes.

We have illustrated the use of multifactor models in analyzing a portfolio’s active returns
and active risk. At least equally important is the use of multifactor models in portfolio
construction. At that stage of the portfolio management process, multifactor models permit
the portfolio manager to make focused bets or to control portfolio risk relative to her
benchmark’s risk. In the remaining sections, we discuss these uses of multifactor models.

4.6.3. Factor Portfolios A portfolio manager can use multifactor models to establish a
specific desired risk profile for his portfolio. For example, he may want to create and use a
factor portfolio. A factor portfolio for a particular factor has a sensitivity of 1 for that factor
and a sensitivity of 0 for all other factors. It is thus a portfolio with exposure to only one risk
factor and exactly represents the risk of that factor. As a pure bet on a source of risk, factor



506 Quantitative Investment Analysis

portfolios are of interest to a portfolio manager who wants to hedge that risk (offset it) or
speculate on it. Example 11-22 illustrates the use of factor portfolios.

EXAMPLE 11-22 Factor Portfolios

Analyst Wanda Smithfield has constructed six portfolios for possible use by portfolio
managers in her firm. The portfolios are labeled A, B, C, D, E, and F in Table 11-24.

TABLE 11-24 Factor Portfolios

Portfolios

Risk Factor A B C D E F

Confidence risk 0.50 0.00 1.00 0.00 0.00 0.80
Time horizon risk 1.92 0.00 1.00 1.00 1.00 1.00
Inflation risk 0.00 0.00 1.00 0.00 0.00 −1.05
Business cycle risk 1.00 1.00 0.00 0.00 1.00 0.30
Market timing risk 0.90 0.00 1.00 0.00 0.00 0.75

Note: Entries are factor sensitivities.

1. A portfolio manager wants to place a bet that real business activity will increase.

A. Determine and justify the portfolio among the six given that would be most
useful to the manager.

B. What type of position would the manager take in the portfolio chosen in Part
A?

2. A portfolio manager wants to hedge an existing positive exposure to time hori-
zon risk.

A. Determine and justify the portfolio among the six given that would be most
useful to the manager.

B. What type of position would the manager take in the portfolio chosen in Part
A?

Solution to 1A: Portfolio B is the most appropriate choice. Portfolio B is the factor
portfolio for business cycle risk because it has a sensitivity of 1 to business cycle risk and
a sensitivity of 0 to all other risk factors. Portfolio B is thus efficient for placing a pure
bet on an increase in real business activity.

Solution to 1B: The manager would take a long position in Portfolio B to place a bet on
an increase in real business activity.

Solution to 2A: Portfolio D is the appropriate choice. Portfolio D is the factor portfolio
for time horizon risk because it has a sensitivity of 1 to time horizon risk and a sensitivity
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of 0 to all other risk factors. Portfolio D is thus efficient for hedging an existing positive
exposure to time horizon risk.

Solution to 2B: The manager would take a short position in Portfolio D to hedge the
positive exposure to time horizon risk.

The next section illustrates the procedure for constructing a portfolio with a desired configu-
ration of factor sensitivities.

4.6.4. Creating a Tracking Portfolio In the previous section, we discussed the use of
multifactor models to speculate on or hedge a specific factor risk. Perhaps even more commonly,
portfolio managers use multifactor models to control the risk of portfolios relative to their
benchmarks. For example, in a risk-controlled active or enhanced index strategy, the portfolio
manager may attempt to earn a small incremental return relative to her benchmark while
controlling risk by matching the factor sensitivities of her portfolio to her benchmark. That
portfolio would be an example of a tracking portfolio. A tracking portfolio is a portfolio
having factor sensitivities that are matched to those of a benchmark or other portfolio.

The technique of constructing a portfolio with a target set of factor sensitivities involves
the solution of a system of equations using algebra.

• Count the number of constraints. Each target value of beta represents a constraint on the
portfolio, and another constraint is that the weights of the investments in the portfolio
must sum to one. As many investments are needed as there are constraints.

• Set up an equation for the weights of the portfolio’s investments reflecting each constraint
on the portfolio. We have an equation stating that the portfolio weights sum to 1. We have
an equation for each target factor sensitivity; on the left-hand side of the equal sign, we
have a weighted average of the factor sensitivities of the investments to the factor, and on
the right-hand side of the equal sign we have the target factor sensitivity.

• Solve the system of equations for the weights of the investments in the portfolio.

In Example 11-23, we illustrate how a tracking portfolio can be created.

EXAMPLE 11-23 Creating a Tracking Portfolio

Suppose that a pension plan sponsor wants to be fully invested in U.S. common stocks.
The plan sponsor has specified an equity benchmark for a portfolio manager, who has
decided to create a tracking portfolio for the benchmark. For the sake of using familiar
data, let us continue with the three portfolios J, K, and L, as well as the same two-factor
model from Example 11-13.

The portfolio manager determines that the benchmark has a sensitivity of 1.3 to
the surprise in inflation and a sensitivity of 1.975 to the surprise in GDP. There are
three constraints. One constraint is that portfolio weights sum to 1, a second is that the
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weighted sum of sensitivities to the inflation factor equals 1.3 (to match the benchmark),
and a third is that the weighted sum of sensitivities to the GDP factor equals 1.975 (to
match the benchmark). Thus we need three investments to form the portfolio, which
we take to be Portfolios J, K, and L. We repeat Table 11-14 below.

TABLE 11-14 (repeated) Sample Portfolios for a
Two-Factor Model

Expected Sensitivity to Sensitivity to
Portfolio Return Inflation Factor GDP Factor

J 0.14 1.0 1.5
K 0.12 0.5 1.0
L 0.11 1.3 1.1

As mentioned, we need three equations to determine the portfolio weights wJ, wK, and
wL in the tracking portfolio.

• Equation 1. This equation states that portfolio weights must sum to 1.

wJ + wK + wL = 1

• Equation 2. The second equation states that the weighted average of the sensitivities
of J, K, and L to the surprise in inflation must equal the benchmark’s sensitivity to
the surprise in inflation, 1.3. This requirement ensures that the tracking portfolio
has the same inflation risk as the benchmark.

1.0wJ + 0.5wK + 1.3wL = 1.3

• Equation 3. The third equation states that the weighted average of the sensitivities
of J, K, and L to the surprise in GDP must equal the benchmark’s sensitivity to the
surprise in GDP, 1.975. This requirement ensures that the tracking portfolio has the
same GDP risk as the benchmark.

1.5wJ + 1.0wK + 1.1wL = 1.975

We can solve for the weights as follows. From Equation 1, wL = (1 − wJ − wK). We
substitute this result in the other two equations to find

1.0wJ + 0.5wK + 1.3(1 − wJ − wK) = 1.3, simplifying to wK = −0.375wJ

and

1.5wJ + 1.0wK + 1.1(1 − wJ − wK) = 1.975,

simplifying to 0.4wJ − 0.1wK = 0.875
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We next substitute wK = −0.375wJ into 0.4wJ − 0.1wK = 0.875, obtaining 0.4wJ −
0.1(−0.375wJ) = 0.875 or 0.4wJ + 0.0375wJ = 0.875, so wJ = 2.

Using wK = −0.375wJ obtained earlier, wK = −0.375 × 2 = −0.75. Finally,
from wL = (1 − wJ − wK) = [1 − 2 − (−0.75)] = −0.25. To summarize,

wJ = 2

wK = −0.75

wL = −0.25

The tracking portfolio has an expected return of 0.14wJ + 0.12wK + 0.11wL =
0.14(2)+(0.12)(−0.75)+0.11(−0.25) = 0.28−0.09−0.0275 = 0.1625. In Example
11-13 using the same inputs, we calculated the APT model as E(Rp) = 0.07 −
0.02βp,1 + 0.06βp,2. For the tracking portfolio, βp,1 = 1.3 and βp,2 = 1.975. As
E(Rp) = 0.07 − 0.02(1.3) + 0.06(1.975) = 0.1625, we have confirmed the expected
return calculation.

4.7. Concluding Remarks

In earlier sections, we showed how models with multiple factors can help portfolio managers
solve practical tasks in measuring and controlling risk. We now draw contrasts between the
CAPM and the APT, providing additional insight into why some risks may be priced and
how, as a result, the portfolio implications of a multifactor world differ from those of the
world described by the CAPM. An investor may be able to make better portfolio decisions
with a multifactor model than with a single-factor model.

The CAPM provides investors with useful and influential concepts for thinking about
investments. Considerable evidence has accumulated, however, that shows that the CAPM
provides an incomplete description of risk.78 What is the portfolio advice of CAPM, and how
can we improve on it when more than one source of systematic risk drives asset returns? An
investor who believes that the CAPM explains asset returns would hold a portfolio consisting
only of the risk-free asset and the market portfolio of risky assets. If the investor had a
high tolerance for risk, she would put a greater proportion in the market portfolio. But to
the extent the investor held risky assets, she would hold them in amounts proportional to
their market-value weights, without consideration for any other dimension of risk. In reality,
of course, not everyone holds the same portfolio of risky assets. Practically speaking, this
CAPM-oriented investor might hold a money market fund and a portfolio indexed on a broad
market index.79

With more than one source of systematic risk, the average investor might still want to
hold a broadly based portfolio and the risk-free asset. Other investors, however, may find it
appropriate to tilt away from an index fund after considering dimensions of risk ignored by the
CAPM. To make this argument, let us explore why, for example, the business cycle is a source

78See Bodie, Kane, and Marcus (2001) for an introduction to the empirical evidence.
79Passive management is a distinct issue from holding a single portfolio. There are efficient-markets
arguments for holding indexed investments that are separate from the CAPM. An index fund is reasonable
for this investor, however.
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of systematic risk, as in the Burmeister et al. model discussed earlier. There is an economic
intuition for why this risk is systematic:80 Most investors hold jobs and are thus sensitive to
recessions. Suppose, for example, that a working investor faces the risk of a recession. If this
investor compared two stocks with the same CAPM beta, given his concern about recession
risk, he would accept a lower return from the counter cyclical stock and require a risk premium
on the procyclical one. In contrast, an investor with independent wealth and no job-loss
concerns would be willing to accept the recession risk.

If the average investor holding a job bids up the price of the counter cyclical stocks, then
recession risk will be priced. In addition, procyclical stocks would have lower prices than if
the recession factor were not priced. Investors can thus, as Cochrane (1999a) notes, ‘‘earn a
substantial premium for holding dimensions of risk unrelated to market movements.’’

This view of risk has portfolio implications. The average investor is exposed to and
negatively affected by cyclical risk, which is a priced factor. (Risks that do not affect the average
investor should not be priced.) Investors who hold jobs (and thus receive labor income) want
lower cyclical risk and create a cyclical risk premium, whereas investors without labor income
will accept more cyclical risk to capture a premium for a risk that they do not care about.
As a result, an investor who faces lower-than-average recession risk optimally tilts towards
greater-than-average exposure to the business cycle factor, all else equal.

In summary, investors should know which priced risks they face and analyze the extent of
their exposure. Compared with single-factor models, multifactor models offer a rich context
for investors to search for ways to improve portfolio selection.

80This discussion follows Cochrane (1999a) and (1999b).
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Appendix A Cumulative Probabilities for a Standard Normal Distribution
P(Z ≤ x) = N (x) for x ≥ 0 or P(Z ≤ z) = N (z) for z ≥ 0

x or z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.10 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.20 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.30 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.40 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.50 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.60 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.70 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.80 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.90 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.00 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.10 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.20 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.30 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.40 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.50 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.60 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.70 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.80 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.90 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.00 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.10 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.20 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.30 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.40 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.50 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.60 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.70 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.80 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.90 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.00 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.10 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.20 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.30 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.40 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.50 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.60 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.70 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.80 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

For example, to find the z-value leaving 2.5 percent of the area/probability in the upper tail, find the
element 0.9750 in the body of the table. Read 1.90 at the left end of the element’s row and 0.06 at the
top of the element’s column, to give 1.90 + 0.06 = 1.96. Table generated with Excel.



Appendix A 513

Appendix A Cumulative Probabilities for a Standard Normal Distribution
P(Z ≤ x) = N (x) for x ≤ 0 or P(Z ≤ z) = N (z) for z ≤ 0

x or z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
−0.10 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.20 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.30 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.40 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.50 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
−0.60 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.70 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.80 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.90 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−1.00 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
−1.10 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.20 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.30 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.40 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.50 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
−1.60 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.70 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.80 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.90 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−2.00 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
−2.10 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.20 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.30 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.40 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.50 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
−2.60 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.70 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.80 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.90 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−3.00 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
−3.10 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.20 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.30 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.40 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.50 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
−3.60 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.70 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.80 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.90 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

For example, to find the z-value leaving 2.5 percent of the area/probability in the lower tail, find the
element 0.0250 in the body of the table. Read −1.90 at the left end of the element’s row and 0.06 at
the top of the element’s column, to give −1.90 − 0.06 = −1.96. Table generated with Excel.
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Appendix C Values of χ2 (Degrees of Freedom, Level of Significance)

Probability in Right Tail
Degrees of
Freedom 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005

1 0.000157 0.000982 0.003932 0.0158 2.706 3.841 5.024 6.635 7.879
2 0.020100 0.050636 0.102586 0.2107 4.605 5.991 7.378 9.210 10.597
3 0.1148 0.2158 0.3518 0.5844 6.251 7.815 9.348 11.345 12.838
4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 16.750
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 29.819
14 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994
29 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335
30 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
50 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
80 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

100 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.170

To have a probability of 0.05 in the right tail when df = 5, the tabled value is χ2(5, 0.05) = 11.070.
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Appendix E Critical Values for the Durbin-Watson Statistic (α = .05)

K = 1 K = 2 K = 3 K = 4 K = 5

n dl du dl du dl du dl du dl du

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

Source: From J. Durbin and G. S. Watson, ‘‘Testing for Serial Correlation in Least
Squares Regression, II.’’ Biometrika 38 (1951): 159– 178. Reproduced by permission
of the Biometrika trustees.
Note: K = the number of slope parameters in the model.
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GLOSSARY

A priori probability A probability based on logical analysis rather than on observation or personal
judgment.

Absolute dispersion The amount of variability present without comparison to any reference point or
benchmark.

Absolute frequency The number of observations in a given interval (for grouped data).
Accrued interest Interest earned but not yet paid.
Active factor risk The contribution to active risk squared resulting from the portfolio’s different-than-

benchmark exposures relative to factors specified in the risk model.
Active return The return on a portfolio minus the return on the portfolio’s benchmark.
Active risk The standard deviation of active returns.
Active risk squared The variance of active returns; active risk raised to the second power.
Active specific risk or asset selection risk The contribution to active risk squared resulting from the

portfolio’s active weights on individual assets as those weights interact with assets’ residual risk.
Addition rule for probabilities A principle stating that the probability that A or B occurs (both occur)

equals the probability that A occurs, plus the probability that B occurs, minus the probability that
both A and B occur.

Adjusted beta Historical beta adjusted to reflect the tendency of beta to be mean reverting.
Adjusted R2 A measure of goodness-of-fit of a regression that is adjusted for degrees of freedom and

hence does not automatically increase when another independent variable is added to a regression.
Alternative hypothesis The hypothesis accepted when the null hypothesis is rejected.
Analysis of variance (ANOVA) The analysis of the total variability of a dataset (such as observations

on the dependent variable in a regression) into components representing different sources of
variation; with reference to regression, ANOVA provides the inputs for an F -test of the significance
of the regression as a whole.

Annual percentage rate The cost of borrowing expressed as a yearly rate.
Annuity A finite set of level sequential cash flows.
Annuity due An annuity having a first cash flow that is paid immediately.
Arbitrage A risk-free operation that earns an expected positive net profit but requires no net investment

of money.
Arbitrage opportunity An opportunity to conduct an arbitrage; an opportunity to earn an expected

positive net profit without risk and with no net investment of money.
Arbitrage portfolio The portfolio that exploits an arbitrage opportunity.
Arithmetic mean The sum of the observations divided by the number of observations.
Asian call option A European-style option with a value at maturity equal to the difference between the

stock price at maturity and the average stock price during the life of the option, or $0, whichever is
greater.

Autocorrelation The correlation of a time series with its own past values.
Autoregressive (AR) model A time series regressed on its own past values, in which the independent

variable is a lagged value of the dependent variable.
Bank discount basis A quoting convention that annualizes, on a 360-day year, the discount as a

percentage of face value.
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Bayes’ formula A method for updating probabilities based on new information.
Benchmark A comparison portfolio; a point of reference or comparison.
Bernoulli random variable A random variable having the outcomes 0 and 1.
Bernoulli trial An experiment that can produce one of two outcomes.
Beta A measure of an asset’s sensitivity to movements in the market.
Binomial random variable The number of successes in n Bernoulli trials for which the probability of

success is constant for all trials and the trials are independent.
Binomial tree The graphical representation of a model of asset price dynamics in which, at each

period, the asset moves up with probability p or down with probability (1 − p).
Block Orders to buy or sell that are too large for the liquidity ordinarily available in dealer networks

or stock exchanges.
Bond-equivalent basis A basis for stating an annual yield that annualizes a semiannual yield by

doubling it.
Bond-equivalent yield The yield to maturity on a basis that ignores compounding.
Breusch–Pagan test A test for conditional heteroskedasticity in the error term of a regression.
Capital allocation line (CAL) A graph line that describes the combinations of expected return and

standard deviation of return available to an investor from combining the optimal portfolio of risky
assets with the risk-free asset.

Capital asset pricing model (CAPM) An equation describing the expected return on any asset (or
portfolio) as a linear function of its beta.

Capital budgeting The allocation of funds to relatively long-range projects or investments.
Capital market line (CML) A form of the capital allocation line in which investors share identical

expectations about the mean returns, variance of returns, and correlations of risky assets.
Capital structure A company’s specific mixture of long-term financing.
Cash flow additivity principle The principle that dollar amounts indexed at the same point in time

are additive.
Central limit theorem A result in statistics that states that the sample mean computed from large

samples of size n from a population with finite variance will follow an approximate normal
distribution with a mean equal to the population mean and a variance equal to the population
variance divided by n.

Chain rule of forecasting A forecasting process in which the next period’s value as predicted by the
forecasting equation is substituted into the right-hand side of the equation to give a predicted value
two periods ahead.

Coefficient of variation (CV) The ratio of a set of observations’ standard deviation to the observations’
mean value.

Cointegrated Describes two time series that have a long-term financial or economic relationship such
that they do not diverge from each other without bound in the long run.

Combination A listing in which the order of the listed items does not matter.
Commercial paper Unsecured short-term corporate debt that is characterized by a single payment at

maturity.
Common size statements Financial statements in which all elements (accounts) are stated as a

percentage of a key figure such as revenue for an income statement or total assets for a balance sheet.
Company fundamental factors Factors related to the company’s internal performance, such as factors

relating to earnings growth, earnings variability, earnings momentum, and financial leverage.
Company share-related factors Valuation measures and other factors related to share price or the

trading characteristics of the shares, such as earnings yield, dividend yield, and book-to-market value.
Complement With reference to an event S, the event that S does not occur.
Compounding The process of accumulating interest on interest.
Conditional expected value The expected value of a stated event given that another event has

occurred.
Conditional heteroskedasticity Heteroskedasticity in the error variance that is correlated with the

values of the independent variable(s) in the regression.
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Conditional probability The probability of an event given (conditioned on) another event.
Conditional variances The variance of one variable, given the outcome of another.
Confidence interval A range that has a given probability that it will contain the population parameter

it is intended to estimate.
Consistency A desirable property of estimators; a consistent estimator is one for which the probability

of estimates close to the value of the population parameter increases as sample size increases.
Consistent With reference to estimators, describes an estimator for which the probability of estimates

close to the value of the population parameter increases as sample size increases.
Continuous random variable A random variable for which the range of possible outcomes is the real

line (all real numbers between −∞ and +∞) or some subset of the real line.
Continuously compounded return The natural logarithm of 1 plus the holding period return, or

equivalently, the natural logarithm of the ending price over the beginning price.
Correlation A number between −1 and +1 that measures the co-movement (linear association)

between two random variables.
Correlation analysis The analysis of the strength of the linear relationship between two data series.
Cost averaging The periodic investment of a fixed amount of money.
Covariance A measure of the co-movement (linear association) between two random variables.
Covariance matrix A matrix or square array whose entries are covariances; also known as a variance–

covariance matrix.
Covariance stationary Describes a time series when its expected value and variance are constant and

finite in all periods and when its covariance with itself for a fixed number of periods in the past or
future is constant and finite in all periods.

Cross-sectional data Observations over individual units at a point in time, as opposed to time-
series data.

Cumulative distribution function A function giving the probability that a random variable is less
than or equal to a specified value.

Cumulative relative frequency For data grouped into intervals, the fraction of total observations that
are less than the value of the upper limit of a stated interval.

Data mining The practice of determining a model by extensive searching through a dataset for
statistically significant patterns.

Deciles Quantiles that divide a distribution into 10 equal parts.
Decision rule With respect to hypothesis testing, the rule according to which the null hypothesis will

be rejected or not rejected; involves the comparison of the test statistic to rejection point(s).
Default risk premium An extra return that compensates investors for the possibility that the borrower

will fail to make a promised payment at the contracted time and in the contracted amount.
Degree of confidence The probability that a confidence interval includes the unknown population

parameter.
Degrees of freedom (df) The number of independent observations used.
Dependent With reference to events, the property that the probability of one event occurring depends

on (is related to) the occurrence of another event.
Dependent variable The variable whose variation about its mean is to be explained by the regression;

the left-hand-side variable in a regression equation.
Descriptive statistics The study of how data can be summarized effectively.
Diffuse prior The assumption of equal prior probabilities.
Discount To reduce the value of a future payment in allowance for how far away it is in time; to

calculate the present value of some future amount. Also, the amount by which an instrument is
priced below its face value.

Discrete random variable A random variable that can take on at most a countable number of possible
values.

Discriminant analysis A multivariate classification technique used to discriminate between groups,
such as companies that either will or will not become bankrupt during some time frame.

Dispersion The variability around the central tendency.



530 Glossary

Down transition probability The probability that an asset’s value moves down in a model of asset
price dynamics.

Dummy variable A type of qualitative variable that takes on a value of 1 if a particular condition is
true and 0 if that condition is false.

Dutch Book Theorem A result in probability theory stating that inconsistent probabilities create
profit opportunities.

Effective annual rate The amount by which a unit of currency will grow in a year with interest on
interest included.

Effective annual yield (EAY) An annualized return that accounts for the effect of interest on interest;
EAY is computed by compounding 1 plus the holding period yield forward to one year, then
subtracting 1.

Efficiency A desirable property of estimators; an efficient estimator is the unbiased estimator with the
smallest variance among unbiased estimators of the same parameter.

Efficient frontier The portion of the minimum-variance frontier beginning with the global minimum-
variance portfolio and continuing above it; the graph of the set of portfolios offering the maximum
expected return for their level of variance of return.

Efficient portfolio A portfolio offering the highest expected return for a given level of risk as measured
by variance or standard deviation of return.

Empirical probability The probability of an event estimated as a relative frequency of occurrence.
Error autocorrelation The autocorrelation of the error term.
Error term The portion of the dependent variable that is not explained by the independent variable(s)

in the regression.
Estimate The particular value calculated from sample observations using an estimator.
Estimated (or fitted) parameters With reference to regression analysis, the estimated values of the

population intercept and population slope coefficient(s) in a regression.
Estimation With reference to statistical inference, the subdivision dealing with estimating the value of

a population parameter.
Estimator An estimation formula; the formula used to compute the sample mean and other sample

statistics are examples of estimators.
European-style option or European option An option exercisable only at maturity.
Event Any outcome or specified set of outcomes of a random variable.
Excess kurtosis Degree of peakedness (fatness of tails) in excess of the peakedness of the normal

distribution.
Exhaustive Covering or containing all possible outcomes.
Expected value The probability-weighted average of the possible outcomes of a random variable.
Face value The promised payment at maturity separate from any coupon payment.
Factor A common or underlying element with which several variables are correlated.
Factor risk premium (or factor price) The expected return in excess of the risk-free rate for a portfolio

with a sensitivity of 1 to one factor and a sensitivity of 0 to all other factors.
Factor sensitivity (also factor betas or factor loadings) A measure of the response of return to each

unit of increase in a factor, holding all other factors constant.
Financial risk Risk relating to asset prices and other financial variables.
First-differencing A transformation that subtracts the value of the time series in period t − 1 from its

value in period t.
First-order serial correlation Correlation between adjacent observations in a time series.
Frequency distribution A tabular display of data summarized into a relatively small number of intervals.
Frequency polygon A graph of a frequency distribution obtained by drawing straight lines joining

successive points representing the class frequencies.
Full price The price of a security with accrued interest.
Fundamental beta A beta that is based at least in part on fundamental data for a company.
Fundamental factor models A multifactor model in which the factors are attributes of stocks or

companies that are important in explaining cross-sectional differences in stock prices.
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Future value (FV) The amount to which a payment or series of payments will grow by a stated
future date.

Generalized least squares A regression estimation technique that addresses heteroskedasticity of the
error term.

Geometric mean A measure of central tendency computed by taking the nth root of the product of n
non-negative values.

Harmonic mean A type of weighted mean computed by averaging the reciprocals of the observations,
then taking the reciprocal of that average.

Heteroskedastic With reference to the error term of a regression, having a variance that differs across
observations.

Heteroskedasticity The property of having a nonconstant variance; refers to an error term with the
property that its variance differs across observations.

Heteroskedasticity-consistent standard errors Standard errors of the estimated parameters of a
regression that correct for the presence of heteroskedasticity in the regression’s error term.

Histogram A bar chart of data that have been grouped into a frequency distribution.
Historical simulation (or back simulation) Simulation involving sampling from a historical data

series.
Holding period return The return that an investor earns during a specified holding period; a synonym

for total return.
Holding period yield (HPY) The return that an investor earns during a specified holding period;

holding period return with reference to a fixed-income instrument.
Homoskedasticity The property of having a constant variance; refers to an error term that is constant

across observations.
Hurdle rate The rate of return that must be met for a project to be accepted.
Hypothesis With reference to statistical inference, a statement about one or more populations.
Hypothesis testing With reference to statistical inference, the subdivision dealing with the testing of

hypotheses about one or more populations.
Incremental cash flows The changes or increments to cash flows resulting from a decision or action.
Independent With reference to events, the property that the occurrence of one event does not affect

the probability of another event occurring.
Independent and identically distributed (IID) With respect to random variables, the property of

random variables that are independent of each other but follow the identical probability distribution.
Independent variable A variable used to explain the dependent variable in a regression; a right-hand-

side variable in a regression equation.
Indexing An investment strategy in which an investor constructs a portfolio to mirror the performance

of a specified index.
Inflation premium An extra return that compensates investors for expected inflation.
Information ratio (IR) Mean active return divided by active risk.
In-sample forecast errors The residuals from a fitted time-series model within the sample period used

to fit the model.
Instability in the minimum-variance frontier The characteristic of minimum-variance frontiers that

they are sensitive to small changes in inputs.
Interest rate A rate of return that reflects the relationship between differently dated cash flows; a

discount rate.
Intergenerational data mining A form of data mining that applies information developed by previous

researchers using a dataset to guide current research using the same or a related dataset.
Internal rate of return (IRR) The discount rate that makes net present value equal 0; the discount

rate that makes the present value of an investment’s costs (outflows) equal to the present value of
the investment’s benefits (inflows).

Interquartile range The difference between the third and first quartiles of a dataset.
Interval With reference to grouped data, a set of values within which an observation falls.
Interval scale A measurement scale that not only ranks data but also gives assurance that the differences

between scale values are equal.



532 Glossary

IRR rule An investment decision rule that accepts projects or investments for which the IRR is greater
than the opportunity cost of capital.

Joint probability The probability of the joint occurrence of stated events.
Joint probability function A function giving the probability of joint occurrences of values of stated

random variables.
kth Order autocorrelation The correlation between observations in a time series separated by k periods.
Kurtosis The statistical measure that indicates the peakedness of a distribution.
Leptokurtic Describes a distribution that is more peaked than a normal distribution.
Level of significance The probability of a Type I error in testing a hypothesis.
Likelihood The probability of an observation, given a particular set of conditions.
Linear association A straight-line relationship, as opposed to a relationship that cannot be graphed as

a straight line.
Linear interpolation The estimation of an unknown value on the basis of two known values that

bracket it, using a straight line between the two known values.
Linear regression Regression that models the straight-line relationship between the dependent and

independent variable(s).
Linear trend A trend in which the dependent variable changes at a constant rate with time.
Liquidity premium An extra return that compensates investors for the risk of loss relative to an

investment’s fair value if the investment needs to be converted to cash quickly.
Logit model A qualitative-dependent-variable multiple regression model based on the logistic proba-

bility distribution.
Log-linear model With reference to time-series models, a model in which the growth rate of the time

series as a function of time is constant.
Log-log regression model A regression that expresses the dependent and independent variables as

natural logarithms.
Longitudinal data Observations on characteristic(s) of the same observational unit through time.
Look-ahead bias A bias caused by using information that was unavailable on the test date.
Macroeconomic factor A factor related to the economy, such as the inflation rate, industrial

production, or economic sector membership.
Macroeconomic factor model A multifactor model in which the factors are surprises in macroeconomic

variables that significantly explain equity returns.
Market price of risk The slope of the capital market line, indicating the market risk premium for each

unit of market risk.
Market risk premium The expected excess return on the market over the risk-free rate.
Markowitz decision rule A decision rule for choosing between two investments based on their means

and variances.
Maturity premium An extra return that compensates investors for the increased sensitivity of the

market value of debt to a change in market interest rates as maturity is extended.
Mean The sum of all values in a distribution or dataset, divided by the number of values summed; a

synonym of arithmetic mean.
Mean absolute deviation With reference to a sample, the mean of the absolute values of deviations

from the sample mean.
Mean excess return The average rate of return in excess of the risk-free rate.
Mean reversion The tendency of a time series to fall when its level is above its mean and rise when its

level is below its mean; a mean-reverting time series tends to return to its long-term mean.
Mean–variance analysis An approach to portfolio analysis using expected means, variances, and

covariances of asset returns.
Measure of central tendency A quantitative measure that specifies where data are centered.
Measure of location A quantitative measure that describes the location or distribution of data; includes

not only measures of central tendency but also other measures such as percentiles.
Measurement scales A scheme of measuring differences. The four types of measurement scales are

nominal, ordinal, interval, and ratio.
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Median The value of the middle item of a set of items that has been sorted into ascending or descending
order; the 50th percentile.

Mesokurtic Describes a distribution with kurtosis identical to that of the normal distribution.
Minimum-variance frontier The graph of the set of portfolios that have minimum variance for their

level of expected return.
Minimum-variance portfolio The portfolio with the minimum variance for each given level of

expected return.
Mixed factor models Factor models that combine features of more than one type of factor model.
Modal interval With reference to grouped data, the most frequently occurring interval.
Mode The most frequently occurring value in a set of observations.
Model specification With reference to regression, the set of variables included in the regression and

the regression equation’s functional form.
Money market The market for short-term debt instruments (one-year maturity or less).
Money market yield (or CD equivalent yield) A yield on a basis comparable to the quoted yield on

an interest-bearing money market instrument that pays interest on a 360-day basis; the annualized
holding period yield, assuming a 360-day year.

Money-weighted rate of return The internal rate of return on a portfolio, taking account of all cash
flows.

Monte Carlo simulation A methodology involving the use of a computer to find approximate
solutions to complex problems.

Multicollinearity A regression assumption violation that occurs when two or more independent
variables (or combinations of independent variables) are highly but not perfectly correlated with
each other.

Multiple linear regression Linear regression involving two or more independent variables.
Multiple linear regression model A linear regression model with two or more independent variables.
Multiple R The correlation between the actual and forecasted values of the dependent variable in

a regression.
Multiplication rule for probabilities The rule that the joint probability of events A and B equals the

probability of A given B times the probability of B.
Multivariate distribution A probability distribution that specifies the probabilities for a group of

related random variables.
Multivariate normal distribution A probability distribution for a group of random variables that is

completely defined by the means and variances of the variables plus all the correlations between
pairs of the variables.

Mutually exclusive events Events such that only one can occur at a time.
n Factorial For a positive integer n, the product of the first n positive integers; 0 factorial equals 1 by

definition. n factorial is written as n!.
Negative serial correlation Serial correlation in which a positive error for one observation increases

the chance of a negative error for another observation, and vice versa.
Net present value (NPV) The present value of an investment’s cash inflows (benefits) minus the

present value of its cash outflows (costs).
Node Each value on a binomial tree from which successive moves or outcomes branch.
Nominal risk-free interest rate The sum of the real risk-free interest rate and the inflation premium.
Nominal scale A measurement scale that categorizes data but does not rank them.
Nonlinear relation An association or relationship between variables that cannot be graphed as a

straight line.
Nonparametric test A test that is not concerned with a parameter, or that makes minimal assumptions

about the population from which a sample comes.
Nonstationarity With reference to a random variable, the property of having characteristics such as

mean and variance that are not constant through time.
Normal distribution A continuous, symmetric probability distribution that is completely described

by its mean and its variance.
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n-Period moving average The average of the current and immediately prior n − 1 values of a time
series.

NPV rule An investment decision rule that states that an investment should be undertaken if its NPV
is positive but not undertaken if its NPV is negative.

Null hypothesis The hypothesis to be tested.
Objective probabilities Probabilities that generally do not vary from person to person; includes a

priori and objective probabilities.
One-sided hypothesis test (or one-tailed hypothesis test) A test in which the null hypothesis is

rejected only if the evidence indicates that the population parameter is greater than (smaller than)
θ0. The alternative hypothesis also has one side.

Opportunity cost The value that investors forgo by choosing a particular course of action; the value
of something in its best alternative use.

Opportunity set The set of assets available for investment.
Optimizer A specialized computer program or a spreadsheet that solves for the portfolio weights that

will result in the lowest risk for a specified level of expected return.
Ordinal scale A measurement scale that sorts data into categories that are ordered (ranked) with

respect to some characteristic.
Ordinary annuity An annuity with a first cash flow that is paid one period from the present.
Ordinary least squares (OLS) An estimation method based on the criterion of minimizing the sum

of the squared residuals of a regression.
Orthogonal Uncorrelated; at a right angle.
Outcome A possible value of a random variable.
Outliers Small numbers of observations at either extreme (small or large) of a sample.
Out-of-sample forecast errors The differences between actual and predicted value of time series

outside the sample period used to fit the model.
Out-of-sample test A test of a strategy or model using a sample outside the time period on which the

strategy or model was developed.
Paired comparisons test A statistical test for differences based on paired observations drawn from

samples that are dependent on each other.
Paired observations Observations that are dependent on each other.
Pairs arbitrage trade A trade in two closely related stocks involving the short sale of one and the

purchase of the other.
Panel data Observations through time on a single characteristic of multiple observational units.
Parameter A descriptive measure computed from or used to describe a population of data, conven-

tionally represented by Greek letters.
Parameter instability The problem or issue of population regression parameters that have changed

over time.
Parametric test Any test (or procedure) concerned with parameters or whose validity depends on

assumptions concerning the population generating the sample.
Partial regression coefficients or partial slope coefficients The slope coefficients in a multiple

regression.
Percentiles Quantiles that divide a distribution into 100 equal parts.
Perfect collinearity The existence of an exact linear relation between two or more independent

variables or combinations of independent variables.
Performance appraisal The evaluation of risk adjusted performance; the evaluation of investment

skill.
Performance measurement The calculation of returns in a logical and consistent manner.
Periodic rate The quoted interest rate per period; the stated annual interest rate divided by the number

of compounding periods per year.
Permutation An ordered listing.
Perpetuity A perpetual annuity, or a set of never ending level sequential cash flows, with the first cash

flow occurring one period from now.
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Platykurtic Describes a distribution that is less peaked than the normal distribution.
Point estimate A single numerical estimate of an unknown quantity, such as a population parameter.
Pooled estimate An estimate of a parameter that involves combining (pooling) observations from two

or more samples.
Population All members of a specified group.
Population mean The arithmetic mean value of a population; the arithmetic mean of all the

observations or values in the population.
Population standard deviation A measure of dispersion relating to a population in the same unit of

measurement as the observations, calculated as the positive square root of the population variance.
Population variance A measure of dispersion relating to a population, calculated as the mean of the

squared deviations around the population mean.
Portfolio performance attribution The analysis of portfolio performance in terms of the contributions

from various sources of risk.
Portfolio possibilities curve A graphical representation of the expected return and risk of all portfolios

that can be formed using two assets.
Positive serial correlation Serial correlation in which a positive error for one observation increases the

chance of a positive error for another observation, and a negative error for one observation increases
the chance of a negative error for another observation.

Posterior probability An updated probability that reflects or comes after new information.
Power of a test The probability of correctly rejecting the null—that is, rejecting the null hypothesis

when it is false.
Present value (PV) The current (discounted) value of a future cash flow or flows.
Price relative A ratio of an ending price over a beginning price; it is equal to 1 plus the holding period

return on the asset.
Priced risk Risk that investors require an additional return for bearing.
Principal The amount of funds originally invested in a project or instrument; the face value to be paid

at maturity.
Prior probabilities Probabilities reflecting beliefs prior to the arrival of new information.
Probability A number between 0 and 1 describing the chance that a stated event will occur.
Probability density function A function with non-negative values such that probability can be

described by areas under the curve graphing the function.
Probability distribution A distribution that specifies the probabilities of a random variable’s possible

outcomes.
Probability function A function that specifies the probability that the random variable takes on a

specific value.
Probit model A qualitative-dependent-variable multiple regression model based on the normal

distribution.
Pseudo-random numbers Numbers produced by random number generators.
Pure discount instruments Instruments that pay interest as the difference between the amount

borrowed and the amount paid back.
Pure factor portfolio A portfolio with sensitivity of 1 to the factor in question and a sensitivity of 0

to all other factors.
p-Value The smallest level of significance at which the null hypothesis can be rejected; also called the

marginal significance level.
Qualitative dependent variables Dummy variables used as dependent variables rather than as

independent variables.
Quantile (or fractile) A value at or below which a stated fraction of the data lies.
Quartiles Quantiles that divide a distribution into four equal parts.
Quintiles Quantiles that divide a distribution into five equal parts.
Random number An observation drawn from a uniform distribution.
Random number generator An algorithm that produces uniformly distributed random numbers

between 0 and 1.
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Random variable A quantity whose future outcomes are uncertain.
Random walk A time series in which the value of the series in one period is the value of the series in

the previous period plus an unpredictable random error.
Range The difference between the maximum and minimum values in a dataset.
Ratio scales A measurement scale that has all the characteristics of interval measurement scales as well

as a true zero point as the origin.
Real risk-free interest rate The single-period interest rate for a completely risk-free security if no

inflation were expected.
Regime With reference to a time series, the underlying model generating the times series.
Regression coefficients The intercept and slope coefficient(s) of a regression.
Rejection point (or critical value) A value against which a computed test statistic is compared to

decide whether to reject or not reject the null hypothesis.
Relative dispersion The amount of dispersion relative to a reference value or benchmark.
Relative frequency With reference to an interval of grouped data, the number of observations in the

interval divided by the total number of observations in the sample.
Residual autocorrelations The sample autocorrelations of the residuals.
Risk premium The expected return on an investment minus the risk-free rate.
Robust The quality of being relatively unaffected by a violation of assumptions.
Robust standard errors Standard errors of the estimated parameters of a regression that correct for

the presence of heteroskedasticity in the regression’s error term.
Root mean squared error (RMSE) The square root of the average squared forecast error; used to

compare the out-of-sample forecasting performance of forecasting models.
Roy’s safety first criterion A criterion asserting that the optimal portfolio is the one that minimizes

the probability that portfolio return falls below a threshold level.
Rule of 72 The principle that the approximate number of years necessary for an investment to double

is 72 divided by the stated interest rate.
Safety-first rules Rules for portfolio selection that focus on the risk that portfolio value will fall below

some minimum acceptable level over some time horizon.
Sample A subset of a population.
Sample excess kurtosis A sample measure of the degree of a distribution’s peakedness in excess of the

normal distribution’s peakedness.
Sample kurtosis A sample measure of the degree of a distribution’s peakedness.
Sample mean The sum of the sample observations, divided by the sample size.
Sample selection bias Bias introduced by systematically excluding some members of the population

according to a particular attribute—for example, the bias introduced when data availability leads
to certain observations being excluded from the analysis.

Sample skewness A sample measure of degree of asymmetry of a distribution.
Sample standard deviation The positive square root of the sample variance.
Sample statistic or statistic A quantity computed from or used to describe a sample.
Sample variance A sample measure of the degree of dispersion of a distribution, calculated by dividing

the sum of the squared deviations from the sample mean by the sample size (n) minus 1.
Sampling The process of obtaining a sample.
Sampling distribution The distribution of all distinct possible values that a statistic can assume when

computed from samples of the same size randomly drawn from the same population.
Sampling error The difference between the observed value of a statistic and the quantity it is intended

to estimate.
Sampling plan The set of rules used to select a sample.
Scatter plot A two-dimensional plot of pairs of observations on two data series.
Security market line (SML) The graph of the capital asset pricing model.
Semideviation The positive square root of semivariance (sometimes called semistandard deviation).
Semilogarithmic Describes a scale constructed so that equal intervals on the vertical scale represent

equal rates of change, and equal intervals on the horizontal scale represent equal amounts of change.
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Semivariance The average squared deviation below the mean.
Serially correlated With reference to regression errors, errors that are correlated across observations.
Sharpe ratio The average return in excess of the risk-free rate divided by the standard deviation of

return; a measure of the average excess return earned per unit of standard deviation of return.
Shortfall risk The risk that portfolio value will fall below some minimum acceptable level over some

time horizon.
Simple interest The interest earned each period on the original investment; interest calculated on the

principal only.
Simple random sample A subset of a larger population created in such a way that each element of the

population has an equal probability of being selected to the subset.
Simple random sampling The procedure of drawing a sample to satisfy the definition of a simple

random sample.
Simulation trial A complete pass through the steps of a simulation.
Skewed Not symmetrical.
Skewness A quantitative measure of skew (lack of symmetry); a synonym of skew.
Spearman rank correlation coefficient A measure of correlation applied to ranked data.
Spurious correlation A correlation that misleadingly points towards associations between variables.
Standard deviation The positive square root of the variance; a measure of dispersion in the same units

as the original data.
Standard normal distribution (or unit normal distribution) The normal density with mean (µ)

equal to 0 and standard deviation (σ) equal to 1.
Standardized beta With reference to fundamental factor models, the value of the attribute for an asset

minus the average value of the attribute across all stocks, divided by the standard deviation of the
attribute across all stocks.

Standardizing A transformation that involves subtracting the mean and dividing the result by the
standard deviation.

Stated annual interest rate or quoted interest rate A quoted interest rate that does not account for
compounding within the year.

Statistic A quantity computed from or used to describe a sample of data.
Statistical factor models A multifactor model in which statistical methods are applied to a set of

historical returns to determine portfolios that best explain either historical return covariances or
variances.

Statistical inference Making forecasts, estimates, or judgments about a larger group from a smaller
group actually observed; using a sample statistic to infer the value of an unknown population
parameter.

Statistically significant A result indicating that the null hypothesis can be rejected; with reference
to an estimated regression coefficient, frequently understood to mean a result indicating that the
corresponding population regression coefficient is different from 0.

Statistics The science of describing, analyzing, and drawing conclusions from data; also, a collection
of numerical data.

Stratified random sampling A procedure by which a population is divided into subpopulations
(strata) based on one or more classification criteria. Simple random samples are then drawn from
each stratum in sizes proportional to the relative size of each stratum in the population. These
samples are then pooled.

Stress testing/scenario analysis A set of techniques for estimating losses in extremely unfavorable
combinations of events or scenarios.

Subjective probability A probability drawing on personal or subjective judgment.
Surprise The actual value of a variable minus its predicted (or expected) value.
Survivorship bias The bias resulting from a test design that fails to account for companies that have

gone bankrupt, merged, or are otherwise no longer reported in a database.
Systematic factors Factors that affect the average returns of a large number of different assets.
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Systematic sampling A procedure of selecting every kth member until reaching a sample of the desired
size. The sample that results from this procedure should be approximately random.

Target semideviation The positive square root of target semivariance.
Target semivariance The average squared deviation below a target value.
t-Distribution A symmetrical distribution defined by a single parameter, degrees of freedom, that is

largely used to make inferences concerning the mean of a normal distribution whose variance is
unknown.

Test statistic A quantity, calculated based on a sample, whose value is the basis for deciding whether
or not to reject the null hypothesis.

Time series A set of observations on a variable’s outcomes in different time periods.
Time value of money The principles governing equivalence relationships between cash flows with

different dates.
Time-period bias The possibility that when we use a time-series sample, our statistical conclusion may

be sensitive to the starting and ending dates of the sample.
Time-series data Observations of a variable over time.
Time-weighted rate of return The compound rate of growth of one unit of currency invested in a

portfolio during a stated measurement period; a measure of investment performance that is not
sensitive to the timing and amount of withdrawals or additions to the portfolio.

Total probability rule A rule explaining the unconditional probability of an event in terms of
probabilities of the event conditional on mutually exclusive and exhaustive scenarios.

Total probability rule for expected value A rule explaining the expected value of a random variable
in terms of expected values of the random variable conditional on mutually exclusive and exhaustive
scenarios.

Tracking error A synonym for tracking risk and active risk; also, the total return on a portfolio (gross
of fees) minus the total return on a benchmark.

Tracking portfolio A portfolio having factor sensitivities that are matched to those of a benchmark or
other portfolio.

Tracking risk The standard deviation of the differences between a portfolio’s returns and its
benchmark’s returns; a synonym of active risk.

Tree diagram A diagram with branches emanating from nodes representing either mutually exclusive
chance events or mutually exclusive decisions.

Trend A long-term pattern of movement in a particular direction.
Trimmed mean A mean computed after excluding a stated small percentage of the lowest and highest

observations.
t-Test A hypothesis test using a statistic (t-statistic) that follows a t-distribution.
Two-sided hypothesis test (or two-tailed hypothesis test) A test in which the null hypothesis is

rejected in favor of the alternative hypothesis if the evidence indicates that the population parameter
is either smaller or larger than a hypothesized value.

Type I error The error of rejecting a true null hypothesis.
Type II error The error of not rejecting a false null hypothesis.
Unbiasedness Lack of bias. A desirable property of estimators, an unbiased estimator is one whose

expected value (the mean of its sampling distribution) equals the parameter it is intended to
estimate.

Unconditional heteroskedasticity Heteroskedasticity of the error term that is not correlated with the
values of the independent variable(s) in the regression.

Unconditional probability (or marginal probability) The probability of an event not conditioned
on another event.

Unit root A time series that is not covariance stationary is said to have a unit root.
Univariate distribution A distribution that specifies the probabilities for a single random variable.
Up transition probability The probability that an asset’s value moves up.
Value at Risk (VAR) A money measure of the minimum value of losses expected during a specified

time period at a given level of probability.
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Variance The expected value (the probability-weighted average) of squared deviations from a random
variable’s expected value.

Volatility As used in option pricing, the standard deviation of the continuously compounded returns
on the underlying asset.

Weighted mean An average in which each observation is weighted by an index of its relative
importance.

Weighted-average cost of capital A weighted average of the after-tax required rates of return on a
company’s common stock, preferred stock, and long-term debt, where the weights are the fraction
of each source of financing in the company’s target capital structure.

White-corrected standard errors A synonym for robust standard errors.
Winsorized mean A mean computed after assigning a stated percent of the lowest values equal to one

specified low value, and a stated percent of the highest values equal to one specified high value.
Working capital management The management of a company’s short-term assets (such as inventory)

and short-term liabilities (such as money owed to suppliers).
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A
Abnormal returns, 259–261
Absolute dispersion, 100
Absolute frequency, 66, 71, 73, 75–76
Absolute returns, 497
Absolute value, 336, 343, 374, 386n, 393
Account receivables, hypothesis testing case

illustration, 256–257
Accrued interest, 57
Active factor risk, 499, 501–505
Active investors, 209
Active management, 474–475, 493–494
Active return, 494, 497
Active risk

comparison of, 499–501
decomposition, 494–496, 500
defined, 497
source analysis, 496
squared, 498–502

Active specific risk, 499, 503, 505
Adjusted R2, 340–341
Algebraic applications, 251, 337
Alpha, 314, 319n, 320–321
Alternative factor models, 491–492
Alternative hypothesis, 245, 271–273,

297–298, 320, 328, 349, 374
American Express, 191n, 448–449
American options, 185
American Stock Exchange (AMEX), 446
Amortized loans, 35
Analysis of variance (ANOVA), 253n,
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data mining tips for, 238
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370, 372, 378, 424, 490, 493

Annualized returns, 57, 117, 204
Annualized yield, 55
Annual percentage rate (APR), 12n
Annual percentage yield (APY), 12
Annual rate of return, 66
Annual returns, 50, 53, 100, 102, 121, 192,

444, 448
Annuity/annuities, see specific types of annuities

defined, 13
funding future inflow, 32–35
future value of, 14
present value of, 44
size of payments, 30–35

Antilogarithm, 330
A priori probability, 131, 135, 141
Arbitrage opportunities, 478, 481–483
Arbitrage portfolio, 482
Arbitrage pricing theory (APT), multifactor

models, 478–484, 509
Arithmetic mean

applications of, 127–128
center of gravity analogy, 80
defined, 77
equity market returns, 109
harmonic mean compared with, 94
normal distribution and, 192
population mean, 77
properties of, 71n, 80–81
sample mean, 77–80
asset classes, 114

Asian call option, 207
Asset allocation, 318, 460, 463–464
Asset classes, 114, 153, 239, 444–445, 462
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Asset pricing model, multiple regression
analysis case illustration, 347

Asset selection risk, 499
Asymptotic theory, 305
Audits, 373
Auto loans, 30, 35
Autocorrelations, time-series analysis,

387–390, 393–394, 398, 402, 407,
410, 412–414, 426

Autoregressive conditional heteroskedasticity
(ARCH), 417–420, 426–427

Autoregressive moving-average models
(ARMA), time-series analysis, 416–417

Autoregressive (AR) time-series analysis
characteristics of, 376–377, 386–399, 426
covariance-stationary series models,

386–387, 397, 400–401, 404–405
forecasting models, 391–397
mean reversion, 391, 403
models, 386–399
regression coefficients, instability of,

397–399
serially correlated errors, detection of,

387–390
Average, defined, 71n, 72
Average returns, 219, 239, 471, 486

B
Back simulation, 212
Bank discount

basis, 55
rate, 55
yield, 55–59

BankCorp, 139, 142–147, 149–150,
159–160

Bankers’ acceptances, 55
BARRA US-E2, 491–492
BARRA US-E3, 499
Basis points

implications of, 337
spread, 151

Bayes’ formula, 150, 161–166
Bear markets, 116, 210–213
Bell curve, see Normal distribution
Below-investment-grade borrower, 188–189
Benchmark, 474
Benedict, Ray, 381, 389–390
Berkshire Hathaway, 448–449

Bernoulli random variable, 175–176,
183–184

Bernoulli trial, 175, 177, 184
Beta, 111, 259, 310, 313–314, 320–321,

459–460, 476n, 479, 485, 488, 493,
510

Bias
data-mining, 236–238
look-ahead, 240
sample selection, 251
time-bias, 240–241
time-period, 252
variable, 360–361

Bid-ask spread, 326–327, 331, 362–363
Binomial distribution illustrations

block brokers, trading desk evaluation of,
179–181

tracking error, 181–182
Binomial formula, 167–168
Binomial random variables, 177–179,

183–185
Binomial trees, 184–185
Bins, 66n
BIRR model, 486, 489
Black-Scholes-Merton option pricing, 171,

200–201, 204, 212
Block brokers, 176–177, 179–181
Bond-equivalent basis, 59
Bond-equivalent yield, 59
Bond indexes, 217–218
Bond market, 56n
Bond portfolio

expected number of defaults, 183–184
probability case illustration, 150–152

Bonds, see specific types of bonds
default on, see Defaulted bonds
high-yield, 343–345, 490
long-term, 444
maturity, 64
price distribution, 172–173
ratings, 343–344
returns, correlation with T-bill returns,

299
seniority of, 343–344

Book-to-market ratio, 493, 496
Book-to-price (B/P) ratio, 474, 502–504
Book value per share, 98
Breusch-Pagan test, 350
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British pound, 291–293
Bull markets, 209–213
Business cycle(s)

implications of, 83, 188
risk, 486–488, 506

Buy-and-hold strategy, 210, 212, 268

C
CAC-40, 88
Callability, 343–344
Call options, 207
Canadian investments

bonds, 86, 89–90, 462
equities, 252, 462
real estate, 462
stock, 82, 89–90, 209
Treasury bills, 58n

Canadian dollar, 291–292
Capital allocation line (CAL)

calculations, 456–457
characteristics of, 450
equation, 455–457
with multiple assets, 454–455
risk-return tradeoff, 453–454
Capital asset pricing model (CAPM)
characteristics of, 319–320
heteroskedasticity case illustration, 347, 351
mean-variance analysis, 463
multifactor models, 478–479, 488, 493,

509–510
Capital budgeting, 39
Capital market line (CML), 458
Capital structure, 39–40
Cash dividends per share, 64
Cash flow(s)

additivity principle, 32, 36–37
arbitrage pricing theory (APT), 482
equal, 13–15
immediate, 21
incremental, 40n
from operations (CFO), correlation analysis,

295–296
present value of, 58
scaling and relation from operations and free

cash flow, 366–367
series of, 13–15, 19–27
single, 3–6, 8–3, 15–18
unequal, 15, 26–27

Cash inflow, 48–49, 53
Cash outflow, 42, 48–49, 53
Center for Research in Security Prices (CRSP),

University of Chicago, 239
Central limit theorem, 189, 222–225, 230,

254, 305
Certificate of deposit (CD)

characteristics of, 5, 8–9, 55
equivalent yield, 57–58

Chain rule of forecasting, 391–394
Chebyshev’s inequality, 111–112, 189
Chi-square distribution, 269–271
Chi-square tests, 253n
Cobb-Douglas production formula, 363n
Coca-Cola, 448–449
Coefficient of determination, 309–310, 329n
Coefficient of variance (CV), 113–115
Cointegration, time-series analysis, 422–424
Combination, defined, 167
Commercial banks, 200, 345
Commercial paper (CP) 55, 259–261
Commodity price risk, 276
Common size statements, 365–367
Common stock, 132–134, 193–194,

196–199
Company fundamental factors, 493
Company share-related factors, 493
Company value, 315–316
Complement, 142
Compounded annual rate, 349n
Compound growth rte, 28–30
Compounding

continuous, 10–13, 202–206, 380
daily, 11
defined, 4
frequency of, 8–11, 17–18
monthly, 10–11, 18, 31
quarterly, 9, 11
semiannual, 11–12

Compound interest, 56
Compound returns, 90
Conditional expected values, 146
Conditional probability, 133–136, 141–143,

162, 165
Conditional variances, 148–149
Confidence intervals

construction of, 227–228
defined, 227
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Confidence intervals (continued )
hypothesis testing, 250–251, 256, 311
normal distribution and, 193–194
for population mean, 227, 229–233
regression analysis, 308, 312–313,

317–318, 322–323
reliability factors for, 227–229

Confidence risk, 486–488, 506
Consistency, 226–227, 345, 351n
Consol bond, 24
Constant-proportions strategy, 87
Consumer price index (CPI), 289–290,

305–306, 317–318, 378–380, 385,
392–394, 398–399, 418–419, 425,
489

Continuous compounding, 10–13, 202–206,
380

Continuous random variables
continuous uniform distribution, 186–189
lognormal distribution, 188, 200–206
normal distribution, 188–201

Continuous time finance models, 202
Continuous uniform distribution, 186–189
Continuous uniform random variable,

223–224
Corporate bonds, 259, 295
Correlated errors, time-series analysis, 385
Correlation, see Correlation analysis;

Correlation coefficient; Serial correlation
defined, 157
matrix, 157, 159, 291, 444, 471–472
mean-variance analysis, 462
minimum-variance portfolios, 431, 433,

437–438, 440–441, 447–448
properties of, 157–158, 253n
risk-return tradeoff, 450

Correlation analysis
characteristics of, 282–283
defined, 282
correlation coefficient, 283–287, 297–300
limitations on, 287–289
scatter plots, 281–283
uses of, 289–297

Correlation coefficient
calculation and interpretation of, 283–287
characteristics of, 294
hypothesis testing, 276–279
significance tests, 297–300

Cost averaging, 93
Cost of capital, 47
Cost of goods sold, 356n, 389–390
Counter cyclical stocks, 510
Counting

combination formula, 167–168
multinomial formula, 167
multiple rule of, 166–167, 218
permutation formula, 168–169
principles of, 166

Coupon bonds, 57
Covariance

active factor risk, 499, 501
characteristics of, 154–159, 283–286
computation of, 160
defined, 154
matrix, 156, 158
mean-variance analysis, 473
minimum-variance portfolios, 444,

446–447, 454
two-asset portfolios, 431

Covariance-stationary time series, 386–387,
397, 400–401, 404–405, 421–422,
424–426

Credit
quality factor, 488–490
ratings, 64, 84–85, 183–184
risk, 276

Creditworthiness, 343
Critical values, 249–251, 311, 318–319, 336,

339, 350, 354, 356, 374, 390, 405, 422
Cross-sectional data, 78, 219–221, 301, 324
Cross-sectional mean, 78–80
Cross-sectional regression, 382
Crossover discount rate, 47
Crude oil, 408
Cubed deviation, 120–121
Cumulative absolute frequency, 73, 75–76
Cumulative distribution function (cdf),

173–174, 179
Cumulative relative frequency, 69, 71, 75
Current P/E, 77
Cyclical risk, 510

D
Data collection, 251
Data-mining bias, 236–238
Dealer market, 363
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Debt
high-yield, 345
investment-grade, 490
probability case illustration, 150–152
rating, 372
returns, correlation analysis, 294–295

Debt-to-asset (D/A) ratio, 502–504
Debt-to-equity ratio, 372
Deciles, 94, 98
Decision rule, 249
Default

premium, 295
rate, 184
risk, see Default risk

Defaulted bonds, hypothesis testing case
illustration, 264–265

Default risk
multifactor models, 486
premium, 2–3, 150–152

Defined benefit pension plans, 206
Degree of confidence, 227
Degrees of freedom (df), 230–232, 254, 258,

262–263, 271–273, 297, 307, 311,
319, 329, 336, 338, 340, 343, 350,
357–358, 389, 393, 412

Delisted companies, 239
Demographics, 373
Dependent events, 138–142
Dependent variables

discrete, 373
qualitative, 372–374
regression analysis, 300–304, 306–310,

319, 322, 325, 331–332, 336–337,
339, 341–342, 363–364, 367–369,
372–374

time-series analysis, 377, 386–387, 393,
420–421

Depreciation, 375
Derivatives, 275–276
Descriptive statistics, 62
de Vries, Johann, 421–422
Dickey-Fuller test, 403–405, 420, 421–424
Diffuse priors, 166
Disclosure, Inc., 373
Discount, defined, 2
Discounted cash flow analysis, 54–55
Discounting, 128
Discount rate, 2, 16–17, 24, 26, 47, 58–59

Discount yield, 55
Discrete dependent variable, 373
Discrete uniform probability function, 175
Discriminant analysis, 372–373
Dispersion measures

absolute dispersion, 100
Chebyshev’s inequality, 111–112
coefficient of variance (CV), 113–115
defined, 100
mean absolute deviation (MAD), 101–103,

108–109
normal distribution, 191
population standard deviation,

104–106
population variance, 103–104
range, 100–103
sample standard deviation, 106–109
sample variance, 104, 106–109
semideviation, 110–111
semivariance, 110–111
Sharpe ratio, 115–118

Distribution-free tests, 275n
Diversification, 157, 293–294, 438, 441,

445–449, 459n
Dividend(s)

active factor risk, 502–504
implications of, 23, 95–97
per share, 98
reinvestment, 48–49, 54
yield, 95–99, 499

DJ EuroSTOXX 50, 95–96
Dogs of the Dow Strategy, 237n
Dollar-weighted return, 48n
Dow Chemical, 191n
Dow Jones Industrial Average (DJIA),

237n
Down transition probability, 184
Dow-10 investment strategy,

268–269
Dreyfus Appreciation Fund, 320–321
DriveMed, Inc., Bayes’ formula illustration,

162–166
Dummy variables, 341–345, 373, 485
Durbin-Watson (DW) statistic, time-series

analysis, 350, 353–355, 369, 371, 379,
384–385, 387, 390, 393–394, 398,
402, 425

Dutch Book Theorem, 133
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E
Earnings

active factor risk, 502–505
per share (EPS), 82–83, 98, 139, 142–150,

161–166
EBITDA/interest, 188–189
Econometrics, 351n
Economic decisions, 252
Economic forecasts, evaluation of

correlation analysis, 289–290
linear regression, 305–306

Economic reasoning, 360
Economic theory, 219, 362
Economy-wide risk, 487–488
Effective annual rate (EAR), 12–13
Effective annual yield (EAY), 57–59
Efficiency, 226
Efficient frontier, 434, 439, 441, 454–455,

462, 464
Efficient portfolio, 430
Empirical probability, 131, 135, 141
Engle, Robert F., 418, 422–423
Engle-Granger test, 423
Enterprise value (EV), 315–316
Enterprise value/Invested Capital (EV/IC)

ratio, 322–324
Equal-weighted returns, 347
Equity/equities

management style, 291
markets, 71–72, 82
mutual funds, 104–106, 232–233,

255–256, 270–271
portfolio, 191, 193, 487, 494–496
returns, correlation analysis,

294–295
Equivalence relationships, 1–2, 13–15,

19–20, 35–36
Error autocorrelations, 388–389
Error term, 301
Estimation, 244
Estimators, defined, 225
Eurobonds, 462
European-style options, 207
Even-numbered samples, 81, 97
Event, defined, 130. See specific types of events
Excess kurtosis, 123–125, 190
Excess return(s)

regression analysis, 313–314, 320–321, 347

risk-adjusted, 320
to variability measure, 115n

Exchange rate(s)
characteristics of, 219
Japanese yen/U.S. dollar,

401–403
return, 291–293
Swiss franc/U.S. dollar, 375–376
time-series analysis, 397

Exchanges, removal from, 239. See also specific
exchanges

Ex-dividend date, 185
Exhaustive events, 130, 142–143
Expected returns

lognormal distribution, 206
mean-variance analysis, 463
minimum-variance portfolios, 432–433,

437–440, 443, 448, 456–459
multifactor models, 476–477, 479–481,

483, 486–490, 508
risk-free assets, 449–450
risk-return tradeoffs, 450–453
two-asset portfolios, 431–432, 435, 437

Expected value
conditional, 146
covariance, 155–157
implications of, 88–89, 143–145,

147–152,
multiplication rule for, 161
properties of, 152–153
total probability rule for, 146–149

Explanatory variable, time-series analysis, 377,
393

Exponential growth, 380, 384, 406
Exponential trends, time-series analysis,

425–426
Extreme returns, 191
Extreme value, 69, 80, 83

F
Face value, 55–56
Factor, generally

betas, 476n
loadings, 476n
multifactor models, 474
portfolios, 505–507
price, 479
risk premium, 479
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sensitivities, multifactor models, 476–477,
480–481, 484–485, 488–490,
494–495, 503–504, 508

Factorial, 166–167
Factor’s marginal contribution to active risk

squared (FMCARS), 501–502
Failing stocks, 239
FashionDesigns, hypothesis testing case

illustration, 256–258
Fat tails, 191
F -distribution, 271–272, 340
Federal Reserve, 288, 290n
Fidelity Select Technology Fund (FSPTXP),

case illustrations
multiple regression analysis, 334–336,

357–358
time-series analysis, 423–424

Financial ratios, 373
Financial risk, 200n
Financial statement analysis, 365–366,

373
Financial theory, 116, 219, 370, 397
Financial Times Stock Exchange (FTSE) All

Share Index, 240
Finite population correction factor (fpc), 222,

255n
First-differencing/first-difference, time-series

analysis, 400–401, 403–404, 412,
422n, 426

First-order
autoregression (AR), 386
serial correlation, 352
time-series model, 397

Fisher effect, 349–350, 354, 369–371,
421

Fitzsimmons, Susan, 435, 437
Fixed income

market, 56
portfolios, 217–218
strategies, 200

Floating exchange rates, 219
‘‘Foolish Four’’ investment strategy, 237
Forbes Honor Roll, 104–106
Forecast(s), see Forecasting

unbiased, 316–317
error, linear regression, 323

Forecasting
chain rule of, 391–394

linear regression analysis, 305
moving-average time-series analysis,

409–411
in time-series analysis, 385, 391–394,

409–412, 424–427
Foreign currencies, 291–293. See also specific

foreign currencies
Foreign exchange risk, 276
Free cash flow (FCF),

366–367
Free cash flow to the firm (FCFF), correlation

analysis, 295–296, 300
French BTFs, 58n
Frequency distributions

absolute frequency, 66, 71
central limit theorem and, 224
construction of, 66–69, 71–72
cumulative, 72, 74–76
defined, 65
holding period return, 65–66
relative frequency, 69–72
S&P 500, 65, 67–70, 72–76

Frequency polygon, 74–76
F -statistics, 272, 318–319, 321, 339–340,

357–358, 366
F -tables, 272–274
F -tests, 246, 271–272, 319, 321, 328–330,

339–340, 343, 346, 358
Full price, 57n
Fundamental factor models, 474, 484–485,

490–493
Fund inflows, 234–235
Fund outflows, 234–235
Future cash flows, discounting, 128
Future value (FV)

of annuity, 14, 31
defined, 3
equivalence, 35–36
future lump sum, 7
growth rate calculation, 28
of lump sum with interim cash reinvested at

same rate, 5–6
of lump sum with no interim cash, 6
series of cash flows, 13–15,

26–27
single cash flow, 3–6,

8–13
solving for, 27–30



552 Index

G
Generalized autoregressive conditional

heteroskedasticity (GARCH) models,
420

Generalized least squares, 351, 420
Generally accepted accounting principles

(GAAP), 296
General Motors, 313–314
Geometric mean

applications of, 127–128
defined, 89
equity market returns, 109
formula for, 90–93
harmonic mean compared with, 94
implications of, 50, 89–90

German Treasury discount paper, 58n
Gillette, 448–449
Goodness of fit, 340–341
Government bonds, 24, 55, 295, 430–441,

444–445, 450–452, 454, 471–472
Graphic data presentations

frequency polygon, 74–76
histograms, 73–74

Gray, Richard, 499–500
Gross domestic product (GDP), 341, 349n,

423–424, 475–476, 479, 508
Gross margin, 389–390, 392
Gross national product (GNP), 349n
Gross profit, 356n
Growth at a reasonable rate (GARP), 503, 505
Growth funds, 277n
Growth-led markets, 324
Growth rate

computation of, 89
implications of, 128, 282
solving for, 27–30

Growth stocks, 98–99, 358

H
Hansen-White standard errors, 355n
Harmonic mean, 93–94
Hedge funds, 64, 116, 239
Hedging strategies, 291, 459n, 484
Heteroskedasticity

autoregressive conditional (ARCH),
time-series analysis, 417–420

conditional, 347–351, 356
consequences of, 345–347

correcting for, 350–351
defined, 345
implications of, 345, 359–360
multiple regression analysis case illustration,

347
testing for, 348–350
unconditional, 347–348

Heteroskedasticity-consistent standard errors,
351n

Histograms, 73–74, 234
Historical returns, 434–437, 443–445, 448,

474
Historical simulation, 212
Holding period return (HPR), 47–50, 56,

65–66, 191
Holding period yield (HPY), 56–59
Homoskedasticity, 345n, 346–347, 417–420
Hughes, William, 487
Hurdle rate, 43
Hypothesis testing

characteristics of, 171, 225, 243–244
cointegration and, 422
investment decision, 252
mean, 253–269
nonparametric inference, 275–279
one-sided/one-tailed test, 245, 249, 251, 257
regression analysis and, 310–318, 327, 329
steps in, 244–253
test statistic, 246–249
two-sided tests, 245, 251, 272
variance, 269–274

I
I/B/E/S, 373
Immediate cash flow, present value of, 21
In-sample forecast errors, 394–395
Income statements, 365–366
Incremental cash flows, 40n
Independence, defined, 160
Independent events, 138–142
Independently and identically distributed (IID)

random variables, 203
Independent variable

random, 189
regression analysis, 300–304, 306,

308–309, 319, 322, 325, 331–333,
336–337, 339–340, 356–357,
360–361, 363–364, 366–371, 374
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time-series analysis, 376–377, 386, 420,
423–424

Index funds, 509
Indexing, 217–218
Inference

nonparametric, 275–279
statistical, 243–244, 359, 386
valid, 359

Inflation/inflation rate
annualized, 379
arbitrage pricing theory (APT), 483–484
autoregressive conditional heteroskedasticity

(ARCH), 418
expected, 349–350, 370
forecasts, 316–317
implications of, 281–282, 286, 288, 290,

297–298
multifactor models, 483–485
prediction of, 351, 378
premium, 2
regression analysis, 302–303, 308–310,

348–350, 355, 369
risk, 486–488, 506
time-series analysis, 385, 387, 395–399

Inflation-adjusted returns, 71–72, 109
Information ratio (IR), 497, 505
Initial investment, 5, 36, 45
Instability, time-series analysis case illustration,

398–399
Insurance, Guaranteed Investment Contract

(GIC), 16, 18
Intel case illustrations

autoregressive time-series model, 389–390
cointegration between sales and nominal

GDP, 423
forecasting, 392
linear trend regression, 381–383
log-linear regression, 383–384, 404–405
moving-average time-series analysis,

408
Intercept

hypothesis testing, 311
multifactor models, 475, 479
regression analysis, 305, 315, 317,

328–329, 333, 335, 342, 357–358,
361–362, 365–366, 369, 371, 374

time-series analysis, 377–378, 389,
401–402, 407

Interest-bearing instruments, 57
Interest rate(s)

bond market, 345
correlation analysis, 288
declining, 147
implications of, 1–3
multifactor models, 476
periodic, 18
quoted, 8
regression analysis and, 348–350
real, 349
risk, 276, 343
risk-free, 2
solving for, 27–30
stated annual, 8–9, 11–13
Treasury bonds, 218

Intergenerational data mining, 237
Interim cash flow, 53
Internal rate of return (IRR)

for bonds, 59
defined, 42
implications of, 39–40
rule, 42–47

International indexes, 238–239
International stocks, 98–100
Interquartile range (IQR), 101n
Intervals

confidence, see Confidence intervals
in frequency distribution, 66–67, 69,

73–74
modal, 84
prediction, 371–374
scales, 63–64
standard deviation, 111, 112

Inventory, 221
Inverse probability, 161
Inverse relationship, 239
Inverse transformation, 209–210
Invested capital (IC), 315–316
Investment banks, 201, 345
Investment decisions, influential factors, 167,

252, 290, 399, 417, 425
Investment horizon, 437, 480
Investment managers, communication with,

497–498
Investment research, 98, 240–241
Investment style, 495
Investment theory, 411n
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J
Japanese yen

characteristics of, 44–45, 291–293, 298
/U.S. dollar exchange rate, 401–403

Jarque-Bera (JB) statistical test of normality,
127n

Jensen’s inequality, 92n
Johannesburg Stock Exchange (JSE) All Share

Index, 421
Joint probability function, 134–135, 159

K
Kageyama Ltd., 44
Kahn, Robert L., 243
Kolmogrov-Smirnov test, 276
kth order autocorrelation, 388
Kurtosis

calculation of, 125–127
characteristics of, 123–124, 190
sample formula, 124–125

L
Labeling problems, 167
Lagged dependent variable, Fisher effect with,

369–370
Large-cap

equity funds, 498
stock, 293–294, 430–434, 437, 439, 441,

450, 452–453, 495
Lehman Brothers Government Index,

218
Lender, breach of covenant, 188
Leptokurtic distribution, 123–125
Leverage, 474, 499
Likelihoods, 162
Limited Brands, Inc., 28–30
Linear association, 283–287, 329
Linear interpolation, 95
Linear regression

analysis of variance (ANOVA), 318–321
assumptions of, 303–306
characteristics of, 300–303
coefficient of determination, 309–310
cointegration, 422
defined, 300
estimation parameters, 301
fixed parameters, 301
hypothesis testing, 310–318

limitations on, 324
multiple, see Multiple linear regression
multiple time series, 420
prediction intervals, 321–324
problems in, 359
standard error of estimate (SEE), 306–308,

320, 322–323, 329
Linear relationship, 300, 332n
Linear trends, in time-series analysis, 377–380,

425
Liquidity premium, 2–3
Log-linear trend models, 380–384,
Log-log regression model, 327
Logarithmic scales, 127
Logit regression models, 372
Long-term debt market, 59
Longitudinal data, 220
Look-ahead bias, 240–241
Lump sum

distant future, 16–17
future value of, 9–11

M
Macroeconomic factor/multifactor models,

474, 475–477, 485–493
Macroeconomic time series, 387
Management styles, 474–475
Mann-Whitney Utest, 276
Manumatic, 477, 479
Margin, 455n
Marginal probabilities, 133
Marketable security price risk, 276
Market capitalization, see Large-cap; Small-cap

characteristics of, 99–100, 296, 327–330,
361–364, 370, 474, 493–494,
502–504

indexes, 88
Market efficiency, 204, 411n
Market makers, 328, 330, 339, 361–365
Market model regression, 159
Market price of risk, 458
Market risk

implications of, 259, 313, 320
premium, 459

Market timing
characteristics of, 207, 209–213
risk, 486–488, 506

Market-to-book ratio, 370
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Market value, 98–99, 374
Markowitz, Henry, 429
Markowitz decision rule, 460–461
Matrix algebra, 337
Maturity

bonds, 64
money market yields, 56
premium, 2–3
T-bills, 55

Maximum likelihood, 372
Mean, see specific types of means

excess return, 115
lognormal distribution, 200–201, 206
normal distribution and, 190, 194, 197
return, 115, 120
return spread, 400
reversion, time-series analysis, 391, 400
sample, 221–225
time-series analysis, 387
value, simulation trials, 207
variance, see Mean-variance analysis;

Mean-variance portfolio theory
Mean absolute deviation (MAD), 101–103,

108–109
Mean regression sum of squares (MSR), 339
Mean squared error (MSE), 339, 352
Mean sum of squares (MSS), 320, 357–358
Mean-variance analysis

capital asset pricing model (CAPM),
458–460

defined, 430
diversification, 445–449
implications of, 152n, 197
instability for minimum-variance frontier,

470–473
Markowitz decision rule, 460–461
minimum-variance frontier, 430–439,

442–445, 470–473
optimization, estimating inputs for,

464–470
portfolio choice rules, 460–464
risk-free assets, 449–458
size of portfolio, 445–449
three-asset case, extension to, 439–442

Mean-variance portfolio theory
basics of, 429–430
development of, 429
risk aversion, 429–430

Measurement error, Fisher effect with,
370–371

Measurement scale(s)
defined, 63
identification of, 64
types of, 63–64

Measures of central tendency
arithmetic mean, 77–83
defined, 76–77
mean, types of, 85–94
median, 81–83
mode, 83–85

Median
defined, 81
determination of, 81–82
normal distribution and, 190
price-to-earnings ratio case illustration,

82–83
Medtronic, Inc., 412–414
Mesokurtic distribution, 123
Michelin, 204–205
Microcap firms, 296n
Microsoft Excel, applications of, 48, 123n,

253, 390
Miller, Lisette, 378–379, 392–393, 398–399,

418–419
Minimum-variance frontier/portfolio

bond-stock, 452
as bullet, 39
characteristics of, 432–433, 463n
defined, 430, 432
determination for many assets,

442–445
efficient frontier, 434
global, 434, 436
historical returns, 434–437, 443–445
three-asset, 439–442
two-asset, 435–437

Mixed factor models, 474
Modal interval, 84
Mode

calculation of, 84–85
defined, 84
normal distribution and, 190

Model specification, multiple regression
analysis

case illustrations, 361–367, 369–371
defined, 359
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Model specification, multiple regression
analysis (continued )

misspecified functional form, 360–361,
365–367

principles of, 359–360
time-series misspecification, 368–371

Modern portfolio theory (MPT), 152, 197
Momentum, 493
Monetary policy, 219
Money, time value of, see Time value of money
Money market funds, 509
Money market yields

bank discount yield, 55–57
characteristics of, 54–59

Money supply, 281–282, 286, 297–298,
302–303, 308–310

Money-weighted returns, 47–50, 52–54
Monte Carlo simulation

applications, 171, 175, 186, 206–207, 213
central limit theorem, 223
defined, 206
market timing case illustration, 209–213
mean-variance analysis, 464
risk factors, 258n

Monthly rate of return, 65–66
Moody’s Investors Service

bond ratings, 84, 183, 343
Bond Survey, 259

Morningstar, 98
Mortgage-backed securities, 207
Mortgage loans, 30–31, 35
Moving-average time series models

autoregressive (ARMA), 416–417
forecasting, 409–412
smoothing past values, 407–409

MSCI
EAFE Index, 78–79, 87n 152–153,

181–182, 462
World ex. U.S., 444–445, 454,

471–472
Multicollinearity

consequences of, 356
correcting for, 358–359
defined, 356
detection of, 356–357
implications of, 356, 359
multiple regression analysis case illustration,

357–358

Multifactor models
applications, 493–509
arbitrage pricing theory (APT), 478–482,

509
characteristics of, 473–474, 510
current practices, 485–493
factors and types of, 474
fundamental factor models, 484–485,

490–493
macroeconomic factor models, 475–478,

485–490
two-factor models, parameter determination,

483–484
Multiperiod forecasts, 391–394
Multiperiod horizon, 92
Multiple linear regression

characteristics of, 325–326
defined, 325
using dummy variables, 341–345
model, assumptions of, 326, 331–336
model specification, see Model specification,

multiple regression analysis
qualitative dependent variables, 372–374
violation of assumptions, 345–359, 421

Multiple R-squared, 309, 314–315, 317, 320,
322, 328–329, 335, 350, 361–362,
365–367, 369, 371, 394

Multivariate distribution, 190
Mutual funds

characteristics of, 84, 135–136, 141
counting principles, 167
equity, see Equity mutual funds
expected return, 158–159
Forbes Honor Roll, 104–106
hypothesis testing, 277
mean absolute deviation, 102–103
mean returns, 90–91
range, 102–103
rankings, 98
regression analysis, 319, 360

Mutually exclusive events, 130, 142–143

N
Nasdaq, 172, 239, 330, 339, 361–362
Natural logarithms, 89, 203, 330–331,

360–364, 373, 380, 384, 423, 426
Negative coefficients, 300
Negative correlation, 158
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Negative deviations, 101, 123
Negative returns, 89
Negative serial correlation, 352n
Negative Sharpe ratio, 116
Negative skew, 111n, 118, 120
Net income (NI), 295–296, 300, 362
Net present value (NPV)

computation of, 40
defined, 40
implications of, 39
rule, 40–42, 44–45

NewBank, 159–160
Newey-West computation, 355n
New York Stock Exchange (NYSE), 172, 219,

446
Nextech, 4787
Node, 184
Nominal gross domestic product (GDP),

423
Nominal interest rates, 349
Nominal returns, 109
Nominal risk-free interest rate, 2
Nominal scales, 63–64
Nonlinearity, bid-ask spread,

362–363
Nonlinear regression, 304
Nonlinear relation, 287–289
Nonparamatric test, 275
Nonstationarity, 372, 403–407
Normal distribution

applications, 197–200
characteristics of, 119, 123, 125, 179,

189–193
common stock portfolio case illustration,

193–194, 196–197
confidence intervals and, 194, 228
hypothesis testing, 250–251, 254,

266–267, 272, 276n
multivariate, 190–191
parameters, 190–191
regression analysis, 304n, 347
role of, 189
safety-first optimal portfolio,

198–200
standard, 191, 194–195, 200
types of, 190
unit, 191

n-period moving average, 407–409

Null hypothesis, 245, 250, 252–253,
255–265, 268–270, 273, 297–299,
311, 313, 317–318, 320, 327–329,
333–336, 339, 350, 354–356, 374,
404, 412n, 421, 423–424

O
Objective probability, 131
Observations

arithmetic means, 80–81
correlation analysis, 282, 288
geometric means, 92
hypothesis testing, 272, 311
paired, 265–266
regression analysis, 305–306, 314, 317,

320, 322–323, 329, 332, 335, 350,
352, 360, 365–367, 369, 371, 373

time-series analysis, 377, 379, 384–385,
390, 393–394, 398, 402, 407,
413–417, 419, 421

Odd-numbered samples, 81
Off-diagonal covariance, 155
One-factor APT model, 480–481
One-tailed test, 245, 249, 251,

257, 329
Operating costs, 149–150
Opportunity cost, 2, 47
Opportunity set, 454
Optimal portfolio, 291, 443
Optimization, 462, 473
Optimizer, 441, 444
Option pricing models

binomial, 168, 175
Black-Scholes-Merton, 171, 200–201, 204,

213
lognormal distribution, 204
volatility used in, 204–205

Option returns, 191
Ordinal scales, 63–64
Ordinary annuity

equal cash flows, 13–15, 19–20
present value of, 19–23, 25–26

Ordinary least squares (OLS), 331n, 352,
354–355, 357, 359, 377, 390

Orthogonal factors, 489
Out-of-sample

forecast, time-series analysis, 395–397, 427
test, 236
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Outcomes, 129–130
Outliers, 80, 254, 282

P
Paired comparisons tests, 265–266
Pairs arbitrage trade, 133
Pairwise correlations, 191, 356–357
Panel data, 220
Parameter

implications of, 215
instability, 324
in population(s), 62

Parametric tests, 275–276, 279
Parsimonious regression models, 360
Partial regression coefficients, 331
Partial slope coefficients, 331
Par value, 55
Passive investment, 497, 504
Passive management, 333–334, 337,

473–474
Pension funds, 7, 18, 333–334, 337
Pension plans, 51–52, 507–509
Percentiles, 81n, 94–98
Perfect collinearity, 332n
Performance

appraisal, 47
evaluation, 47n, 98
measurement, 47

Perpetual annuity, see Perpetuity
Perpetuity

defined, 13
present value of, 23–24
projected, 25–26

Platykurtic distribution, 123
Point estimators, 225–227
Pooled estimate, 261
Population

covariance, 284
defined, 62
mean, see Population mean
mode, 84n
regression coefficients, 338–340
sample, 62–63
standard deviation, 104–106, 192, 254
variance, see Population variance

Population mean
confidence intervals, 227–233
defined, 77

hypothesis tests and, 250–251, 254–265
implications of, 221
interval estimates, 225–235
parameters, 225
point estimates, 225–235
sample size, 226, 233–235

Population variance (σ2)
hypothesis testing, 262–263, 270, 273
implications of, 103–104, 145, 201–202,

204, 223, 228
Portfolio

choice rules, 460–464
concepts, see Portfolio concepts
management/management styles, 290–291,

492, 494–496
performance attribution, 490n
possibilities curve, 432
rebalanced, 87
returns, see Portfolio expected returns;

Portfolio return measurement
risk, 445, 447

Portfolio concepts
mean-variance analysis, 429–473
multifactor models, 473–510

Portfolio expected return
calculation of, 153–154
implications of, 152
variance of return and, 158–159

Portfolio return measurement
money-weighted rate of return, 47–50,

52–54
strategies for, 87–88
time-weighted rate of return, 49–54

Positive coefficients, 300
Positive correlations, 158, 294, 438
Positive deviations, 101, 123
Positive serial correlations, 352, 354,

385
Positive Sharpe ratio, 116
Positive skew, 111n, 118, 120–121
Precious metals, 267
Preferred stock, 24
Present value (PV)

defined, 3
equivalence, 35–36
interest rate and, 58
IRR rule and, 48
money-weighted rate of return, 52–53
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projected, 16–17, 22–23
solving for, 27–30

Price multiples, 493
Price relative, 202
Price-to-book value (P/BV) ratio, 98–99,

239–240
Price-to-cash flow (P/CF) ratio, 98–99
Price-to-earnings (P/E) ratio, 77, 81–83,

98–99, 104, 301, 421–422, 474
Priced risk, 474, 476
Principal, defined, 4
Principal-components models, 474
Prior probabilities/priors, 162, 166
Probability

addition rule for, 136–137
a priori, 131, 135, 141
Bayes’ formula, 161–166
conditional, 133–136, 141–143, 162,

165
counting, 166–169
defined, 130
dependent events, 138–142
distribution, see Probability distribution
empirical, 131, 135, 141
EPS case illustration, 139
events, types of, 130–131, 138–139
expected value, 143–145, 147–152
function, 173–175
inconsistent, 132–133
independent events, 138–142
joint, 134–135
limit order executing, 137–138
marginal, 133
multiplication rule for, 134–135
objective, 131
odds, 131–134
outcomes, 129–130, 137
random variables, 129–130, 143–145,

152–153, 159, 166
standard deviation and, 145–147
stock screening case illustration, 140
subjective, 131
total probability rule, 142–144, 146–152,

161
unconditional, 133–134, 136, 141–142,

147, 163, 165
variance, 145, 148

Probability density function (pdf), 173, 187

Probability distribution
bond price case illustration, 172–173
continuous random variables, 172,

185–206
defined, 171
discrete random variables, 171–185
implications of, 130
Monte Carlo simulation, 171, 175, 186,

207–213
Probability-weighted average, 152
Probit regression model, 372–374
Procyclical stocks, 510
Pseudo-random numbers, 209n
Pure discount instruments, 55
Pure factor premium, 479
p-value, 252–253, 312, 330,

343

Q
Quadratic programming, 441n
Qualitative dependent variables, 372
Quarterly returns, 267
Quartiles, 94
Quintiles

calculation of, 95–98
defined, 94–95
determination of, 94–95
implications of, 95
investment applications, 98–100

Quoted interest rate, 8, 18

R
RAD Corporation, R&D program, 41–44
Random number, 209
Random sampling, 218
Random variables

Bernoulli, 175–176, 183–184
binomial, 177–179, 183–185
characteristics of, 129–130, 143–145
continuous, 172, 185–206
correlation and, 284
counting principles, 166
covariance and 152–153, 159
defined, 171
discrete, 171–185
independence for, 160
independently and identically distributed

(IID), 203
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Random variables (continued )
lognormal, 204
normal, 190–191, 195
standardizing, 194–195

Random walks, 372, 399–404
Ranges, 66n, 100–103
Rate of return, 2, 24, 39–47, 93
Ratio scales, 63–64
RBC Capital Markets Canadian Bond Market

Index, 86
Real equity returns, 71–72
Real interest rate, 349
Real risk-free interest rate, 2
Rebalanced portfolios, 87
Regimes, defined, 398
Regression analysis, characteristics of, 171,

189, 253n. See also Linear regression
analysis; Multiple regression analysis

Regression coefficients, 301, 326, 336, 359,
361, 397–399

Regression sum of squares (RSS), 319, 321,
340

Reinvested interest, 4
Reinvestment/reinvestment rate, 42, 46–49,

54
Rejection point, 249–251, 257–259, 270,

272
Relative dispersion, 113
Relative frequency

cumulative, 69, 71, 75
defined, 69
implications of, 71, 75

Relative value, hypothesis testing,
272–273

Reliability factors, 227–229, 233, 235
Residual autocorrelations, 388–389
Residual errors, time-series analysis, 377
Residuals

linear trend regression analysis, 382–383
time-series analysis, 394, 426–427

Residual standard error (RSE), 328–329, 335,
349, 357, 361–362, 365–367, 369

Retail sales, case illustrations, 375–376,
408–409, 411–416

Retirement savings plan, 30, 32–35
Return correlation, krona-yen, 298
Return distributions

kurtosis in, 123–127

symmetry and skewness in, 118–123
Return on equity (ROE), 372, 502–504

Return on invested capital (ROIC), 315–316,
322–324

Return-risk measure, 115
Returns, source analysis, 493–496
Reward-to-variability ratio, 115n
Risk

aversion, 63, 429–430
exposure, 276, 498
management, influential factors, 54,

110–111, 116, 200, 244
premium, see Risk premium
source analysis, 496–505
tolerance, 430, 463

Risk-adjusted excess returns, 347
Risk-adjusted net value added (RANVA),

333–334, 337
Risk-adjusted returns, 319
Risk-free assets

capital allocation line (CAL), 450–455
capital allocation line equation, 455–457
capital market line (CML), 458
characteristics of, 509
mean-variance analysis, 463

Risk-free rate
arbitrage pricing theory (APT), 478–481
implications of, 115–116, 119, 219, 320
mean-variance frontier, 453–455
mean-variance portfolio, 460–461
multifactor models, 484–485
nominal, 2
real, 2

Risk premium
arbitrage pricing theory (APT), 483–484
defined, 478
test, 246, 251–253

Risk-free returns, 421
Risk-return tradeoff, 449–454
Robustness, 254
Robust standard errors, 351, 355n
Root mean squared error (RMSE), time-series

analysis, 395, 397, 424
Ross, Stephen, 478
R-squared (R2)

adjusted, 340–341
characteristics of, 314–317, 320, 322, 329,

350, 357–358, 367
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multiple, see Multiple R-squared
time-series analysis, 379–380, 383–384,

390, 393–394, 398, 402–403, 407,
413–416, 419

Rule of 72, 30n
Runs tests, 276
Russell 1000 Index, 140
Russell 2000 Index

characteristics of, 342
Growth Index, 291
Value Index, 291

S
Safety-first ratio (SFRatio), 198–199
Safety-first rules, 197–199
Salomon RAM model, 488–489
Sample

covariance, 284, 286
defined, 62
excess kurtosis, 124–127
mean, see Sample mean
relative skewness, 121
selection bias, 238–239, 251
size, 233–235, 297, 389–390
skewness, 121, 127n
standard deviation, 106–109, 264, 268,

270, 284
statistic, defined, 63
variance (s2), 104, 106–109, 223

Sample mean
cross-sectional mean, 78–80
defined, 77
distribution of, 221–225
efficiency, 226
formula, 78
standard error of, 221–223

Sampling
data-mining bias, 236–238
defined, 215
distribution, 217, 226, 470
error, 217
look-ahead bias, 240
plan, 216
population mean, point and interval

estimates, 225–235
random, 218
sample mean, 221–225
sample selection bias, 238–239

simple random, 216–217
stratified, 217–219
systematic, 216
time-period bias, 240–241
time-series and cross-sectional data,

219–221
Savage, Sam, 207
Scatter plots, 281–283, 288, 290,

363
Scotia Capital Markets Mortgage Index,

87n
Seasonality, time-series analysis, 375, 408,

412–416, 425
Second-order time-series model, 397
Security dealers, 200
Security market line (SML), 459
Selected American Shares (SLASX), 90–92,

102–103, 107–110, 117–118
Self-selection bias, 239
Semi-active investment, 497
Semideviation, 110–111
Semilogarithmic scales, 127
Semistandard deviation, 110
Semivariance, 110–111
Sendar Equity Fund, 255–256
Serial correlation

consequences of, 352
correcting for, 355–356
defined, 352
implications of, 351–352, 359–360
measurement errors, 371n
testing for, 353–355
time-series analysis, 385, 425–426

Series of cash flows
additivity, 36–37
future value of, 13–15, 26
present value of, 19–27
unequal, 26–27

Service, Ronald, 494–496
Shareholder wealth, 47
Sharpe, William F., 115
Sharpe measure, 115n
Sharpe ratio, 54, 111, 115–118, 198,

219–220, 232–233, 277n,
460–463

Shortfall risk, 197, 199
Short sales, 133n, 443, 470, 478
Sign test, 276
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Simple interest, 4, 56
Simple random sampling, 216–217
Simulation trial, 207. See also Monte Carlo

simulation
Single cash flow

future value of, 3–6, 8–13
present value of, 15–18

Single-factor models
arbitrage portfolio theory (APT), 480
portfolio selection and, 510

Single population mean, 254–258
Single-stock portfolio, 447
Size of portfolio, 445–449
Skewed distribution, defined, 118
Skewness

calculation for mutual fund, 121–123
characteristics of, 120–121, 126–127,

190–191
defined, 120
hypothesis testing, 254
sample formula, 121

Slope/slope coefficient, 75–76, 115, 302, 311,
317, 319, 330, 338–340, 357, 363,
366, 379, 403, 450, 453, 476

Small-cap portfolios, 494
Small-cap stocks

characteristics of, 291, 503–504
minimum-variance analysis, 471–472
minimum-variance portfolios, 436–437,

439, 441, 444
multiple regression analysis case illustration,

341–343
Smoothing, 407–409
Software packages

econometric, 420n
regression analysis, 330
statistical, 315n, 340, 351–352,

355, 389
South African stock market, 421–422
Spearman rank correlation coefficient,

276–279
Specialists, 422
Spreads

bid-ask, 326, 361–363
regression analysis, 315, 343–345

Spreadsheet applications, 48, 123n, 208
Spurious correlation, 289, 367, 387
Squared deviation, 120

Squared error, time-series analysis,
396

Stand-alone investments, 460–461
Standard & Poor’s

CreditWeek, 259
as information resource, 183
Mutual Fund Reports, 277n

S&P/BARRA Growth Index, 335–336,
357–358, 423–424

S&P/BARRA Value Index, 335–336,
357–358, 424

Standard & Poor’s 500 Index (S&P 500)
characteristics of, 84, 88–89, 112, 114, 121,

125, 152, 193, 288, 293–294, 304,
313, 407, 444, 486–488, 497–498

frequency distributions, 65, 67–70,
72–76

minimum-variance analysis, 471
time-series analysis model, 410–411

S&P/TSX Composite Index, 86, 87n
Standard deviation

confidence intervals, 231
correlation and, 284–285
defined, 103
equity market returns, 109
geometric and arithmetic means, 92n
hypothesis testing, 274
lognormal distribution, 201
mean absolute, 101–103
mean-variance analysis, 463
minimum-variance analysis, 471
minimum-variance portfolios, 433,

438–440, 444, 447–449, 455–457
multifactor models, 496–497, 503
normal distribution and, 191–194
population, 104–106, 192, 254
regression analysis, 307
risk-free assets, 449–450
risk-return tradeoff, 450–452
sample, 106–109
simulation trials, 207
two-asset portfolios, 432, 436

Standard error
heteroskedasticty, 346–347, 351
hypothesis testing, 252, 260, 266, 311n
of the regression, 307
regression analysis, 312, 315, 317,

328–329, 351, 422
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time-series analysis, 379, 384, 390,
393–395, 398, 402, 407, 413–416,
419, 426

Standard error of estimate (SEE)
characteristics of, 306–307, 319, 320–323,

329
computation of, 308

Standardized beta, 485
Standard Life Investments, 87n
Stated annual interest rate, 8–9, 11–13
Stationarity

multiple regression analysis, 372
time-series analysis, 422

Statistic(s), see specific statistics
defined, 62, 215
descriptive, 62
dispersion measures, 100–118
graphic presentation of data, 72–76
means, 127–128
measurement scales, 63–64
measures of central tendency, 76–94
nature of, 62
populations, 62
quantiles, 94–100
return distributions, 118–127
samples, 62–63
sampling distribution of, 217
summarizing data using frequency

distributions, 65–72
tests, 359

Statistical decision, 252
Statistical factor models, 474, 493
Statistical inference, 62, 189, 243–244,

386
Stock indexes, 293–294
Stock investments, see specific types of stocks

limit orders, 137–138
regression analysis, 324
screening process, 140

Stock market
crash of 1987, 273
triple witching days, 274

Stock price movement, 176, 185
Stock return series, correlations among,

293–294
Stratified sampling, 217–219
Stubeck Corporation, 51–52
Subjective probability, 131

Summarizing data, 67, 71, 79
Sum of squared errors (SSE), 319, 343
Sum of squares (SS), 319–320, 328, 338,

357–358
Supply and demand, 2
Surprise

defined, 475
multifactor models, 476

Survey of Professional Forecasters (SPF), 289,
318, 349

Survivorship bias, 238–239, 241
Swedish kronor, 291–293, 298
Swensen, David, 473
Swiss franc, exchange rate, 375–376
Symmetrical relationships, 168
Symmetric distributions, 120, 179, 190
Systematic factors, 474
Systematic risk, 310, 321n, 509
Systematic sampling, 216

T
Tails, in distributions, 69, 125, 179, 191,

228
Tangency portfolio, 450, 455–457, 463
Target semideviation, 110
Target semivariance, 110
t-distributions, 230–231, 254, 269, 275n,

311–312
Technology stocks, 334
Terminal value, 50, 54
Test statistics

alternative, 258
characteristics of, 246–249, 296
chi-square tests, 253n, 269–271
data collection, 251–252
defined, 246
F -statistics, 272, 318–319, 321, 339–340,

357–358, 366
F -tests, 246, 253n, 254, 257, 261,

265–266, 275, 276n, 328n, 336, 346,
350, 356

mean, 262–269
p-value, 252–253, 312, 330, 343
regression analysis, 305n, 343, 347,

350
rejection point, 249–251, 258
risk premium test, 251–253
statistical decisions, 252
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Test statistics (continued )
t-statistics, 232–234, 254–255, 264, 270,

312, 314, 321, 328–329, 343, 347, 352,
357, 367, 374, 389, 392–393, 398, 401,
404–405, 413–416, 418–419, 421

t-test, 253n, 254, 257, 261, 265–266, 275,
276n, 328n, 336, 346, 350, 356

z-tests, 251, 253n, 257–259, 275,
328n

Theta, 410
Time horizon

implications of, 92
risk, 486–488, 506

Time-period bias, 240–241, 252
Time-series analysis

autoregressive (AR) models, 376–377,
386–399

autoregressive conditional heteroskedasticity
models, 417–420

autoregressive moving-average models,
416–417

challenges of, 375–377
characteristics of, 171, 375, 424–425
complexity of, 424–425
defined, 375
forecasting, 385, 425–427
moving average models, 407–411,

416–417
random walks, 399–404
regressions with multiple time series,

420–424
seasonality in, 375, 412–416, 425
trend models, 377–385, 425
unit root test, 403–407, 420–424

Time-series data, 78, 219–221, 301,
324

Time-series mean, 87
Time-series misspecification,

368–371
Time-series regression, 324
Time-series sample, 252
Time value of money (TVM)

annuities, 30–35
defined, 1
future value, 5–15, 35–36
growth rates, 27–30
interest rates, 1–3, 27–30
number of periods, 30

present value, 19–27, 35–36
series of cash flows, 13–15, 19–27
single cash flow, future value of, 3–6,

8–13
Time-weighted returns, 49–54
Total probability rule, 161
Total returns, 87, 102, 107–108, 288.

See also Holding period return
(HPR)

Total sum of squares (TSS), 319
Tracking error (TE), 181–182,

496–497
Tracking-error volatility (TEV),

496–497
Tracking portfolio, 507–509
Tracking risk, 182, 497, 501
Trading desk, 176–177, 179–181
Trading volume, 373
Transaction costs, 212
Treasury bills, see U.S. Treasury bills

(T-bills)
Treasury bonds, see U.S. Treasury bonds
Treasury debt, 3
Tree diagrams, 128, 147
Trend models, time-series analysis

correlated errors, testing for, 385
linear, 377–380, 385
log-linear, 380–385

Trimmed mean, 81n
Triple witching days, 274
T. Rowe Price Equity Income (PRFDX),

90–92, 102–103, 107–109, 117–118,
121–123, 125–127

t-statistics, 232–234, 254–255, 264, 270,
312, 314, 321, 328–329, 343, 347, 352,
357, 367, 374, 389, 392–393, 398, 401,
404–405, 413–416, 418–419, 421

t-tests, 253n, 254, 257, 261, 265–266, 275,
276n, 328n, 336, 346, 350, 356

t-values, 297, 311, 330
Two-factor models

active risk, 501–502
arbitrage pricing theory (APT),

483–484
Two-fund theorem, 443n
Two-stock portfolio, 477
Type I error, 312, 352
Type II error, 312
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U
Unbiasedness, 226
Uncertainty, 128, 308, 324, 337, 355, 380,

391, 422, 424–425
Unconditional probability, 133–134, 136,

141–142, 147, 163, 165
Underwriters, bond market, 343–345
Uniform distribution, 209
Unimodal distribution, 120
U.S. dollar (USD)

characteristics of, 291–293
exchange rate, 401–403
foreign exchange rate, 375–376
multifactor models, 489

U.S. equities, 462
U.S. small-cap equity index fund, 436
U.S. Small-Stock index, 293–294
U.S. Treasury bills (T-bills), 2–3, 55–58,

114, 116–117, 151, 210–211, 259,
294–295, 299, 349, 351–352,
369–371, 421, 449, 486–487,
489

U.S. Treasury bonds, 218, 343, 489
Unit root, time-series analysis

characteristics of, 403–407, 420
cointegration, 422
Fisher effect and, 421
multiple, 422–423
stock market returns, predictability of,

421–422
Univariate distribution, 190
Unsecured debt ratings, 84–85
Up transition probability, 184

V
Validity, hypothesis testing, 275
Valuation, multifactor models, 493
Value at Risk (VaR), 200, 207
Value creation, 45
Value stocks, 98–99, 291, 358, 496
Variable bias, omitted, 360–361
Variance(s)

arbitrage pricing theory (APT),
478

autoregressive conditional heteroskedasticity
(ARCH), 418–420

coefficient of, 113–115
confidence intervals and, 228

equality/inequality of, 271–274
linear regression, 304, 323
lognormal distribution, 206
minimum-variance portfolios, 439, 442,

446–447
normal distribution and, 194
population, 103–104
random walks and, 400
risk-return tradeoff, 450
sample, 104, 106–109
three-asset case, 450
time-series analysis, 387, 420–421,

425
two-asset portfolios, 431–432

Volatility
active factor risk, 502–504
Crash of 1987, 273
derivatives expiration days, 274
impact of, 185, 204–205, 219, 493,

496–497
multifactor models, 479

W
Warning signs, in data mining, 238
Weakly stationary, see Covariance stationary

time series
Wealth creation, 47
Weighted average, 143, 152–153, 161,

191–192, 234
Weighted-average cost of capital (WACC), 40,

315–316, 322–324
Weighted mean

defined, 86
expected value, 88–89
implications of, 85–87, 143
portfolio return as, 87–88

‘‘What if’’ analysis, 212
White-corrected standard errors,

351n
Wilcoxon signed-rank test, 276
Wilshire 5000, 293–294
Winsorized mean, 81n
Withdrawals, money-weighted rate of return,

53–54
Working capital management, 40

X
x-axis, 74, 290, 434
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Y
Yale University’s Endowment Fund, 473
y-axis, 74, 281, 290
Yield, bank discount, see Bank discount

yield
Yields to maturity (YTM), 59

Z
Zero-coupon bonds, 150–152, 343–344
Zero uncertainty, 128

Zero variance, 128
Zeta analysis, 373
Z-score, 373
z-statistic, 229–230, 270n
z-tests, 251, 253n, 257–259, 275,

328n
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